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Abstract. The best hope for reducing long-standing global
climate model biases is by increasing resolution to the kilo-
meter scale. Here we present results from an ultrahigh-
resolution non-hydrostatic climate model for a near-global
setup running on the full Piz Daint supercomputer on
4888 GPUs (graphics processing units). The dynamical core
of the model has been completely rewritten using a domain-
specific language (DSL) for performance portability across
different hardware architectures. Physical parameterizations
and diagnostics have been ported using compiler directives.
To our knowledge this represents the first complete atmo-
spheric model being run entirely on accelerators on this scale.
At a grid spacing of 930 m (1.9 km), we achieve a simulation
throughput of 0.043 (0.23) simulated years per day and an en-
ergy consumption of 596 MWh per simulated year. Further-
more, we propose a new memory usage efficiency (MUE)
metric that considers how efficiently the memory bandwidth
– the dominant bottleneck of climate codes – is being used.

1 Introduction

Should global warming occur at the upper end of the range
of current projections, the local impacts of unmitigated cli-
mate change would be dramatic. Particular concerns relate
to the projected sea-level rise, increases in the incidence of
extreme events such as heat waves and floods, and changes

in the availability of water resources and the occurrence of
droughts (Pachauri and Meyer, 2014).

Current climate projections are mostly based on global cli-
mate models (GCMs). These models represent the coupled
atmosphere–ocean–land system and integrate the governing
equations, for instance, for a set of prescribed emissions sce-
narios. Despite significant progress during the last decades,
uncertainties are still large. For example, current estimates
of the equilibrium global mean surface warming for doubled
greenhouse gas concentrations range between 1.5 and 4.5 ◦C
(Pachauri and Meyer, 2014). On regional scales and in terms
of the hydrological cycle, the uncertainties are even larger.
Reducing the uncertainties of climate change projections, in
order to make optimal mitigation and adaptation decisions,
is thus urgent and has a tremendous economic value (Hope,
2015).

How can the uncertainties of climate projections be re-
duced? There is overwhelming evidence from the literature
that the leading cause of uncertainty is the representation of
clouds, largely due to their influence upon the reflection of
incoming solar radiation (Boucher et al., 2013; Bony et al.,
2015; Schneider et al., 2017). Horizontal resolutions of cur-
rent global climate models are typically in the range of 50–
200 km. At this resolution, clouds must be parametrized,
based on theoretical and semiempirical considerations. Re-
fining the resolution to the kilometer scale would allow the
explicit representation of deep convective clouds (thunder-
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storms and rain showers; e.g., Fig. 1). Studies using regional
climate models demonstrate that at this resolution, the repre-
sentation of precipitation is dramatically improved (Kendon
et al., 2014; Ban et al., 2015). The representation of shal-
low cumulus cloud layers, which are common over signif-
icant fractions of the tropical oceans, requires even higher
resolution. The United States National academy of sciences
has thus recommended (Natinal Research Council, 2012) de-
veloping “high-end global models that execute efficiently ...
, enabling cloud-resolving atmospheric resolutions (2–4 km)
and eddy-resolving ocean resolutions (5 km)” in the near fu-
ture.

While the scientific prospects of such an undertaking are
highly promising, the computational implications are signif-
icant. Increasing the horizontal resolution from 50 to 2 km
increases the computational effort by at least a factor of
253
= 15 000. Such simulations will only be possible on

future extreme-scale high-performance computers. Further-
more, power constraints have been driving the widespread
adoption of many-core accelerators in leading edge super-
computers and the weather and climate community is strug-
gling to migrate the large existing codes to these architectures
and use them efficiently.

But what does efficient mean? While concerns of the total
cost of ownership of a high-performance computing (HPC)
system have shifted the focus from peak floating point per-
formance towards improving power efficiency, it is not clear
what the right efficiency metric is for a fully fledged climate
model. Today, floating point operations are around 100×
cheaper than data movement in terms of time and 1000×
cheaper in terms of energy, depending on where the data
come from (Borkar and Chien, 2011; Shalf et al., 2011).
Thus, while focusing on floating point operations was very
relevant 25 years ago, it has lost most of this relevance today.
Instead, domain-specific metrics may be much more applica-
ble to evaluate and compare application performance. A met-
ric often used for climate models is the throughput achieved
by the simulation measured in simulated years per wall clock
day (SYPD; see Balaji et al. (2017) for a detailed discussion
on metrics). For global atmospheric models, a suitable near-
term target is to conduct decade-long simulations and to par-
ticipate in the Atmospheric Model Intercomparison Project
(AMIP) effort. 1 Such simulations require a 36-year long
simulation for the period 1979–2014, driven by observed
atmospheric greenhouse gas concentrations and sea-surface
temperatures. Within the context of current climate model-
ing centers, such a simulation would be feasible for an SYPD
greater than or equal to 0.2–0.3. At such a rate the simulation
would take up to several months. However, domain-specific
metrics such as SYPD are very dependent on the specific
problem and approximations in the code under consideration
and are often hard to compare. Ideally comparisons would be

1This is part of the Coupled Model Intercomparison Project
(CMIP6; see Eyring et al., 2016).

performed for production-quality global atmospheric mod-
els that have been extensively validated for climate simula-
tions and cover the full (non-hydrostatic and compressible)
dynamics and the entire suite of model parameterizations.

With the SYPD metric alone, it is hard to assess how ef-
ficiently a particular computing platform is used. Efficiency
of use is particularly important because, on the typical scale
of climate simulations, computing resources are very costly
and energy intensive. Thus, running high-resolution climate
simulations also faces a significant computer science prob-
lem when it comes to computational efficiency. As men-
tioned before, floating point efficiency is often not relevant
for state-of-the-art climate codes. Not only does counting
floating point operations per second (flop s−1) not reflect the
actual (energy) costs well, but the typical climate code has
very low arithmetic intensity (the ratio of floating point op-
erations to consumed memory bandwidth). Attempts to in-
crease the arithmetic intensity may increase the floating point
rate, but it is not clear if it improves any of the significant
metrics (e.g., SYPD). However, solely focusing on memory
bandwidth can also be misleading. Thus, we propose mem-
ory usage efficiency (MUE), a new metric that considers the
efficiency of the code’s implementation with respect to in-
put/output (I/O) complexity bounds as well as the achieved
system memory bandwidth.

In summary, the next grand challenge of climate mod-
eling is refining the grid spacing of the production model
codes to the kilometer scale, as it will allow addressing long-
standing open questions and uncertainties on the impact of
anthropogenic effects on the future of our planet. Here, we
address this great challenge and demonstrate the first sim-
ulation of a production-level atmospheric model, delivering
0.23 (0.043) SYPD at a grid spacing of 1.9 km (930 m), suf-
ficient for AMIP-type simulations. Further, we evaluate the
efficiency of these simulations using a new memory usage
efficiency metric.

2 Current state of the art

Performing global kilometer-scale climate simulations is an
ambitious goal (Palmer, 2014), but a few kilometer-scale
landmark simulations have already been performed. While
arguably not the most relevant metric, many of the studies
have reported sustained floating point performance. In 2007,
Miura et al. (2007) performed a week-long simulation with
a horizontal grid spacing of 3.5 km with the Nonhydrostatic
Icosahedral Atmospheric Model (NICAM) on the Earth Sim-
ulator, and in 2013 Miyamoto et al. (2013) performed a 12 h
long simulation at a grid spacing of 870 m on the K computer,
achieving 230 Tflop s−1 double-precision performance.2 In
2014, Skamarock et al. (2014) performed a 20-day long sim-
ulation with a horizontal grid spacing of 3 km with the Model

21 Tflop s−1 = 1012 flop s−1.
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Figure 1. Visualization of a baroclinic wave at day 10 of a simulation with 930 m grid spacing. White shading: volume rendering of cloud ice,
cloud water, and graupel ≥ 10−3 g kg−1. Blue shading: isosurface of rain and snow hydrometeors ≥ 4× 10−2 g kg−1. The white contours
denote surface pressure.

for Prediction Across Scales (MPAS) and later, in 2015, par-
ticipated in the Next Generation Global Prediction System
(NGGPS) model intercomparison project (Michalakes et al.,
2015) at the same resolution and achieved 0.16 SYPD on the
full National Energy Research Scientific Computing Center
(NERSC) Edison system. In 2015, Bretherton and Khairout-
dinov (2015) simulated several months of an extended aqua-
planet channel at a grid spacing of 4 km using the System for
Atmospheric Modeling (SAM). Yashiro et al. (2016) were
the first to deploy a weather code on the TSUBAME sys-
tem accelerated using graphics processing units (GPUs). The
fully rewritten NICAM model sustained a double-precision
performance of 60 Tflop s−1 on 2560 GPUs of the TSUB-
AME 2.5 supercomputer. In 2016, Yang et al. (2016a) imple-
mented a fully implicit dynamical core at 488 m grid spacing
in a β-plane channel achieving 7.95 Pflop s−1 on the Taihu-
Light supercomputer.3

The optimal numerical approach for high-resolution cli-
mate models may depend on the details of the target hard-
ware architecture. For a more thorough analysis, the physical
propagation of information in the atmosphere has to be con-
sidered. While many limited-area atmospheric models use a
filtered set of the governing equations that suppresses sound
propagation, these approaches are not precise enough for
global applications (Davies et al., 2003). Thus, the largest
physical group velocity to face in global atmospheric mod-
els is the speed of sound. The speed of sound in the atmo-
sphere amounts to between 280 and 360 m s−1. Thus in a
time span of an hour, the minimum distance across which in-
formation needs to be exchanged amounts to about 1500 km,
corresponding to a tiny fraction of 1.4 % of the earth’s sur-

31 Pflop s−1 = 1015 flop s−1.

face. However, many numerical schemes exchange informa-
tion at much larger rates. For instance, the popular pseudo-
spectral methodology (e.g., ECMWF, 2016) requires Legen-
dre and Fourier transforms between the physical grid and the
spherical harmonics and thus couples them globally at each
time step. Similarly, semi-Lagrangian semi-implicit time-
integration methods require the solution of a Helmholtz-
type elliptical equation (Davies et al., 2005), which implies
global communication at each time step. Both methods use
long time steps, which may partially mitigate the additional
communication overhead. While these methods have enabled
fast and accurate solutions at intermediate resolution in the
past, they are likely not suited for ultrahigh-resolution mod-
els, as the rate of communication typically increases propor-
tionally to the horizontal mesh size. Other approaches use
time-integration methods with only locally implicit solvers
(e.g., Giraldo et al., 2013), where they try to retain the ad-
vantages of fully implicit methods but only require nearest-
neighbor communication.

The main advantage of implicit and semi-implicit ap-
proaches is that they allow large acoustic Courant numbers
αc = c1t/1x, where c denotes the speed of sound and 1t
and 1x the time step and the grid spacing, respectively. For
instance, Yang et al. (2016a) use an acoustic Courant num-
ber up to 177; i.e., their time step is 177 times larger than in
a standard explicit integration (this estimate is based on the
1x = 488 m simulation with1t = 240 s). In their case, such
a large time step may be chosen, as the sound propagation is
not relevant for weather phenomena.

However, although implicit methods are unconditionally
stable (stable irrespectively of the time step used), there are
other limits to choosing the time step. In order to appro-
priately represent advective processes with typical veloc-
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ities up to 100 m s−1 and associated phase changes (e.g.,
condensation and fallout of precipitation), numerical prin-
ciples dictate an upper limit to the advective Courant num-
ber αu = |u|1t/1x, where |u| denotes the largest advective
wind speed, e.g., Ewing and Wang (2001). The specific limit
for αu depends on the numerical implementation and time-
stepping procedures. For instance, semi-Lagrangian schemes
may produce accurate results for values of αu up to 4 or
even larger. For most standard implementations, however,
there are much more stringent limits, often requiring that
αu ≤ 1. For the recent study of Yang et al. (2016a), who
used a fully implicit scheme with a time step of 240 s, the
advective Courant number reaches values of up to αu = 4.2
and 17.2 for the 1x = 2 km and 488 m simulation, respec-
tively. Depending upon the numerical approximation, such
a large Courant number will imply significant phase errors
(Durran, 2010) or even a reduction in effective model reso-
lution (Ricard et al., 2013). In order to produce accurate re-
sults, the scheme would require a significantly smaller time
step and would require reducing the time step with decreas-
ing grid spacing. For the NGGPS intercomparison the hydro-
static Integrated Forecasting System (IFS) model used a time
step of 120 s at 3.125 km (Michalakes et al., 2015), the re-
gional semi-implicit, semi-Lagrangian, fully non-hydrostatic
model MC2 used a time step of 30 s at 3.0 km (Benoit et al.,
2002), and Météo France in their semi-implicit Application
of Research to Operations at Mesoscale (AROME) model
use a time step of 45 and 60 s for their 1.3 and 2.5 km
implementations, respectively. Since the IFS model is not
a non-hydrostatic model, we conclude that even for fully
implicit, global, convection-resolving climate simulations at
∼ 1–2 km grid spacing, a time step larger than 40–60 s cannot
be considered a viable option.

In the current study we use the split-explicit time-stepping
scheme with an underlying Runge–Kutta time step (Wicker
and Skamarock, 2002) of the Consortium for Small-Scale
Modeling (COSMO) model (see Sect. 3.1). This scheme uses
sub-time stepping for the fast (acoustic) modes with a small
time step 1τ and explicit time stepping for all other modes
with a large time step 1t = n1τ . Most of the computations
are required on the large time step, with αu ≤ 2, depend-
ing on the combination of time-integration and advection
scheme. In contrast to semi-implicit, semi-Lagrangian, and
implicit schemes, the approach does not require solving a
global equation and all computations are local (i.e., vertical
columns exchange information merely with their neighbors).
The main advantage of this approach is that it exhibits – at
least in theory – perfect weak scaling.4 This also applies to
the communication load per sub-domain, when applying hor-
izontal domain decomposition.

4Weak scaling is defined as how the solution time varies with
the number of processing elements for a fixed problem size per pro-
cessing elements. This is in contrast to strong scaling, where the
total problem size is kept fixed.

3 Methods

3.1 Model description

For the simulations presented in this paper, we use a refac-
tored version 5.0 of the regional weather and climate code
developed by COSMO (COSMO, 2017; Doms and Schät-
tler, 1999; Steppeler et al., 2002) and – for the climate
mode – the Climate Limited-area Modelling (CLM) Com-
munity (CLM-Community, 2017). At kilometer-scale reso-
lution, COSMO is used for numerical weather prediction
(Richard et al., 2007; Baldauf et al., 2011) and has been
thoroughly evaluated for climate simulations in Europe (Ban
et al., 2015; Leutwyler et al., 2017). The COSMO model is
based on the thermo-hydrodynamical equations describing
non-hydrostatic, fully compressible flow in a moist atmo-
sphere. It solves the fully compressible Euler equations us-
ing finite difference discretization in space (Doms and Schät-
tler, 1999; Steppeler et al., 2002). For time stepping, it uses
a split-explicit three-stage second-order Runge–Kutta dis-
cretization to integrate the prognostic variables forward in
time (Wicker and Skamarock, 2002). For horizontal advec-
tion, a fifth-order upwind scheme is used for the dynamic
variables and a Bott scheme (Bott, 1989) is used for the
moisture variables. The model includes a full set of physi-
cal parametrizations required for real-case simulations. For
this study, we use a single-moment bulk cloud microphysics
scheme that uses five species (cloud water, cloud ice, rain,
snow, and graupel) described in Reinhardt and Seifert (2006).
For the full physics simulations, additionally a radiation
scheme (Ritter and Geleyn, 1992), a soil model (Heise et al.,
2006), and a sub-grid-scale turbulence scheme (Raschendor-
fer, 2001) are switched on.

The COSMO model is a regional model and physical
space is discretized in a rotated latitude–longitude–height
coordinate system and projected onto a regular, structured,
three-dimensional grid (IJK). In the vertical, a terrain-
following coordinate supports an arbitrary topography. The
spatial discretization applied to solve the governing equa-
tions generates so called stencil computations (operations
that require data from neighboring grid points). Due to the
strong anisotropy of the atmosphere, implicit methods are
employed in the vertical direction, as opposed to the explicit
methods applied to the horizontal operators. The numerical
discretization yields a large number of mixed compact hor-
izontal stencils and vertical implicit solvers, strongly con-
nected via the data dependencies on the prognostic variables.
Figure 2 shows the data dependency graph of the compu-
tational kernels of the dynamical core of COSMO used in
this setup, where each computational kernel corresponds to
a complex set of fused stencil operations in order to maxi-
mize the data locality of the algorithm. Each computational
kernel typically has multiple input and output fields and thus
data dependencies as indicated with the edges of the Com-
putational Directed Acyclic Graph (CDAG) shown in Fig. 2.
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Figure 2. Illustration of the computational complexity of the COSMO dynamical core, using a CDAG. The nodes of the graph represent com-
putational kernels (blue ellipses) that can have multiple input and output variables, halo updates (green rectangles), and boundary condition
operations (orange rectangles). The edges of the graph represent data dependencies. Since the dynamical core of COSMO has been written
using a DSL, the CDAG can be produced automatically using an analysis back end of the DSL compiler. The lengthy serial section in the
middle of the figure corresponds to the sound waves sub-stepping in the fast-wave solver. The parallel section in the upper left corresponds
to the advection of the seven tracer variables. CDAGs can automatically be produced from C++ code.

Maximizing the data locality of these stencil computations is
crucial to optimize the time to solution of the application.

To enable the running of COSMO on hybrid high-
performance computing systems with GPU-accelerated com-
pute nodes, we rewrote the dynamical core of the model,
which implements the solution to the non-hydrostatic Eu-
ler equations, from Fortran to C++ (Fuhrer et al., 2014).
This enabled us to introduce a new C++ template library-
based domain-specific language (DSL) we call Stencil Loop
Language (STELLA) (Gysi et al., 2015a) to provide a
performance-portable implementation for the stencil algo-
rithmic motifs by abstracting hardware-dependent optimiza-
tion. Specialized back ends of the library produce efficient
code for the target computing architecture. Additionally, the
DSL supports an analysis back end that records the ac-
cess patterns and data dependencies of the kernels shown in
Fig. 2. This information is then used to determine the amount
of memory accesses and to assess the memory utilization
efficiency. For GPUs, the STELLA back end is written in
CUDA, and other parts of the refactored COSMO imple-
mentation use OpenACC directives (Lapillonne and Fuhrer,
2014).

Thanks to this refactored implementation of the model and
the STELLA DSL, COSMO is the first fully capable weather
and climate model to go operational on GPU-accelerated su-
percomputers (Lapillonne et al., 2016). In the simulations
we analyze here, the model was scaled to nearly 5000 GPU-
accelerated nodes of the Piz Daint supercomputer at the

Swiss National Supercomputing Centre.5 To our knowledge,
COSMO is still the only production-level weather and cli-
mate model capable of running on GPU-accelerated hard-
ware architectures.

3.2 Hardware description

The experiments were performed on the hybrid partition of
the Piz Daint supercomputer, located at the Swiss National
Supercomputing Centre (CSCS) in Lugano. At the time when
our simulation was performed, this supercomputer consisted
of a multi-core partition, which was not used in this study, as
well as a hybrid partition of 4’936 Cray XC50 nodes. These
hybrid nodes are equipped with an Intel E5-2690 v3 CPU
(code name Haswell) and a PCIe version of the NVIDIA
Tesla P100 GPU (code name Pascal) with 16 GBytes second-
generation high-bandwidth memory (HBM2).6 The nodes of
both partitions are interconnected in one fabric (based on
Aries technology) in a Dragonfly topology (Alverson et al.,
2012).

3.3 Energy measurements

We measure the energy to solution of our production-level
runs on Piz Daint using the methodology established and de-

5See https://www.cscs.ch/computers/piz-daint/ for more infor-
mation.

61 GByte = 109 Bytes.
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scribed in detail by Fourestey et al. (2014). The resource uti-
lization report provided on Cray systems for a job provides
the total energy (En) consumed by each application run on
N compute nodes. The total energy (which includes the in-
terconnect) is then computed using

Etot =
En+N/4× 100 W× τ

0.95
, (1)

where τ is the wall time for the application, the N/4×
100 W× τ term accounts for the 100 W per blade contribu-
tion from the Aries interconnect, and the 0.95 on the denom-
inator adjusts for AC/DC conversion.

3.4 Simulation setup and verification

When pushing ahead the development of global high-
resolution climate models, there are two complementary
pathways. First, one can refine the resolution of existing
global climate models (Miura et al., 2007). Second, one
may alternatively try to expand the computational domain
of high-resolution limited-area models towards the global
scale (Bretherton and Khairoutdinov, 2015). Here we choose
the latter and develop a near-global model from the limited-
area high-resolution model COSMO.

We perform near-global simulations for a computational
domain that extends to a latitude band from 80◦ S to 80◦ N,
which covers 98.4 % of the surface area of planet Earth. The
simulation is inspired by the test case used by the winner of
the 2016 Gordon Bell Prize (Yang et al., 2016a).

The simulations are based on an idealized baroclinic wave
test (Jablonowski and Williamson, 2006), which can be con-
sidered a standard benchmark for dynamical cores of at-
mospheric models. The test describes the growth of initial
disturbances in a dynamically unstable westerly jet stream
into finite-amplitude low- and high-pressure systems. The
development includes a rapid transition into a nonlinear
regime, accompanied by the formation of sharp meteorolog-
ical fronts, which in turn trigger the formation of complex
cloud and precipitation systems.

The setup uses a two-dimensional (latitude–height) ana-
lytical description of a hydrostatically balanced atmospheric
base state with westerly jet streams below the tropopause,
in both hemispheres. A large-scale local Gaussian pertur-
bation is then applied to this balanced initial state which
triggers the formation of a growing baroclinic wave in the
Northern Hemisphere, evolving over the course of several
days (Fig. 3). To allow moist processes, the dry initial state
is extended with a moisture profile (Park et al., 2013) and
the parametrization of cloud-microphysical processes is acti-
vated.

The numerical problem is discretized on a latitude–
longitude grid with up to 36 000× 16 001 horizontal grid
points for the 930 m simulation. In the zonal direction the do-
main is periodic and at 80◦ north/south confined by boundary
conditions, relaxing the evolving solution against the initial

conditions in a 500 km wide zone. The vertical direction is
discretized using 60 stretched model levels, spanning from
the surface to the model top at 40 km. The respective layer
thickness widens from 20 m at the surface to 1.5 km near the
domain top.

For the verification against previous dry simulations, a
simulation at 47 km grid spacing is used. The evolution of
the baroclinic wave (Fig. 3) very closely follows the solution
originally found by Jablonowski and Williamson (2006, see
their Fig. 5). At day 8 of the simulation, three low-pressure
systems with frontal systems have formed, and at day 10
wave breaking is evident. At this time, the surface temper-
ature field shows cutoff warm-core cyclonic vortices.

The evolution in the moist and the dry simulation at very
high resolution is shown in Fig. 4. The high-resolution sim-
ulations reveal the onset of a secondary (likely barotropic)
instability along the front and the formation of small-scale
warm-core vortices with a spacing of up to 200–300 km. The
basic structure of these vortices is already present in the dry
simulation, but they exhibit considerable intensification and
precipitation in the moist case. The formation of a large se-
ries of secondary vortices is sometimes observed in maritime
cases of cyclogenesis (Fu et al., 2004; Ralph, 1996) but ap-
pears to be a rather rare phenomena. However, it appears that
cases with one or a few secondary vortices are not uncom-
mon and they may even be associated with severe weather
(Ludwig et al., 2015).

The resulting cloud pattern is dominated by the comma-
shaped precipitating cloud that forms along the cold and oc-
cluded fronts of the parent system (Fig. 1). The precipita-
tion pattern is associated with stratiform precipitation in the
head of the cloud and small patches with precipitation rates
exceeding 5 mm h−1 in their tail, stemming from small em-
bedded convective cells. Looking closely at the precipitation
field (Fig. 4e), it can be seen that the secondary vortices are
colocated with small patches of enhanced precipitation.

4 Efficiency metric

In the past, the prevalent metric to measure the performance
of an application was the number of floating point opera-
tions executed per second (flop s−1). It used to pay off to
minimize the number of required floating point operations
in an algorithm and to implement the computing system in
such a way that a code would execute many such operations
per second. Thus, it made sense to assess application per-
formance with the flop s−1 metric. However, the world of
supercomputing has changed. Floating point operations are
now relatively cheap. They cost about a factor of 1000 less
if measured in terms of energy needed to move operands be-
tween memory and registers, and they execute several hun-
dred times faster compared to the latency of memory opera-
tions. Thus, algorithmic optimization today has to focus on
minimizing data movement, and it may even pay off to re-
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Figure 3. Evolution of a baroclinic wave in a dry simulation with 47 km grid spacing on day 8 and 10: (a) surface pressure and (b) temperature
on the 850 hPa pressure level (roughly 1.5 km above sea level).

Figure 4. Output of the baroclinic wave (day 10): (a, b) dry simulation with 1.9 km grid spacing, (c, d, e) moist simulation with 0.93 km grid
spacing, (a, c) surface pressure, (b, d) temperature on the 850 hPa pressure level, and (e) precipitation.

compute certain quantities if this avoids data movements. In
fact, a significant part of the improvements in time to solu-
tion in the refactored COSMO code are due to the recom-
putation of variables that were previously stored in memory
– the original code was written for vector supercomputers
in the 1990s. On today’s architectures, it may even pay off
to replace a floating point minimal sparse algorithm with a
block-sparse algorithm, into which many trivial zero oper-
ations have been introduced (Hutter et al., 2014). Using the
flop s−1 metric to characterize application performance could
be very misleading in these cases.

A popular method to find performance bottlenecks of both
compute- and memory-bound applications is the roofline
model (Williams et al., 2009). However, assessing perfor-
mance of an application simply in terms of sustained memory
bandwidth, which is measured in bytes per second, would be
equally deceptive. For example, by storing many variables in
memory, the original implementation of COSMO introduces
an abundance of memory movements that boost the sustained
memory bandwidth but are inefficient on modern processor
architectures, since these movements cost much more than
the recomputation of these variables.

Furthermore, full-bandwidth utilization on modern accel-
erator architectures, such as the GPUs used here, requires

very specific conditions. Optimizing for bandwidth utiliza-
tion can lead the application developer down the wrong path
because unaligned, strided, or random accesses can be intrin-
sic to an underlying algorithm and severely impact the band-
width (Lee et al., 2010). Optimizations to improve alignment
or reduce the randomness of memory accesses may introduce
unnecessary memory operations that could be detrimental to
time to solution or energy efficiency.

Thus, in order to properly assess the quality of our op-
timizations, one needs to directly consider data movement.
Here we propose a method how this can be done in prac-
tice for the COSMO dynamical core and present the resulting
MUE metric.

Our proposal is motivated by the full-scale COSMO runs
we perform here, where 74 % of the total time is spent in lo-
cal stencil computations. The dependencies between stencils
in complex stencil programs can be optimized with various
inlining and unrolling techniques (Gysi et al., 2015a). Thus,
to be efficient, one needs to achieve maximum spatial and
temporal data reuse to minimize the number of data move-
ment operations and perform them at the highest bandwidth.

In order to assess the efficiency in memory usage of an
implementation on a particular machine, one needs to com-
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pare the actual number of data transfers executed,7 which we
denote with D, with the necessary data transfers Q of the al-
gorithm. Q is the theoretical lower bound (Hong and Kung,
1981) of the number of memory accesses required to imple-
ment the numerical algorithm.

The MUE can be intuitively interpreted as how well the
code is optimized both for data locality and bandwidth uti-
lization; i.e., if MUE= 1, the implementation reaches the
memory movement lower bound of the algorithm and per-
forms all memory transfers with maximum bandwidth. For-
mally,

MUE= I/O efficiency ·BW efficiency=
Q

D
·
B

B̂
, (2)

where B and B̂ represent the bandwidth achieved by an im-
plementation and maximum achievable bandwidth, respec-
tively.

In order to compute the MUE for COSMO, we developed a
performance model that combines the theoretical model from
Hong and Kung (1981), hypergraph properties, and graph
partitioning techniques to estimate the necessary data trans-
fer, Q, from the CDAG information of COSMO. By par-
titioning the CDAG into subcomputations that satisfy cer-
tain conditions imposed by the architecture, this model deter-
mines the theoretical minimum amount of memory transfers
by maximizing the data locality inside the partitions. To ap-
proximate the number of actual transfersD, we use the same
technique to evaluate the quality of current COSMO parti-
tioning. The values B and B̂ were measured empirically –
the former by profiling our application and the latter by a set
of micro-benchmarks.

The details of how to determine the MUE for COSMO
are given in Appendix A. The MUE metric cannot be used
to compare different algorithms but is a measure of the ef-
ficiency of an implementation of a particular algorithm on a
particular machine, i.e., how much data locality is preserved
and what the achieved bandwidth is. It thus complements
other metrics such as SYPD and may complement popular
metrics such as flop s−1 or memory bandwidth. As compared
to the frequently applied roofline model, the MUE metric
also includes the schedule of operations, not simply the ef-
ficient use of the memory subsystem. It is thus a stronger but
also more complex metric.

5 Performance results

To establish a performance baseline for global kilometer-
scale simulations, we here present a summary of the key per-
formance metrics for the simulations at 930 m, 1.9 km, and
47 km grid spacing, as well as a study of weak and strong
scalability.

7Here, we define data transfers as load/stores from system mem-
ory.
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Figure 5. Weak scalability on the hybrid P100 Piz Daint nodes, per
COSMO time step of the dry simulation.

5.1 Weak scalability

Until this study the GPU version of COSMO had only been
scaled up to 1000 nodes of the Piz Daint supercomputer
(Fuhrer et al., 2014), while the full machine – at the time
of the experiment – provides 4932 nodes. The scaling exper-
iments (weak and strong) were performed with the dry simu-
lation setup. Including a cloud microphysics parametrization,
as used in the moist simulation (Fig. 4), increases time to so-
lution by about 10 %. Since microphysics does not contain
any inter-node communication and is purely local to a single
column of grid points, we do not expect an adverse impact
on either weak or strong scalability.

Figure 5 shows weak scaling for three per-node domain
sizes ranging from 128× 128 to 256× 256 grid points in
the horizontal, while keeping the size in the vertical direc-
tion fixed at 60 grid points. In comparison, on 4888 nodes,
the high-resolution simulations at 930 m and 1.9 km hori-
zontal grid spacing correspond to a domain size per node of
about 346×340 and 173×170.8 The model shows excellent
weak scalability properties up to the full machine, which can
at least partially be explained by the nearest-neighbor halo-
exchange pattern. This property reduces the complexity of
COSMO’s scalability on Piz Daint to the strong scaling be-
havior of the code. Essentially, the number of grid points per
node determines the achievable time to solution of a given
problem.

5.2 Strong scalability

From earlier scaling experiments of the STELLA li-
brary (Gysi et al., 2015b) and the GPU version of
COSMO (Fuhrer et al., 2014; Leutwyler et al., 2016), it is
known that, for experiments in double precision on Tesla

8The exact domain size of these simulations is slightly different
on each node due to the domain decomposition.
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Figure 6. Strong scalability on Piz Daint: on P100 GPUs (filled
symbols) and on Haswell CPUs using 12 MPI ranks per node
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K20x, linear scaling is achieved as long as the number of
grid points per node exceeds about 64×64 to 128×128 grid
points per horizontal plane. In comparison, single-precision
measurements on Tesla P100 already start to saturate at a
horizontal domain size of about 200× 200 grid points per
node (Fig. 6),9 corresponding to about 32 nodes for a 19 km
setup and about 1000 nodes for a 3.7 km setup. Since with
the 930 m and 1.9 km setup we are already in 930 m or close
to 1.9 km, the linear scaling regime on the full machine, we
here chose a coarser horizontal grid spacing of 3.7 and 19 km.
The lower limit on the number of nodes is given by the GPU
memory of 16 GB. In addition to the GPU benchmarks (filled
symbols), we measured the performance with the CPU ver-
sion of COSMO (empty symbols), using 12 MPI (Message
Passing Interface) ranks per CPU, i.e., one MPI rank per
Haswell core.10 Exceeding 1000 nodes (38× 38 grid points
per node) execution on CPUs yields a shorter time to solution
than on GPUs.

5.3 Time to solution

On 4888 nodes, a 10-day long moist simulation at 930 m grid
spacing required a wall time of 15.3 h at a rate of 0.043 SYPD
(Table 1), including a disk I/O load of five 3-D fields and
seven 2-D fields,11 written periodically every 12h of the sim-

9COSMO supports two floating point formats to store numbers –
double and single precision – which can be chosen at compile time.

10The CPU measurements were performed on the hybrid partition
of Piz Daint as well, since the multi-core partition is much smaller.

11The standard I/O routines of COSMO require global fields on a
single node, which typically do not provide enough storage to hold
a global field. To circumvent this limitation, a binary I/O mode,
allowing each node to write its output to the file system, was imple-
mented.

Table 1. Time compression (SYPD) and energy cost (MWh SY−1)
for three moist simulations: at 930 m grid spacing obtained with
a full 10-day simulation, at 1.9 km from 1000 steps, and at 47 km
from 100 steps.

1t MWh

〈1x〉 no. of nodes s SYPD SY−1 grid points

930 m 4888 6 0.043 596 3.46× 1010

1.9 km 4888 12 0.23 97.8 8.64× 109

47 km 18 300 9.6 0.099 1.39× 107

ulation. Short benchmark simulations at 1.9 and 47 km, inte-
grated for 1000 and 100 time steps, respectively, yield 0.23
and 9.6 SYPD. As mentioned earlier, the minimum value re-
quired for AMIP-type simulations is 0.2–0.3 SYPD. While
for the 47 km setup scalability already starts to saturate, even
with the 18 nodes reported (Table 1), the high-resolution
simulations, with an approximate per-node domain size of
346× 340× 60 and 173× 170× 60, are still in a regime of
good scalability. We have also conducted a 1.9 km simula-
tion with a full set of physical parametrizations switched on,
and this increases the time to solution by 27 % relative to the
moist simulations presented here.

In conclusion, the results show that AMIP-type simula-
tions at horizontal grid spacings of 1.9 km using a fully
fledged atmospheric model are already feasible on Europe’s
highest-ranking supercomputer. In order to reach resolutions
of 1 km, a further reduction of time to solution of at least a
factor of 5 is required.

In the remainder of this section, we attempt a comparison
of our results at 1.9 km against the performance achieved by
Yang et al. (2016a) in their 2 km simulation (as their informa-
tion for some of the other simulations is incomplete). They
argue that for an implicit solver the time step can be kept
at 240 s independent of the grid spacing and report (see their
Figs. 7 and 9) values of 0.57 SYPD for a grid spacing of 2 km,
on the full TaihuLight system. As explained in Sect. 2, such
large time steps are not feasible for global climate simula-
tions resolving convective clouds (even when using implicit
solvers), and a maximum time step of 40–80 s would very
likely be needed; this would decrease their SYPD by a factor
of 3 to 6. Furthermore, their simulation covers only 32 % of
the Earth’s surface (18◦ N to 72◦) but uses twice as many lev-
els; this would further reduce their SYPD by a factor of 1.5.
Thus we estimate that the simulation of Yang et al. (2016a)
at 2 km would yield 0.124 to 0.064 SYPD when accounting
for these differences. In comparison, our simulation at 1.9 km
yields 0.23 SYPD; i.e., it is faster by at least a factor of 2.5.
Note that this estimate does not account for additional simpli-
fications in their study (neglect of microphysical processes,
spherical shape of the planet, and topography). In summary,
while a direct comparison with their results is difficult, we ar-
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Table 2. Data transfer cost estimations of the dynamical core for a
theoretical lower bound (METIS), dynamical core implementation
using the STELLA library (COSMO), and non-optimized dynami-
cal core implementation (no-merging).

Level METIS Q COSMO D No-opt D̂

Registers 1.51× 109 1.72× 109 2.6× 109

Shared memory 64 800 107 600 229 120
L2 cache 1023 1160 2341

gue that our results can be used to set a realistic baseline for
production-level GCM performance results and represent an
improvement by at least a factor of 2 with respect to previous
results.

5.4 Energy to solution

Based on the power measurement (see Sect. 3.3) we now pro-
vide the energy cost of full-scale simulations (Table 1) using
the energy cost unit MWh per simulation year (MWh/SY).
The 10-day long simulation at 930 m grid spacing running
on 4888 nodes requires 596 MWh SY−1, while the cost of
the simulation at 1.9 km on 4888 nodes is 97.8 MWh SY−1.
For comparison, the coarse resolution at 47 km simula-
tion on a reduced number of nodes (18) requires only
0.01 MWh SY−1.

A 30-year AMIP-type simulation (with full physics) at
a horizontal grid spacing of 1 km on the Piz Daint system
would take 900 days to complete, resulting in an energy
cost of approximately 22 GWh – which approximately corre-
sponds to the consumption of 6500 households during 1 year.

Again, we attempt a comparison with the simulations per-
formed by Yang et al. (2016a). The Piz Daint system re-
ports a peak power draw of 2052 kW when running the high-
performance LINPACK (HPL) benchmark. The sustained
power draw when running the 930 m simulation amounted to
1059.7 kW, thus 52 % of the HPL value. The TaihuLight sys-
tem reports a sustained power draw for the HPL benchmark
of 15 371 kW (TOP500, 2017). While Yang et al. (2016a) do
not report power consumption of their simulations, we ex-
pect the simulations on Piz Daint to be at least 5 times more
power efficient, even when assuming similar achieved SYPD
(see above).12

5.5 Simulation efficiency

In view of the energy consumption, it is paramount to con-
sider the efficiency of the simulations executed. We do this
here by considering the memory usage efficiency metric in-
troduced in Sect. 4.

To estimate a solution for the optimization problem de-
scribed in Appendix A, Eq. (A2), we use the METIS li-

12We conservatively assume an application power draw of at least
35 % on TaihuLight.

Table 3. Performance model verification results. Measured dynam-
ical core time step execution time for the STELLA implementation
optimized for data locality and the non-optimized implementation
compared against the corresponding MUE metric.

Metric Optimized Not optimized Ratio

Time per step 0.16 s 0.25 s 0.64
Estimated MUE 0.67 0.44 0.65

brary (Karypis and Kumar, 2009). The results are presented
in Table 2. The METISQ column is the approximation of the
lower bound Q obtained from the performance model using
the METIS library. The COSMO D column is the evaluation
of current COSMO partitioning in our model. The no-opt
D̂ column shows the amount of data transfers of COSMO
if no data locality optimization techniques are applied, like
in the original Fortran version of the code. Since the origi-
nal CDAG is too large for the minimization problem of the
performance model, three different simplified versions of the
CDAG, which focus on the accesses to three different layers
of the memory hierarchy of the GPU, are studied: registers,
shared memory, and L2 cache.

The model shows how efficient COSMO is in terms of data
transfers – it generates only 14, 66, and 13 % more data trans-
fers than the lower bound in the register, shared memory, and
L2 cache layers, respectively. The sophisticated data local-
ity optimization techniques of the STELLA implementation
of the dynamical core of COSMO result in very good data
reuse. On the P100, all memory accesses to/from DRAM go
through the L2 unit. Therefore, we focus on the efficiency of
this unit such that

MUE=
QL2

DL2
·
B

B̂
= 0.88 · 0.76= 0.67, (3)

where DL2 and QL2 stand for estimated number of main
memory operations and its lower bound, respectively.

The model also can estimate the efficiency of our opti-
mizations. Assuming that we can reach the peak achievable
bandwidth B̂ if we perform no data locality optimizations
(D̂), then

MUEno_opt =
QL2

D̂L2
·
B̂

B̂
= 0.44. (4)

It can be seen that

MUE
MUEno_opt

=
0.67
0.44
= 1.52. (5)

This result shows the importance of data locality opti-
mizations – the optimized implementation is more than 50 %
faster than a potential version that achieves peak bandwidth
while using no data locality techniques.

To validate the model results, we have conducted single-
node runs with and without data locality optimizations.
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Bandwidth measurements of the non-optimized version are
very close to maximum achievable bandwidth (not shown).
The fact that the two ratios in the third column of Table 3
agree is testimony to the high precision of the performance
model.

6 Conclusions

The work presented here sets a new baseline for fully
fledged kilometer-scale climate simulations on a global scale.
Our implementation of the COSMO model that is used
for production-level numerical weather predictions at Me-
teoSwiss has been scaled to the full system on 4888 nodes
of Piz Daint, a GPU-accelerated Cray XC50 supercom-
puter at the Swiss National Supercomputing Centre (CSCS).
The dynamical core has been fully rewritten in C++ us-
ing a DSL that abstracts the hardware architecture for the
stencil algorithmic motifs and enables sophisticated tuning
of data movements. Optimized back ends are available for
multi-core processors with OpenMP, GPU accelerators with
CUDA, and for performance analysis.

The code shows excellent strong scaling up to the full ma-
chine size when running at a grid spacing of 4 km and below,
on both the P100 GPU accelerators and the Haswell CPU.
For smaller problems, e.g., at a coarser grid spacing of 47 km,
the GPUs run out of parallelism and strong scalability is lim-
ited to about 100 nodes, while the same problem continues
to scale on multi-core processors to 1000 nodes. Weak scal-
ability is optimal for the full size of the machine. Overall,
performance is significantly better on GPUs as compared to
CPUs for the high-resolution simulations.

The simulations performed here are based on the idealized
baroclinic wave test (Jablonowski and Williamson, 2006),
which is part of the standard procedure to test global atmo-
spheric models. Our results are validated against the original
solution published in this paper.

We measured time to solution in terms of simulated years
per wall clock day (SYPD) for a near-global simulation on
a latitude band from 80◦ S to 80◦ N that covers 98.4 % of
planet Earth’s surface. Running on 4888 P100 GPUs of Piz
Daint, currently Europe’s largest supercomputer, we mea-
sured 0.23 SYPD at a 1.9 km grid spacing. This performance
is adequate for numerical weather predictions and 10-year
scale climate studies. Simulations at this resolution had an
energy cost of 97.8 MWh SY−1.

In a moist simulation with 930 m horizontal grid spacing,
we observed the formation of frontal precipitating systems,
containing embedded explicitly resolved convective motions,
and additional cutoff warm-core cyclonic vortices. The ex-
plicit representation of embedded moist convection and the
representation of the resolved instabilities exhibits physi-
cally different behavior from coarser-resolution simulations.
This is testimony to the usefulness of the high-resolution ap-
proach, as a much expanded range of scales and processes

is simulated. Indeed it appears that for the current test case,
the small vortices have not previously been noted, as the test
case appears to converge for resolutions down to 25 km (Ull-
rich et al., 2015), but they clearly emerge at kilometer-scale
resolution.

These results serve as a baseline benchmark for global
climate model applications. For the 930 m experiment we
achieved 0.043 SYPD on 4888 GPU-accelerated nodes,
which is approximately one-seventh of the 0.2–0.3 SYPD
required to conduct AMIP-type simulations. The energy
cost for simulations at this horizontal grid spacing was
596 MWh SY−1.

Scalable global models do not use a regularly structured
grid such as COSMO, due to the “pole problem”. Therefore,
scalable global models tend to use quasi-uniform grids such
as cubed-sphere or icosahedral grids. We believe that our re-
sults apply directly to global weather and climate models em-
ploying structured grids and explicit, split-explicit, or hori-
zontally explicit, vertically implicit (HEVI) time discretiza-
tions (e.g., FV3, NICAM). Global models employing im-
plicit or spectral solvers may have a different scaling behav-
ior.

Our work was inspired by the dynamical core solver that
won the 2016 Gordon Bell award at the Supercomputing
Conference (Yang et al., 2016a). The goal of this award is to
reward high performance achieved in the context of a realistic
computation. A direct comparison with the results reported
there is difficult, since Yang et al. (2016a) were running a re-
search version of a dynamical core solver and COSMO is a
fully fledged regional weather and climate model. Neverthe-
less, our analysis indicates that our benchmarks represent an
improvement both in terms of time to solution and energy to
solution. As far as we know, our results represent the fastest
(in terms of application throughput measured in SYPD at
1 km grid spacing) simulation of a production-ready, non-
hydrostatic climate model on a near-global computational
domain.

In order to reach the 3–5 SYPD performance necessary for
long climate runs, simulations would be needed that run 100
times faster than the baseline we set here. Given that Piz
Daint with NVIDIA P100 GPUs is a multi-petaflop system,
the 1 km scale climate runs at 3–5 SYPD performance rep-
resent a formidable challenge for exascale systems. As such
simulations are of interest to scientists around the globe, we
propose that this challenge be defined as a goal post to be
reached by the exascale systems that will be deployed in the
next decade.

Finally, we propose a new approach to measure the ef-
ficiency of memory bound application codes, like many
weather and climate models, running on modern supercom-
puting systems. Since data movement is the expensive com-
modity on modern processors, we advocate that the code’s
performance on a given machine be characterized in terms of
data movement efficiency. We note that both detailed math-
ematical analysis and the general applicability of our MUE
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metric is beyond the scope of this paper and requires addi-
tional publication. In this work we show a use case of the
MUE metric and demonstrate its precision and usefulness in
assessing memory subsystem utilization of a machine, using
the I/O complexity lower bound as the necessary data trans-
fers, Q, of the algorithm. With the time to solution and the
maximum system bandwidth B̂, it is possible to determine
the memory usage efficiency that captures how well the code
is optimized both for data locality and bandwidth utilization.
It will be interesting to investigate the MUE metric in future
performance evaluations for weather and climate codes on
high-performance computing systems.

Code and data availability. The particular version of the COSMO
model used in this study is based on the official version 5.0 with
many additions to enable GPU capability and available under li-
cense (http://www.cosmo-model.org/content/consortium/licencing.
htm for more information). These developments are currently in the
process of being reintegrated into the mainline COSMO version.
COSMO may be used for operational and for research applications
by the members of the COSMO consortium. Moreover, within a li-
cense agreement, the COSMO model may be used for operational
and research applications by other national (hydro-)meteorological
services, universities, and research institutes. The model output data
will be archived for a limited amount of time and are available on
request.
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Appendix A: Computing the efficiency metric

Here, we discuss how to determine the memory usage effi-
ciency (MUE) given in Eq. (2) for an application code, such
as the COSMO model. We need to determine the necessary
data transfers Q, the maximum system bandwidth B̂, and
measure the execution time T .

A1 Necessary transfers Q

A natural representation of data flow and dependencies of
algorithms is a CDAG. This abstraction is widely used for
register allocation optimization, scheduling problems, and
communication minimization. A CDAG models computa-
tions as vertices (V ) and communications as edges (E) be-
tween them. A CDAG can be used to develop theoretical
models that reason about data movements of an application.
However, not all the edges of the CDAG account for data
transfers, since the data required by a computation might be
stored in fast memory (cached), depending on the execution
schedule. Finding an execution schedule that minimizes the
transaction metric is NP-hard for general CDAGs and there-
fore an intractable problem (Kwok and Ahmad, 1999).

Minimizing data movement has been the subject of
many studies. Two main approaches have been established:
(1) finding analytical lower bounds for chosen algorithms for
a given machine model (Hong and Kung, 1981; Vetter, 2001;
Goodrich et al., 2010) and (2) finding optimal graph parti-
tions (Gadde, 2013). The former is designed for particular,
highly regular small algorithms, like sorting (Vetter, 2001)
or matrix multiplication (Hong and Kung, 1981) and is not
suitable for large-scale applications like COSMO. The latter
approach is mostly used for minimizing network communi-
cation (Liu et al., 2014) and has not been applied to large
applications either. In our performance model, we combine
the two into a novel graph-cutting technique. We build on
Hong and Kung’s 2S partitioning (Hong and Kung, 1981)
and construct a hypergraph partitioning technique to estimate
a memory movement lower bound. We do not consider in-
ternode communication here. To the best of our knowledge,
we are the first to apply these techniques to a real-world par-
allel application.

The key concept behind estimating Q is to partition the
whole CDAG G= (V ,E) into subcomputations (2S parti-
tions) Pi :

⋃
Pi = V , such that each Pi requires at most S

data transfer operations. Then, ifH(2S) is the minimal num-
ber of 2S partitions for a given CDAG, Hong and Kung
(1981) showed that the minimal numberQ of memory move-
ment operations for any valid execution of the CDAG is
bounded by

Q≥ S× (H(2S)− 1). (A1)

Here we outline the key steps of our modeling approach:

1. We reduce Hong and Kung’s 2S partitioning (Hong and
Kung, 1981) definition to hypergraph cut by relaxing

Table A1. COSMO CDAGs at various GPU memory hierarchy lev-
els.

Memory level Vertex def. |V | |E| S

Registers one IJK value 157 803 984 101 32
Shared memory one IJ plane 2649 12 137 8
L2 cache whole array 1912 9863 29

the constraints on the dominator and minimum set sizes.
Each hyper-edge contains a vertex from the original
CDAG and all its successors.

2. We approximate the minimal hypergraph cut by mini-
mizing the total communication volume.

3. We then express the memory movement lower bound as

min
∑
Pi

∑
v∈Pi

w(v) · (Nbr(v)− 1), (A2)

subject to⋃
Pi = V, (A3)

∀i 6=jPi ∩Pj =∅, (A4)

∀Pi

∑
v∈Pi

w(v) · (Nbr(v)− 1)≤ 2S, (A5)

where Nbr(v) is the number of partitions that vertex v
is adjacent to, w(v) is the memory size of vertex v, and
S is the size of memory at a level for which the opti-
mization is performed. Equation (A2) now minimizes
the sum of the communication volume across all parti-
tions (assuming we load partitions one after the other),
while constraint Eq. (A5) bounds the boundary weight
for each partition to 2S such that it fits in fast memory.

A2 COSMO CDAG

Figure 2 shows the data dependency CDAG of the compu-
tational kernels of the dynamical core of COSMO, where
each kernel corresponds to a complex set of fused stencil op-
erations in order to maximize the data locality of the algo-
rithm. A single time step in COSMO accesses 781 variables,
each of which is represented by a 346× 340× 60 array for
our 930 m simulation. Some variables are updated multiple
times during a time step which results in a total number of
variable accesses (CDAG vertices) of more than 1010. The
resulting large and complex graph makes estimating Q im-
practical. In order to reduce the complexity, one can coarsen
the CDAG by grouping multiple accesses into a single ver-
tex. As an example, Fig. 2 shows the coarsest representation
of the CDAG where each vertex models a full kernel. Each
kernel may read and write various output variables, compute
multiple stencil operations and boundary conditions, or per-
form halo exchanges. Thus, in this coarsened version, valu-
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Figure A1. Bandwidth of the representative stencil benchmarks
and GPU STREAM on Tesla P100. All kernels (except for GPU
STREAM) operate on a 3-D domain.

able data dependency information is lost, and one cannot ar-
gue about the optimality and possible rearrangement of the
operations fused within a kernel.

We now describe how we determine coarsening strategies
of the COSMO CDAG for three levels of the memory hier-
archy of our target system, registers, shared memory, and L2
cache.

1. Registers (65’536): the COSMO GPU implementation
assigns all computations accessing variables with the
same IJ coordinate to the same GPU thread and use reg-
isters to reuse values in the K direction. To model this
memory hierarchy, it is only necessary to keep the sten-
cil accesses in the K direction. Thus, all accesses in the
IJ plane are represented as a single vertex in the CDAG,
which is then simplified to 781 variables and their de-
pendencies among all 60 levels in K.

2. Shared memory (64 kB): the shared memory of the GPU
is used to communicate values between the different
compute threads. In order to model this layer, all dif-
ferent accesses in the K direction of a variable are rep-
resented as a single vertex in the CDAG, while all ac-
cesses in the IJ plane are kept.

3. L2 cache (4 MB): this last cache level before DRAM is
used to store whole arrays (fields). In this layer all ac-
cesses to a variable in any direction are represented as a
vertex in the CDAG. It keeps only the data dependencies
among variables, irrespective of the offset and direction
of the access.

Table A1 lists details about the CDAGs at each of our three
levels. Memory capacity of the GPU for each of the three
layers is then used as a constraint to derive the parameter
S (see values in Table A1). Values of the estimation of Q,
obtained from the performance model for the three memory
levels are shown in Table 2.

To generate the whole CDAG, we used the STELLA anal-
ysis back end (Gysi et al., 2015b) to trace all local memory
accesses to all fields. Based on the information from the ac-
cess offsets and order of operations, we reconstruct the read–
write, write–read, and write–write dependencies.

A3 Maximum achievable bandwidth B̂

We now describe how we measure the memory usage ef-
ficiency in practice. We start by describing how to deter-
mine the maximum achievable bandwidth for COSMO sten-
cils. Even though the Tesla P100 has a theoretical peak
memory bandwidth of 720 GB s−1 (NVIDIA, 2016), we ar-
gue that this may not be achievable for real applications. A
well-established method to measure the maximum achiev-
able bandwidth of GPUs is the GPU STREAM bench-
mark (Deakin et al., 2016). Our tests show that the max-
imum achievable bandwidth for COPY is 557 GB s−1 if at
least 30 MB double-precision numbers are copied (Fig. A1).
However, stencil codes on multidimensional domains like
COSMO require more complex memory access patterns that,
even when highly tuned, cannot achieve the same bandwidth
as STREAM due to architectural limitations.

We identified the most common patterns and designed
and tuned a set of micro-benchmarks that only mimic the
memory access patterns without the computations to inves-
tigate the machine capability of handling memory accesses
for stencils. They include aligned, unaligned, and strided
patterns in all dimensions. All benchmarks operate on a 3-
D domain of parametric size, on either single- or double-
precision numbers. The results of a representative set of
four chosen micro-benchmarks are shown in Fig. A1, to-
gether with the GPU STREAM, which operates on 1-D do-
main. The fastest stencil kernel (double-precision aligned
COPY) reaches 510 GB s−1. The slowdown compared to
GPU STREAM is due to the more complex access pat-
tern in the 3-D domain. Furthermore, using single-precision
numbers further deteriorates the bandwidth on P100 (COPY
(float) reaches 475 GB s−1). Our COSMO 930 m run uses
predominantly single-precision numbers on a 346×340×60
domain, which results in 28.2 MB of data per field. Our mea-
surements show that the maximum achievable bandwidth
for this setup is 362 GB s−1 (in the best case of the simple
COPY benchmark). We will use this upper-bound number
as the maximum system bandwidth. The average measured
memory bandwidth across all COSMO real-world stencils is
276 GB s−1, which gives B

B̂
= 0.76.
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