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Abstract. The role of soil microorganisms in regulating soil
organic matter (SOM) decomposition is of primary impor-
tance in the carbon cycle, in particular in the context of global
change. Modeling soil microbial community dynamics to
simulate its impact on soil gaseous carbon (C) emissions and
nitrogen (N) mineralization at large spatial scales is a recent
research field with the potential to improve predictions of
SOM responses to global climate change. In this study we
present a SOM model called ORCHIMIC, which utilizes in-
put data that are consistent with those of global vegetation
models. ORCHIMIC simulates the decomposition of SOM
by explicitly accounting for enzyme production and distin-
guishing three different microbial functional groups: fresh
organic matter (FOM) specialists, SOM specialists, and gen-
eralists, while also implicitly accounting for microbes that
do not produce extracellular enzymes, i.e., cheaters. OR-
CHIMIC and two other organic matter decomposition mod-
els, CENTURY (based on first-order kinetics and representa-
tive of the structure of most current global soil carbon mod-
els) and PRIM (with FOM accelerating the decomposition
rate of SOM), were calibrated to reproduce the observed res-
piration fluxes of FOM and SOM from the incubation experi-
ments of Blagodatskaya et al. (2014). Among the three mod-
els, ORCHIMIC was the only one that effectively captured
both the temporal dynamics of the respiratory fluxes and the
magnitude of the priming effect observed during the incuba-
tion experiment. ORCHIMIC also effectively reproduced the

temporal dynamics of microbial biomass. We then applied
different idealized changes to the model input data, i.e., a 5 K
stepwise increase of temperature and/or a doubling of plant
litter inputs. Under 5 K warming conditions, ORCHIMIC
predicted a 0.002 K−1 decrease in the C use efficiency (de-
fined as the ratio of C allocated to microbial growth to the
sum of C allocated to growth and respiration) and a 3 % loss
of SOC. Under the double litter input scenario, ORCHIMIC
predicted a doubling of microbial biomass, while SOC stock
increased by less than 1 % due to the priming effect. This lim-
ited increase in SOC stock contrasted with the proportional
increase in SOC stock as modeled by the conventional SOC
decomposition model (CENTURY), which can not repro-
duce the priming effect. If temperature increased by 5 K and
litter input was doubled, ORCHIMIC predicted almost the
same loss of SOC as when only temperature was increased.
These tests suggest that the responses of SOC stock to warm-
ing and increasing input may differ considerably from those
simulated by conventional SOC decomposition models when
microbial dynamics are included. The next step is to incorpo-
rate the ORCHIMIC model into a global vegetation model to
perform simulations for representative sites and future sce-
narios.
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1 Introduction

Soils contain the largest stock of organic carbon (C) in
terrestrial ecosystems (MEA, 2005), ranging from 1220 to
2456 Pg C (Batjes, 2014; Jobbágy and Jackson, 2000). Rela-
tively small changes (< 1 %) in this global soil organic car-
bon (SOC) pool are, therefore, of a similar order of mag-
nitude as anthropogenic CO2 emissions. Warming-induced
SOC losses may consequently represent a large feedback to
climate change (Jenkinson et al., 1991). Thus, a realistic rep-
resentation of SOC dynamics in Earth system models is nec-
essary to ensure accurate climate projections, and reduce the
uncertainty of SOC stock responses to global climate change;
therefore this has been put forward as a research priority
(Arora et al., 2013; Friedlingstein, 2015).

In most Earth system models, the decomposition of soil
organic matter (SOM) is represented by first-order kinetics
(Todd-Brown et al., 2013). The role of microbes during de-
composition is not explicitly represented in these models,
rather, the decomposition flux, modified by environmental
factors, is dependent on the size of the substrate pool. How-
ever, these global models fail to accurately reproduce the ob-
served global spatial distribution of SOC (Todd-Brown et al.,
2013) even when adjusting parameters (Hararuk et al., 2014),
suggesting structural problems in their formulations. One of
the underlying reasons might be that microbial community
structure and activity are not explicitly represented (Creamer
et al., 2015).

Typical SOC models rapidly distinguish decomposing
from slowly decomposing plant litter and SOC pools. With
first-order kinetics, the decomposition rate of each pool is in-
dependent from the other pools, as decomposition rates are
decoupled from microbial dynamics. As a result, the prim-
ing effect, defined as changes in SOC decomposition rates
induced by the addition of fresh, energy-rich organic matter
(FOM) (Blagodatskaya and Kuzyakov, 2008), can not be re-
produced by these SOC models (Guenet et al., 2016). How-
ever, priming effects have been widely observed in labora-
tory studies, which use different types of soil with differ-
ent types of FOM added during soil incubation experiments
at timescales of less than one day to several hundred days
(Fontaine et al., 2003; Kuzyakov and Bol, 2006; Tian et al.,
2016), as well as in field experiments (Prévost-Bouré et al.,
2010; Subke et al., 2004, 2011; Xiao et al., 2015). The influ-
ence of priming on SOC dynamics on long timescales, from
years to decades, and at large spatial scales remains uncer-
tain. However, these influences can not be neglected in future
SOC stock simulations, considering the projected increase of
plant litter inputs to soil in response to the fertilizing effects
of elevated CO2, globally increasing nitrogen (N) deposition
and lengthening growing seasons (Burke et al., 2017; Qian et
al., 2010).

Soil microbial dynamics are believed to be responsible
for the priming effect (Kuzyakov et al., 2000). Recently,
new models have included the effects of microbial dynam-

ics on SOC decomposition, but not always with an explicit
representation of microbial processes (Schimel and Wein-
traub, 2003; Moorhead and Sinsabaugh, 2006; Lawrence et
al., 2009; Wang et al., 2013; Wieder et al., 2014; Kaiser et
al., 2014, 2015; He et al., 2015). In those models, SOC de-
composition is mediated by soil enzymes released by mi-
croorganisms (Allison et al., 2010; Schimel and Weintraub,
2003; Lawrence et al., 2009). Although different groups of
microorganisms can produce different enzymes, with large
redundancy (Nannipieri et al., 2003), the production of en-
zymes in models is typically modeled as a fixed fraction
of total microbial biomass (Allison et al., 2010; He et al.,
2015) or as a fixed fraction of the uptake of C or N (Schimel
and Weintraub, 2003; Kaiser et al., 2014, 2015). However,
negative priming effects, i.e., reduced SOC decomposition
in response to FOM addition, as occasionally observed in
soil incubation experiments (Guenet et al., 2012; Hamer and
Marschner, 2005; Tian et al., 2016), suggest that the prefer-
ential production of enzymes decomposing FOM or an in-
hibited production of enzymes decomposing SOC is possi-
ble. Moreover, it has been reported that enzyme activity can
be stimulated by substrate addition and be suppressed by nu-
trient addition (Allison and Vitousek, 2005). These observa-
tions suggest that the production of enzymes is modulated
by substrate availability and quality, and not just by micro-
bial uptake or microbial biomass.

Logically, SOC models ignoring microbial dynamics also
do not distinguish between active and dormant microbial
biomass, thereby neglecting the different physiology of mi-
crobes during these two states (Wang et al., 2014). For in-
stance, only active microbes are involved in decomposing
SOC (Blagodatskaya and Kuzyakov, 2013) and in producing
enzymes (He et al., 2015). However, with 80 % of microbial
cells typically being dormant in soils, dormancy is the most
common state of microbial communities (Lennon and Jones,
2011). Reactivation of dormant microbes due to the addition
of labile substrates is one of the proposed mechanisms ex-
plaining the priming effect (Blagodatskaya and Kuzyakov,
2008). Thus, explicitly representing the active fraction of mi-
crobial biomass, rather than the entire microbial biomass is a
promising avenue to help improve SOC models.

In previous models that explicitly simulate microbial dy-
namics, enzyme-mediated decomposition rates were mod-
eled using Michaelis–Menten kinetics (Allison et al., 2010),
or reverse Michaelis–Menten kinetics (Schimel and Wein-
traub, 2003; Lawrence et al., 2009). Michaelis–Menten ki-
netics were also used to model the uptake of C by microbes
(Allison et al., 2010). In comparison to these two formula-
tions, first-order accurate equilibrium chemistry approxima-
tion (ECA) kinetics performed better than Michaelis–Menten
kinetics for a single microbe feeding on multiple substrates
or for multiple microbes competing for multiple substrates
(Tang and Riley, 2013). ECA kinetics combine the advan-
tages of Michaelis–Menten and reverse Michaelis–Menten
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kinetics (Tang, 2015), making this formulation more suitable
for application in conceptual microbial models.

Nutrient dynamics are often ignored in SOC models (Al-
lison et al., 2010; Wang et al., 2013, 2014; He et al., 2015;
Guenet et al., 2016), in particular in the SOC models used
with Earth system models (Anav et al., 2013), despite the
fact that nutrients can be a rate-limiting for many biological
processes in ecosystems (Vitousek and Howarth, 1991). By
providing rhizosphere microbes with energy-rich, nutrient-
poor exudates, roots may elicit microbial growth, their need
for nutrients and subsequently their production of SOC-
decomposing enzymes. Thus nutrient availability, especially
that of the macroelement nitrogen (N), regulates the priming
effect of microbes in response to root exudation (Janssens et
al., 2010). Including N dynamics in SOC models is, there-
fore, also a necessity for accurate projections of future SOC
stocks.

In this study, a microbe-driven SOM decomposition model
– ORCHIMIC – is described and tested against incubation
experiment results. In ORCHIMIC, enzyme production is
dynamic and depends on the availability of carbon and ni-
trogen in FOM and SOM substrates and on a specific pool of
available C and N. Three microbial function types (MFTs)
– generalists, FOM specialists and SOM specialists – are
included, along with an explicit representation of their dor-
mancy; however a fraction of these microbes being cheaters
do not invest in producing SOC decomposing enzymes them-
selves, but profit from the investments of others. ORCHIMIC
has been developed with the aim of being incorporated in the
ORCHIDEE land biosphere model (Krinner et al., 2005), al-
though its generic input data would allow it to be embedded
in any other global land surface model for grid-based simu-
lations.

The ORCHIMIC model is described in Sect. 2 and the
two conceptually simpler models – a first-order kinetics
model called CENTURY, which was derived from Parton et
al. (1987) and constitutes the SOC decomposition module
of the ORCHIDEE model (Krinner et al., 2005); and a first-
order kinetics model called PRIM, which is a variant of the
CENTURY model modified to include interactions between
pools to enable the representation of priming of decompo-
sition rates (Guenet et al., 2016) – are described in Sect. 3.
The model parameters were calibrated against soil incuba-
tion data from Blagodatskaya et al. (2014) (Sect. 4). Different
idealized tests of the ORCHIMIC model response including
doubling FOM input and/or a stepwise increase in tempera-
ture were performed (Sect. 5).

2 ORCHIMIC description

The ORCHIMIC model is zero-dimensional and considers
biology and soil physics homogenous within the soil grid to
which it is applied. The model simulates C and N dynamics
at a daily time step. Inputs of the model are additions of C

and N from plant litter or from other sources and plant uptake
of N. In return, the model predicts soil carbon and nitrogen
pools and respired CO2 fluxes.

A total of 11 pools are considered for both C and N
(Fig. 1). The two FOM pools are metabolic (LM) and struc-
tural (LS) plant litter. The three SOM pools are the active
(SA), slow (SS) and passive (SP) pools with short, medium
and long turnover times (Parton et al., 1987). SA consists of
dead microbes and deactivated enzymes with a short turnover
time. SS contains SOM generated during the decomposi-
tion of litter and SOM in the SA pool, which is chemically
more recalcitrant and/or physically protected with a medium
turnover time. SP is a pool of SOM generated during the de-
composition of SOM in other pools; it is the most resistant
to decomposition and has a long turnover time. The major
outgoing C and N fluxes from the substrate pools are the de-
composition of the FOM pools by EF enzymes and the SOM
pools by ES enzymes. In addition to these major fluxes, there
are fluxes from the FOM pools to the SS pool, from SA to
both the SS and SP pools and from the SS pool to the SP
pool; these fluxes implicitly represent physicochemical pro-
tection mechanisms, such as the occlusion of substrates in
macroaggregates (Parton et al., 1987).

The available pools (Avail) represent C and N that are di-
rectly available to microbes. The Avail pool receives inputs
from substrate decomposition, desorption from mineral sur-
faces, microbial mortality and decay. The Avail pool is de-
pleted by the uptake of C and N by active microbes, ad-
sorption on mineral surfaces and leaching losses. The Adsorb
pool represents C and N that are unavailable to microbes be-
cause of adsorption by mineral surfaces.

Four MFTs, including SOM specialists, FOM specialists,
generalists and cheaters, are explicitly or inexplicitly repre-
sented, as described in Sect. 2.1. Each MFT is further divided
into active (BA) and dormant (BD) biomass. The outgoing C
fluxes from active microbes are growth respiration, mainte-
nance respiration, overflow respiration, dormancy, death and
enzyme production. During dormancy, death and enzyme
production, corresponding amounts of N are also lost from
active microbes. N is furthermore released from active mi-
crobes when maintenance respiration is at the cost of their
own biomass. Dormant microbes can be reactivated (a flux
of C and N from dormant to active microbes) and lose C and
release N during maintenance respiration but at a slower rate
than active microbes.

The two enzyme pools include enzymes that can decom-
pose either FOM (EF) or SOM (ES). Enzyme pools re-
ceive inputs through microbial enzyme production and de-
cline through enzyme turnover. The equations corresponding
to each process (shown in Fig. 1) are given in Sect. 2.2, and
for fluxes between pools in Sect. 2.3.
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Figure 1. Model structure of the ORCHIMIC model. Rectangles and circles represent pools and arrows represent fluxes for Carbon (C;
black) and Nitrogen (N; red). The C and N pools are described in Sect. 2.2. Equations describing the dynamics of each pool and the fluxes
are shown in brackets in the figure and can be found in more detail in Sect. 2.2 and 2.3. Arrows between the FOM and SOM pools and
within the SOM pools represent fluxes due to physicochemical protection by mineral association and microaggregate occlusion. Veguptake,N
is uptake of N by plants and is not explicitly simulated by ORCHIMIC.

2.1 Microbial functional types

Four MFTs, SOM specialists, FOM specialists, generalists
and cheaters, are represented with a set of parameters, in-
cluding the following: a MFT specific C /N ratio (BCNi) and
maximum uptake rate of C (Vmaxuptak,i) for the ith MFT; op-
timum soil moisture (θ0) and pH (pH0) for microbial uptake;
parameters controlling the microbial uptake sensitivities to
soil moisture (θs) and pH (pHs); the maximum enzyme pro-

duction coefficient (Ke); the ability to produce FOM specific
enzymes EF (EFri) and SOM specific enzymes ES (ESri);
and the dissolvable fraction of dead microbial biomass (sC
for C and sN for N) (Table 1). Generalists, SOM special-
ists and FOM specialists are the three enzyme-producing
MFTs that are explicitly considered. The main differences
among them are their C /N ratio and their maximum ca-
pacity to produce enzymes for decomposing specific pools.
The C /N ratios BCNi are set to 4.59 and 8.30 for SOM and
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Table 1. List of variables and parameters used in this study.

Variables used in ORCHIMIC

Variables Description Units

dt Time step 24 h
i Represents microbial functional type (MFT) i [1, 2, 3]
j Represents substrate j or parameter KM (only in Eq. 16) [LM, LS, SA, SS, SP]
X Represents C or N element [C, N]
LMX X in litter metabolic pool gX (kg soil)−1

LSX X in litter structural pool gX (kg soil)−1

SAX Soil active organic matter pool gX (kg soil)−1

SSX Soil slow organic matter pool gX (kg soil)−1

SPX Soil passive organic matter pool gX (kg soil)−1

LLf Lignin fraction of the LS pool unitless
AvailX X pool directly available for microbe’s uptake gX (kg soil)−1

AdsorbX X pool adsorbed on mineral surfaces gX (kg soil)−1

BAX,i X in active microbial biomass of MFT i gX (kg soil)−1

BDX,i X in dormant microbial biomass of MFT i gX (kg soil)−1

EFX,i X in enzyme produced by MFT i that can decompose FOM gX (kg soil)−1

ESX,i X in enzyme produced by MFT i that can decompose SOM gX (kg soil)−1

FOMX Fresh organic matter pools for X (LMX+LSX) gX (kg soil)−1

SOMX Soil organic matter pools for X (SAX+ SSX+SPX) gX (kg soil)−1

LMX,in Input of X for LM gX (kg soil)−1 dt−1

LSX,in Input of X for LS gX (kg soil)−1 dt−1

EFgX,i X in new EFi produced in one time step gX (kg soil)−1 dt−1

ESgX,i X in new ESi produced in one time step gX (kg soil)−1 dt−1

EFdX,i X in EFi that is deactivated in one time step gX (kg soil)−1 dt−1

ESdX,i X in ESi that is deactivated in one time step gX (kg soil)−1 dt−1

BAgX,i X in new BAi produced in one time step gX (kg soil)−1 dt−1

BAdX,i X in BAi that died in one time step gX (kg soil)−1 dt−1

BAmX,i BAX,i lost due to maintenance respiration in one time step gX (kg soil)−1 dt−1

BDmX,i BDX,i lost due to maintenance respiration in one time step gX (kg soil)−1 dt−1

BAtoD,X,i X transformed from BAX,i to BDX,i in one time step gX (kg soil)−1 dt−1

BDtoA,X,i X transformed from BDX,i to BAX,i in one time step gX (kg soil)−1 dt−1

AdsorbAvail,X Adsorbed AvailX in one time step gX (kg soil)−1 dt−1

DesorbAdsorb,X Desorbed AdsorbX in one time step gX (kg soil)−1 dt−1

UptakeX,i Uptake of X by MFT i in one time step gX (kg soil)−1 dt−1

UptakeadjX,i Adjusted UptakeX,i gX (kg soil)−1 dt−1

gC,i Growth rate if only considering C for MFT i gX (kg soil)−1 dt−1

gN,i Growth rate if only considering N for MFT i gX (kg soil)−1 dt−1

Rgi Growth respiration of MFT i gX (kg soil)−1 dt−1

Roi Overflow respiration of MFT i gX (kg soil)−1 dt−1

RAmj Maintenance respiration of active MFT i gX (kg soil)−1 dt−1

RDmi Maintenance respiration of dormant MFT i gX (kg soil)−1 dt−1

Rmi RAmi+RDmi gX (kg soil)−1 dt−1

DX,j Flux of X decomposed from substratej gX (kg soil)−1 dt−1

DlossN,j Gaseous N losses during decomposition of substrate j gX (kg soil)−1 dt−1

Veguptake,N N uptake by vegetation gX (kg soil)−1 dt−1

FOM specialists, respectively (Mouginot et al., 2014), based
on the assumption that SOM decomposers are mainly bac-
teria and FOM decomposers are mainly fungi (Kaiser et al.,
2014). The C /N ratio of generalists is set to 6.12, in-between
that of FOM and SOM specialists. The maximum total en-

zyme production capacities are set to be the same for each
MFT. FOM specialists (i = 1) can produce more enzymes
that decompose FOM (EFr1 : ESr1 = 0.75 : 0.25); SOM spe-
cialists (i = 2) can potentially produce more enzymes that
decompose SOM (EFr2 : ESr2 = 0.25 : 0.75); whereas gener-
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Table 1. Continued.

Parameters used in ORCHIMIC

Parameters Description Units

LLfin Lignin fraction of input litter Unitless
LCNin C /N mass ratio of input litter Unitless
LMf Fraction of input litter allocated to LM Unitless
Tref Reference temperature K
T Soil temperature K
θ Soil moisture: fraction of field capacity [0–1] Unitless
pH Soil pH pH units
pH0,ENZ Optimum pH for decomposing substrate pH units
pHs,ENZ Sensitivity parameter to pH for decomposing substrate pH units
θ0,i Optimum θ for growth of MFT i Unitless
pH0,i Optimum pH for growth of MFT i pH units
θs,i Growth sensitivity parameter to θ for MFT i Unitless
pHs,i Growth sensitivity parameter to pH for MFT i pH units
LtoSS The fraction of decomposed LM and non-lignin LS that go to SS pool Unitless
SAtoSS The fraction of decomposed SA that goes to SS pool Unitless
SAtoSP The fraction of decomposed SA that goes to SP pool Unitless
SStoSP The fraction of decomposed SS that goes to SP pool Unitless
BCNi C /N ratio for MFT i Unitless
CC Soil clay content Unitless
Vmaxuptake,i Maximum uptake rate of C at optimum conditions for MFT i h−1

Ke Maximum enzyme production coefficient h−1

EFri Maximum FOM decomposing enzyme production capacity of MFT i Unitless
ESri Maximum SOM decomposing enzyme production capacity of MFT i Unitless
Krref Maintenance respiration coefficient of microbes at Tref h−1

Kr Maintenance respiration coefficient of microbes at T h−1

b Ratio of maintenance respiration rate for BD to BA Unitless
dMFT,i Death rate of MFT i h−1

dENZ Turnover rate of enzymes h−1

R Ideal gas constant, 0.008314 kJ mol−1 K−1

Eamain Activation energy for maintenance respiration kJ mol−1

Eaj Activation energy for decomposition of substrate j kJ mol−1

Vmaxj Maximum decomposition rate for substrate j at Tref g C (g ENZ C)−1 h−1

AdjLS Ratio of decomposition rate of LM to that of LS Unitless
AdjSA Ratio of decomposition rate of SA to that of SS Unitless
AdjSP Ratio of decomposition rate of SS to that of SP Unitless
KMF Michaelis–Menten constant for decomposition of FOM g C (kg soil)−1

KMS Michaelis–Menten constant for decomposition of SOM g C (kg soil)−1

EaKM Activation energy for Michaelis–Menten constants kJ mol−1

CAE Carbon assimilation efficiency Unitless
NAE Nitrogen assimilation efficiency Unitless
sC Soluble fraction of dead microbial for C Unitless
sN Soluble fraction of dead microbial for N Unitless
Kads Avail pool adsorption coefficient at Tref h−1

Kdes Adsorb pool desorption coefficient at Tref h−1

Adsorbmax Max adsorption capacity of soil g C (kg soil)−1

KBA Soil binding affinity, Kads/Kdes Unitless
TAvailX Total available X considering that from decomposition and dead microbes gX (kg soil)−1

KMuptake,X,i Michaelis–Menton constant for uptake of X for MFT i gX (kg soil)−1

Eauptake Activation energy for uptake kJ mol−1

8C,i Saturation ratio of directly available organic C for MFT i Unitless
Kemin Minimum (or constitutive) enzyme production coefficient, defined as ratio of maximum capacity Unitless
Availr Ratio of C in Avail pool to total soil C at beginning Unitless
FEr Parameter for initial total EF concentration Unitless
SEr Parameter for initial total ES concentration Unitless
BAr Initial active biomass ratio Unitless
AdsorbX,0 Initial X (C or N) concentration in Adsorb pool gX (kg soil)−1

FEX,i,max Theoretical maximum initial X concentrations in EF enzyme pools gX (kg soil)−1

SEX,i,max Theoretical maximum initial X concentrations in ES enzyme pools gX (kg soil)−1

B0,i Initial total microbial biomass for MFT i g C (kg soil)−1

Kj Decomposition coefficient of substrate j in CENTURY or PRIM model dt−1

cSA,cSS,cSP Priming parameters for decomposition of SA, SS and SP for PRIM, respectively kg soil (g C)−1
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alists (i = 3) can potentially produce both FOM decompos-
ing and SOM decomposing enzymes in equal proportions
(EFr3 : ESr3 = 0.5 : 0.5). However, the real production of the
two enzymes depends on availability of substrates and avail-
able C.

Cheaters are microbes that do not produce substrate-
decomposing enzymes but profit from the enzymes produced
by the other MFTs (Allison, 2005; Kaiser et al., 2015). In
ORCHIMIC, enzyme production per unit of active microbial
biomass decreases with increasing available C availability
(see Sect. 2.3.7 for this dynamic enzyme production mech-
anism). This corresponds to a larger fraction of the micro-
bial biomass behaving as cheaters than when considering
that enzyme production per unit of non-cheaters is constant.
Because all three MFTs that are explicitly represented can
partly act as cheaters, and do so to variable degrees, cheaters
are a fourth MFT that is inexplicitly included in the model.

2.2 Carbon and nitrogen pools

2.2.1 Litter pools

The two FOM pools, LM and LS, receive prescribed inputs
from plant litter fall. The distribution of FOM carbon be-
tween the LM and LS compartments is a prescribed function
of the lignin to N ratio of plant material (Eq. 1) following
Parton et al. (1987) (see Sect. 2.3.1). The C /N ratio of the
LS pool is set to 150 (Parton et al., 1988) and the C /N ratio
of the LM pool is variable depending on the C /N ratio of
the FOM input (a forcing of ORCHIMIC representing litter
quality). The dynamics of the FOM pools are described by
the following:

LMf= 0.85− 0.018×
LLfin

LCNin
(1)

dLMx

dt
= LMX,in−DX,LM (2)

dLSX
dt
= LSX,in−DX,LS, (3)

where LMf is the fraction of litter input C allocated to the
LM pool; LLfin and LCNin are the respective lignin content
and C /N ratio of litter input to the FOM pools;X represents
C or N; LMx,in and LSx,in are the litter input partitioned to
the LM and LS pools based on LMf and C /N ratio of litter
input, respectively;DX,LM andDX,LS are loss ofX due to the
enzymatic decomposition of LM and LS, respectively (see
Sect. 2.3.1).

2.2.2 Soil organic matter pools

The three SOM pools (SA, SS and SP) represent substrates
that are decomposed by SOM decomposing enzymes. The
SA represents the insoluble part of dead microbes and deac-
tivated enzymes that have a fast turnover time. The dynamics

of this pool are described by the following:

dSAX
dt
=
∑

i

[
BAdX,i × (1− sX)

]
+

∑
i

(
EFdX,i +ESdX,i

)
−DX,SA, (4)

where the first term on the right of the equation represents
input from non-soluble active microbial biomass mortality
summed over all the MFTs; BAdX,i is the input of C or N
due to the mortality of MFT i (see Sect. 2.3.6); sX is the
proportion of microbial biomass that is soluble; the second
term represents the input from enzymes that lost their ac-
tivity; EFdX,i and ESdX,i are the inputs of C or N due to
turnover of EF and ES enzymes, respectively, produced by
MFT i (see Sect. 2.3.7); and DX,SA is the loss of C or N due
to decomposition of SA (see Sect. 2.3.1).

Regarding the SS pool, there is a flux going from the FOM
pool to the SS pool without being processed by microbes.
Following the CENTURY model (Parton et al., 1987; Stott
et al., 1983), 70 % of lignin in LS is assumed to go to the
SS pool without microbial uptake. LtoSS is the fraction of
decomposed LM and non-lignin LS that goes into the SS
pool. Similarly, there is also a flux from the SA pool to the
SS pool that represents non-biological SOM protection pro-
cesses, such as physical protection (Von Lützow et al., 2008).
The dynamics of the SS pool are given by

dSSX
dt
= DX,LM×LtoSS+DX,LS× (1−LLf)×LtoSS

+DX,LS×LLf× 0.7+DSX,A×SAtoSS
−DX,SS. (5)

In the above equation the first term represents the input of
X (C or N) from the LM pool without microbial process-
ing; the second and third terms represent input from the non-
lignin part and the lignin part of the LS pool, respectively;
the fourth term represents input from the SA pool; LLf is the
lignin fraction of the LS pool; DX,SS is the loss of C or N
from the decomposition of the SS pool (see Sect. 2.3.1); and
SAtoSS is the fraction of decomposed SA becoming phys-
ically or chemically protected and added to the SS pool, as
modified by the soil clay content (CC) (Parton et al., 1987):

SAtoSS= 0.146+ 0.68×C. (6)

The SP pool is more resistant to decomposition than the SS
pool. It receives fluxes from the SA and SS pools and its
dynamics are described as follows:

dSPX
dt
=DX,SA×SAtoSP+DX,SS×SStoSP−DX,SP, (7)

where the first and second terms represent input from
the SA and SS pools, respectively; SAtoSP= 0.004 and
SStoSP= 0.03 are the respective fractions of decomposed
SA and SS that go into the SP pool (Parton et al., 1987);
and DX,SP is the loss of C or N due to decomposition (see
Sect. 2.3.1).
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2.2.3 Pools of C and N available for microbial and
plant uptake, and gaseous N loss

The available C and N pool (Avail in Fig. 1) represents C and
N directly available for microbial uptake. It receives C and N
decomposed from FOM and SOM pools, the soluble part of
dead microbes (Schimel and Weintraub, 2003; Kaiser et al.,
2014) and C and N desorbed from mineral surfaces. C and N
from this pool can also be taken up by microbes or adsorbed
onto mineral surfaces. N released from microbial biomass af-
ter maintenance respiration by dormant and active microbes
(only when C uptake is not sufficient) is also assumed to be
a input source for the Avail pool. In addition, uptake of N by
plant roots (a forcing of ORCHIMIC in the case of coupling
with a vegetation model) and loss of C and N due to leach-
ing are modeled as fluxes removed from this pool. Gaseous
N loss due to nitrification and denitrification (see Eq. 26 in
Sect. 2.3.1) is considered as a decreased input from substrate
decomposition. The dynamics of the Avail pool are described
by Eqs. (8) and (9) for C and N, respectively.

dAvailC
dt

= DC,LM× (1−LtoSS)+DC,LS×LLf× 0.3

+DC,LS× (1−LLf)× (1−LtoSS)+DC,SA

× (1−SAtoSS−SAtoSP)+DC,SS

× (1−SStoSP)+DC,SP+
∑
i

(
BAdC,i × sC

)
−

∑
i

UptakeadjC,i +DesorbAdsorb,C

−AdsorbAvail,C − leachingC (8)
dAvailN

dt
= DN,LM× (1−LtoSS)+DN,LS×LLf× 0.3

+DN,LS× (1−LLf)× (1−LtoSS)+DN,SA

× (1−SAtoSS−SAtoSP)+DN,SS

× (1−SStoSP)+

(
DN,SP−

∑
j

DlossN,j

)
+

∑
i

(
BAdN,i × sN

)
−

∑
i

BAgN,i

+DesorbAdsorb,N−DesorbAvail,N

+

∑
i

(
BAmN,i +BDmN,i

)
−Veguptake,N

− leachingN, (9)

where UptakeadjC,i is C taken up by MFT i (see Sect. 2.3.2);
DesorbAdsorb,C and DesorbAdsorb,N are the fluxes of C and N
desorbed from mineral surface, respectively (see Sect. 2.3.8);
AdsorbAvail,C and AdsorbAvail,N are C and N absorbed by
mineral surface, respectively (see Sect. 2.3.8); DlossN,j is
the gaseous N loss; BAgN,i is N assimilated by MFT i (see
Sect. 2.3.4); BAmN,i and BDmN,i are N released from the
maintenance respiration of active and dormant biomass for
MFT i to the AvailN pool, respectively (see Sect. 2.3.3);

Veguptake,N is N taken up by plants, a boundary condition
of the model; and leachingC and leachingN are the respective
losses of C and N due to leaching.

2.2.4 Adsorbed C and N on mineral surfaces

The C and N in the Avail pool can be reversibly adsorbed
(Adsorb pool in Fig. 1) and rendered unavailable to microbes
and plants (for N). The dynamics of the Adsorb pool are
given by

dAdsorbX
dt

= AdsorbAvail,X −DesorbAdsorb,X, (10)

where the first term is the C or N adsorbed onto mineral sur-
face and the second term is the C or N desorbed from mineral
surface (see Sect. 2.3.8).

2.2.5 Enzymes pools

We distinguish between two types of enzymes (EF and ES),
which catalyze the decomposition of FOM and SOM, respec-
tively. Each MFT produces enzymes according to their spe-
cialization. The turnover rate of both types of enzymes is as-
sumed to be the same. The dynamics of the FOM and SOM
decomposing enzyme pools are described by the following:

dEFX,i
dt
=EFgX,i −EFdX,i (11)

dESX,i
dt

=ESgX,i −ESdX,i, (12)

where EFgX,i and ESgX,i are the respective production rates
of enzymes EF and ES by MFT i, with i = 1 for FOM spe-
cialists, i = 2 for FOM specialists and i = 3 for generalists
(see Sect. 2.3.7). EFdX,i and ESdX,i are the turnover rates
of the enzymes EF and ES, respectively, produced by MFT i
(see Sect. 2.3.7).

2.2.6 Active and dormant microbial biomass pools

In ORCHIMIC, each MFT can be active or dormant and can
switch from one state to the other depending on environmen-
tal conditions. When active, the mass of each MFT is defined
by the balance between their growth, death, production of en-
zymes, maintenance and growth respiration and exchange of
mass with dormant biomass (BD). If the uptake of C can not
meet the need for maintenance respiration, the active mass of
a MFT will respire part of its biomass as CO2. When micro-
bial biomass becomes dormant, its carbon can be reactivated
or respired through maintenance respiration. When respira-
tion is at the cost of their biomass, a corresponding amount
of N is assumed to be lost from dormant microbial biomass
and goes to the Avail pool so that the stoichiometry of the
dormant microbes remains unchanged. The dynamics for ac-
tive and dormant microbes are described by the following:

dBAX,i
dt

=BAgX,i +BDtoA,X,i −BAdX,i −EFgX,i
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−ESgX,i −BAtoD,X,i −BAmX,i (13)
dBDX,i

dt
=BAtoD,X,i −BDmX,i −BDtoA,X,i, (14)

where BAgX,i is the increase of BAX due to growth for
MFT i (see Sect. 2.3.4); BDtoA,X,i is the X in microbes
transformed from dormant state to active state for MFT i;
BAtoD,X,i is the X in microbes transformed from active state
to dormant state for MFT i (see Sect. 2.3.5); BAdX,i is the
loss of X due to death of active biomass of MFT i; and
BAmX,i and BDmX,i are the loss of X in active biomass and
dormant biomass, respectively, due to maintenance respira-
tion of MFT i.

2.3 Modeling the processes controlling fluxes between
pools

2.3.1 Organic matter decomposition

The substrate used by microorganisms includes FOM and
SOM. The FOM and SOM pools are decomposed by en-
zymes EF and enzymes ES, respectively. The decomposi-
tion process is modeled using a combination of Arrhenius
and Michaelis–Menten equations (Allison et al., 2010), with
different Vmax values for each substrate pool and different
Michaelis–Menten constants (KM) for FOM and SOM. To
avoid unrealistic decomposition rates when enzyme concen-
trations are high, an enzyme-dependent term was added in
the denominator (ECA kinetics). Vmax values are consid-
ered to be sensitive to temperature and modeled using an
Arrhenius equation (Eq. 16), with higher activation energy
(Ea) for more recalcitrant substrates (Allison et al., 2010).
KM is also considered to be sensitive to temperature (Allison
et al., 2010; Wang et al., 2013) and the dependency of KM
on temperature is modeled using an Arrhenius equation with
an activation energy (EaKM) of 30 kJ mol−1 (Davidson and
Janssens, 2006) (Eq. 16). All decomposition functions are
modulated by soil moisture (θ ) and pH. The decomposition
function of LS is further modified by its lignin content (Par-
ton et al., 1987). The decomposition function of SA is fur-
ther modified by soil clay content (CC) (Parton et al., 1987).
The functions modifying substrates’ decomposition rates by
θ (Krinner et al., 2005), T (Wang et al., 2012), pH (Wang et
al., 2012), lignin content (Parton et al., 1987) and soil clay
content (Parton et al., 1987) are given by the following:

Fθ = max
[
0.25,min

(
1,−1.1× θ2

+ 2.4× θ − 0.29
)]

(15)

FT ,j = e

−Eaj
R

(
1
T
−

1
Tref

)
(16)

FpH = e

−(pH−pH0,ENZ)
2

pH2
s,ENZ (17)

Flignin = e−3×LLf (18)
Fclay = 1− 0.75×CC, (19)

where Fθ , FT ,j , FpH, Fclay and Flignin are the respective func-
tions of soil moisture (θ ), temperature (T ), pH, clay con-
tent (CC) and lignin content (LLf) that modify substrate de-
composition rates; j represents substrate which are LM, LS,
SA, SS or SP or parameter KM; Eaj is the activation en-
ergy of substrate j ; Tref is a reference temperature, which
was set to 285.15 K; pH0,ENZ is the optimum pH of enzy-
matic decomposition; pHs,ENZ is a sensitivity parameter of
enzymatic decomposition; and R is the ideal gas constant
(0.008314 kJ mol−1 K−1).

Thus, the decomposition of C in LM, LS, SA, SS and SP
pools can be described by Eqs. (20), (21), (22), (23) and (24),
respectively. The decomposition of N follows the C /N ratio
of the corresponding substrate (Eq. 25). N can be lost through
volatilization of N products (NH3, N2, N2O) generated dur-
ing decomposition, nitrification and denitrification (Schimel,
1986; Mosier et al., 1983). Like in the CENTURY model
(Parton et al., 1987, 1988), we assumed that 5 % of total N
mineralized during decomposition is lost to the atmosphere
as a first-order approximation of volatilization, nitrification
and denitrification losses (DlossN,j , Eq. 26).

DC,LM = VmaxLM×FT ,LM×
∑

i
EFi

×
LMC

KMF×FT ,KM+LMC+
∑
iEFC,i

×Fθ ×FpH× dt (20)

DC,LS =
VmaxLM

AdjLS
×FT ,LS×

∑
i
EFC,i

×
LSC

KMF×FT ,KM+LSC+
∑
iEFC,i

×Fθ ×FpH×Flignin× dt (21)

DC,SA = VmaxSS×AdjSA×FT ,SA×
∑

i
ESC,i

×
SAC

KMS×FT ,KM+SAC+
∑
iESC,i

×Fθ ×FpH×Fclay× dt (22)

DC,SS = VmaxSS×FT ,SS×
∑

i
ESC,i

×
SSC

KMS×FT ,KM+SSC+
∑
iESC,i

×Fθ ×FpH× dt (23)

DC,SP =
VmaxSS

AdjSP
×FT ,SP×

∑
i
ESC,i

×
SPC

KMS×FT ,KM+SPC+
∑
iESC,i

×Fθ ×FpH× dt (24)

DN,j = DC,j ×
jN

jC
(25)

DlossN,j = DN,j × 0.05 (26)

In the abovementioned equations DC,LM, DC,LS, DC,SA,
DC,SS and DC,SP are C flux from LM, LS, SA, SS, and SP

www.geosci-model-dev.net/11/2111/2018/ Geosci. Model Dev., 11, 2111–2138, 2018



2120 Y. Huang et al.: ORCHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition

pools due to enzymatic decomposition, respectively; DN,j is
the N flux from substrate j due to enzymatic decomposition;
DlossN,j is the gaseous N loss from substrate j ; j represents
substrate which are LM, LS, SA, SS or SP; VmaxLM and
VmaxSS are maximum decomposition rates of C in LM and
SS pool, respectively; KMF and KMS are KM for FOM and
SOM pools, respectively; dt is the time step in unit of hour;
AdjLS is the ratio of maximum decomposition rate of C in
LM to that in LS; AdjSA and AdjSP are the ratios of maxi-
mum decomposition rate of C in SA to that in SS and that in
SS to that in SP, respectively; and jC and jN are the respec-
tive mass concentrations of C and N in substrate j pool.

2.3.2 Uptake of C and N by microbes

The uptake of C from the Avail pool is modeled as a function
of microbial active biomass (Wang et al., 2014), and uptake
rates are modulated by T , θ and pH. The effect of T on the
uptake rate is modeled using an Arrhenius equation follow-
ing Allison et al. (2010). The effect of θ and pH are modeled
using exponential quadratic functions (Reth et al., 2005). Ad-
ditionally, the uptake rate is also affected by the saturation
ratio of the available C pool (AvailC) they feed on. ECA ki-
netics formulation (Tang and Riley, 2013) is used to estimate
the saturation ratio of the Avail pool. With this formula, the
saturation ratio depends not only on the concentration of the
Avail pool but also on the concentration of the active micro-
bial biomass. Thus, competition for the Avail pool among
different MFTs and limitation for one MFT is implicitly in-
cluded due to the fact that the uptake rate is modulated by
active biomass concentration and the level of the Avail pool.
Therefore, when active biomass is high, the uptake rate per
unit of active biomass is reduced, mimicking the competi-
tion. The functions modifying microbes’ uptake rates by T
and pH are given by Eqs. (27) and (28), respectively. The
saturation ratio of the available C pool is given by Eq. (29).

fT ,i = e

−Eauptake
R

(
1
T
−

1
Tref

)
(27)

fpH,i = e

−(pH−pH0,i)
2

pH2
s,i (28)

8C,i =
AvailC

KMuptake,C,i ×FT ,KM+AvailC+
∑
iBAC,i

(29)

In the abovementioned equations fT ,i and fpH,i are temper-
ature and pH function modifying uptake rate of MFT i, re-
spectively;8C,i is the saturation ratio of the available carbon
pool; Eauptake is the activation energy for uptake; pH0,i is the
optimum pH for uptake by MFT i; and pHs,i is a sensitivity
parameter for uptake by MFT i to pH.

Potential uptake of C is given by Eq. (30). Total uptake
of C by all microbes should not exceed the total available
C, therefore all microbes decrease their uptake by the same
proportion as a trade off when total demand of C is larger

than total available C (Eq. 31).

UptakeC,i = Vmaxuptake,C,i ×8C,i ×BAC,i × fT ,i

× fpH,i × dt (30)
UptakeadjC,i = (31)

UptakeC,i,
∑
iUptakeC,i ≤ TAvailC

UptakeC,i ×
TAvailC∑
iUptakeC,i

,
∑

i
UptakeC,i > TAvailC

The total available C or N includes the C and N in the Avail
pool as well as that rendered available during decomposition
and that recycled from deceased microbes (Eqs. 32 and 33).

TAvailC = AvailC+
∑

i

(
BAdC,i × SC

)
+

∑
j
DC,j (32)

TAvailN = AvailN+
∑

i

(
BAdN,i × SN

)
+

∑
j

(
DN,j −DlossN,j

)
(33)

The uptake of N by microbes follows the C /N ratio of total
available C and N (Eq. 34):

UptakeadjN,i = UptakeadjC,i ×
TAvailN
TAvailC

, (34)

where UptakeC,i is the theoretical uptake of C by MFT i

under given 8C,i without considering the total available C;
UptakeadjC,i and UptakeadjN,i are the real uptake of C and
N by MFT i, respectively; the KMuptake,C,i is KM for the up-
take of C by MFT i and is set to be the same for all MFTs;
Vmaxuptake,C,i is the maximum uptake rate of C by MFT i

and is also set to be the same for all MFTs; and TAvailC and
TAvailN are the total available C and N, respectively.

2.3.3 Maintenance respiration

The maintenance respiration of MFTs (bacteria and fungi) is
modeled as a fixed ratio (maintenance respiration coefficient)
of their biomass (Schimel and Weintraub, 2003; Lawrence et
al., 2009; Allison et al., 2010; Wang et al., 2014; He et al.,
2015) modulated by temperature using an Arrhenius equa-
tion following Tang and Riley (2015) (Eq. 35). Dormant mi-
crobes still need a minimum of energy for maintenance, al-
beit at a much lower rate compared that of active microbes
(Lennon and Jones, 2011). The maintenance respiration co-
efficient of dormant microbes is set to be a ratio (b) (be-
tween zero and one) of that of active microbes (Wang et
al., 2014; He et al., 2015). Thus maintenance respiration can
be described by Eqs. (36) and (37) for active and dormant
microbes, respectively. Dormant microbes respire their own
biomass for survival (Eqs. 38 and 39). Active microbes take
up C from the Avail C pool to meet their maintenance respi-
ration requirement. If the C taken up does not suffice, active
microbes will use part of their own biomass for maintenance
respiration (Eqs. 40 and 41).

Kr= Krref× e
−Eamain

R

(
1
T
−

1
Tref

)
(35)
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RAmi = Kr×BAC,i × dt (36)
RDmi = b×Kr×BDC,i × dt (37)

BDmC,i = RDmi (38)

BDmN,i =
BDmC,i

BCNi
(39)

BAmC,i =
{

0,RAmi ≤ Uptakeadji
RAmi −UptakeadjC,i ,RAmi > UptakeadjC,i

(40)

BAmN,i =
BAmC,i

BCNi
(41)

In the abovementioned equations RAmi and RDmi are the
maintenance respiration of active and dormant biomass for
MFT i, respectively; BDmC,i and BDmN,i are the respec-
tive C and N loss from dormant biomass for MFT i due
to maintenance respiration; BAmC,i and BAmN,i are C and
N loss from active biomass for MFTi due to maintenance
respiration, respectively; Eamain is the activation energy of
the maintenance respiration coefficient; and Krref and Kr are
the maintenance respiration coefficient at temperature T and
Tref, respectively.

2.3.4 Growth of microbes, growth respiration and
overflow respiration

If C uptake exceeds the maintenance respiration flux, the
excess C can be allocated to microbial growth and growth
respiration. The allocation between biomass production and
growth respiration is controlled by the carbon assimilation
efficiency (CAE), defined as the maximum fraction of C
taken up that can be allocated to microbial biomass. The al-
location of N uptake to microbial biomass is controlled by
the nitrogen assimilation efficiency (NAE), which is defined
as the maximum fraction of N uptake that can be allocated to
microbial biomass and is assumed equal to one (Manzoni and
Porporato, 2009; Porporato et al., 2003). The final growth of
microbial biomass depends on the availability of C and N and
is restricted by C or N depending on which element is more
limiting. Growth of microbial biomass and growth respira-
tion are described by Eqs. (42)–(45) and (46), respectively.
Under C limited conditions, the excess N in the microbes is
released back to the Avail pool. Under N limited conditions,
the C that can not be incorporated by microbes is assumed to
be respired through overflow metabolism (Eq. 47) (Schimel
and Weintraub, 2003), defined as overflow respiration.

gC,i =

{ (
UptakeadjC,i −RAmi

)
×CAE,

if UptakeadjC,i −RAmi > 0
0 , if UptakeadjC,i −RAmi ≤ 0

(42)

gN,i =
UptakeadjN,i ×NAE

BCNi
(43)

BAgC,i = minimum
(
gC,i,gN,i

)
(44)

BAgN,i =
BAgC,i

BCNi
(45)

Rgi = BAgC,i ×
1−CAE

CAE
(46)

Roi = UptakeadjC,i −RAmi −BAgC,i −Rgi (47)

In the abovementioned equations gC,i and gN,i are theoretical
growth rates when only considering C-limited and N-limited
growth rates, respectively; BAgC,i and BAgN,i are the re-
spective increases of C and N in microbial biomass; CAE
is the carbon assimilation efficiency; NAE is the nitrogen as-
similation efficiency, which is set to one in this study; Rgi is
growth respiration by MFT i; and Roi is overflow respiration
by MFT i.

2.3.5 Transformation between active and dormant
states

Microbes can be active and dormant in the environment and
can transform between these two states (Blagodatskaya and
Kuzyakov, 2013). Active microbes take up carbon and invest
it in maintenance, growth and enzyme production. Microbes
become dormant to lower their maintenance cost and survive
under unfavorable conditions. The maintenance energy cost
is thought to be one of the key factors regulating the dor-
mancy strategy (Lennon and Jones, 2011). Wang et al. (2014)
assumed that transformation between the two states was de-
termined by the saturation ratio of substrates and the mainte-
nance rate of active microbes. In ORCHIMIC, microbes feed
on the Avail pool instead of on substrates, as in their model,
and considering that C is the sole energy source, the satura-
tion ratio of the substrate is replaced here by the saturation
ratio of the AvailC pool (8C,i). With8C,i , the effect of com-
petition on the microbes’ dormancy strategy is implicitly in-
cluded. The transformation from the active to dormant phase
(BAtoD,X,i) or the reverse (BDtoA,X,i) are given by

BAtoD,X,i =
(
1−8C,i

)
×Kr×BAX,i × dt (48)

BDtoA,X,i = 8C,i ×Kr×BDX,i × dt. (49)

2.3.6 Death of microbes

The death rate of microbes is modeled as a fraction (dMFT,i)
of their active biomass (Schimel and Weintraub, 2003; Alli-
son et al., 2010) (Eq. 17). Dormant microbes never die, but
their biomass can be drawn to a minimal value in the case of
maintenance respiration over a long period of time. The loss
of C (BAdC,i) and N (BAdN,i) from microbial biomass due
to the death of microbes is described by

BAdX,i = dMFT,i ×BAX,i × dt. (50)

2.3.7 Enzyme production and turnover

The production of enzymes is modeled as a fraction of active
microbial biomass (Allison et al., 2010; He et al., 2015) de-
pending on the MFT, the saturation ratio of FOM (for enzyme
EF) or SOM (for enzyme ES), and the saturation ratio of the
AvailC pool. The effects of the saturation ratio of substrate
(FOM or SOM) and the AvailC pool on enzyme production
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are modeled using ECA kinetics (see Eqs. 51, 52 and 53).
The secondary effects of substrate pools and the AvailC pool
on enzyme production are considered following the methods
of Sinsabaugh and Follstad Shah (2012), which considered
the co-limiting effects of multiple resource acquisition. Fur-
thermore, a minimum amount of enzyme is produced as con-
stitutive enzyme and is synthesized even under extremely un-
favorable conditions (Koroljova-Skorobogat’ko et al., 1998;
Kaiser et al., 2015). The production of FOM and SOM de-
composing enzymes are given by Eqs. (54) and (55), respec-
tively. The deactivation of enzyme is modeled as first-order
kinetics of the enzyme pool (Schimel and Weintraub, 2003;
Lawrence et al., 2009; Allison et al., 2010; He et al., 2015)
and is given by Eqs. (56) and (57) for EF and ES, respec-
tively.

K1,FOM =
LMC+LSC

KMF×FT ,KM+LMC+LSC+
∑
iEFC,i

(51)

K1,SOM =
SAC+SSC+SPC

KMS×FT ,KM+SAC+SSC+SPC+
∑
iESC,i

(52)

K2,i = 1−8C,i (53)
EFgX,i = BAX,i ×Ke×EFri

×max
[(
K1,FOM×K2,i

) 1
2 ,Kemin

]
(54)

ESgX,i = BAX,i ×Ke×ESri

×max
[(
K1,SOM×K2,i

) 1
2 ,Kemin

]
(55)

EFdX,i = EFX,i × dENZ (56)
ESdX,i = ESX,i × dENZ (57)

In the abovementioned equations EFgX,i and ESgX,i are the
X in newly produced enzymes EF and ES by MFT i, respec-
tively; K1,FOM and K1,SOM are the saturation ratios of FOM
and SOM, respectively; Ke×EFri and Ke×ESri are the re-
spective maximum enzyme production capacities for EF and
ES per unit of active biomass; Kemin is the constitutive en-
zyme production constant, which is defined as a fraction of
maximum capacity; and dENZ is the turnover rate of enzymes.

2.3.8 Adsorption and desorption

Adsorption and desorption fluxes between the Avail and Ad-
sorb pools are modeled as first-order kinetic functions of
the size of those pools, respectively (Wang et al., 2013).
Both adsorption and desorption coefficients are modulated
by temperature with a respective activation energy of 5
(Eaads) kJ mol−1 and 20 (Eades) kJ mol−1 (Wang et al., 2013).
The soil has a maximum adsorption capacity (Adsorbmax)
(Kothawala et al., 2008) due to the limited mineral surface
available for adsorption (Sohn and Kim, 2005). The satura-
tion ratio of the Adsorb pool (defined as Adsorb/Adsorbmax)
is an important factor controlling adsorption and desorp-
tion rates (Wang et al., 2013). The mass of C adsorbed
(AdsorbAvail,C) and desorbed (DesorbAvail,C) is calculated us-

ing Eqs. (58) and (59), respectively:

AdsorbAvail,C = AvailC×Kads× e
−

Eaads
R
×

(
1
T
−

1
Tref

)

×

(
1−

AdsorbC

Adsorbmax

)
(58)

DesorbAvail,C = Kdes× e
−

Eades
R
×

(
1
T
−

1
Tref

)

×
AdsorbC

Adsorbmax
. (59)

The adsorption (AdsorbAvail,N) and desorption
(DesorbAvail,N) of N are assumed to follow the C /N
ratio of the Avail and Adsorb pool, respectively (Eqs. 60 and
61).

AdsorbAvail,N = AdsorbAvail,C×
AvailN
AvailC

(60)

DesorbAvail,N = DesorbAvail,C×
AdsorbN

AdsorbC
(61)

In the above equationsKads andKdes are adsorption and des-
orption coefficients for C, respectively, and the former can
be calculated from the production of the latter and the soil
binding affinity (KBA) as follows:

Kads =Kdes×KBA. (62)

3 CENTURY and PRIM soil carbon models

Here we give a brief summary of CENTURY and PRIM,
the two benchmark models with which we compare OR-
CHIMIC for simulating incubation experiments. The CEN-
TURY model is the SOM module of the ORCHIDEE global
land biosphere model (Krinner et al., 2005). It is a sim-
plification of the original CENTURY model (Parton et al.,
1987, 1988), as it does not consider nitrogen interactions.
The PRIM variant of CENTURY was developed to capture
the magnitude of the priming of SOM decomposition in-
duced by varying litter inputs (Guenet et al., 2016). Both
are C-only models and have the same structure with simi-
lar pools and fluxes as shown in Fig. 2. The effects of soil
moisture, temperature, pH, lignin and clay content on the de-
composition of each substrate pool are also the same as those
used in ORCHIMIC. Both models do not explicitly represent
microbial dynamics. The decomposition rates of FOM pools
in both CENTURY and PRIM (Eqs. A1 and A2) and the de-
composition rates of SOM pools in CENTURY (Eqs. A6–
A8) are described by first-order kinetics. The decomposition
rates of the SOM pools in PRIM are modified by the size of
the FOM pool and the more labile SOM pools (Eqs. A6–A8).
The fluxes from one pool to another are exactly the same as
those described by Parton et al. (1987).
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Figure 2. Pools and fluxes of the CENTURY and PRIM models.

4 Parameter optimization for incubation experiments

4.1 Data description and model initial conditions

Data from soil incubation experiments (Blagodatskaya et al.,
2014) were used to optimize the parameters of ORCHIMIC,
CENTURY and PRIM using a Bayesian calibration proce-
dure described in Sect. 4.2.

Although there are many studies investigating the priming
effects of FOM addition on SOM decomposition, few studies
actually provided SOM derived respiration fluxes with and
without FOM addition and simultaneous FOM derived respi-
ration fluxes and microbial biomass changes throughout the
incubation experiment. In Blagodatskaya et al. (2014), not
only were the variables mentioned above measured, the frac-
tion of FOM derived C in both microbial biomass and DOC
was also measured, which are both very useful for calibrating
parameters related to microbial dynamics. As a brief sum-
mary of their incubation experiment, 14C labeled cellulose
was added into soil as powder at a dose of 0.4 g C (kg soil)−1

at the beginning of the incubation. The C content of the soil
was 24 g C (kg soil)−1 with a C /N ratio of 12. Soil sam-
ples with and without cellulose addition were incubated at
293.15 K at 50 % of water holding capacity for 103 days. 14C
activity and the total amount of trapped CO2 were measured
at day 1, 4, 7, 9, 12, 14, 19, 23, 27, 33, 48, 61, 71, 90 and
103. In the meantime, microbial biomass and 14C activity in
both microbial biomass and DOC were measured at days 0,
7, 14, 60 and 103.

Nonetheless, some information required for ORCHIMIC
was still not available and some assumptions were needed.
The fractions of C in active, slow and passive pools were as-
sumed to equal the fractions of C in the corresponding pools
of ORCHIDEE under equilibrium at the same site where the
incubated soil was sampled (Guenet et al., 2016). The C /N
ratios for the three soil carbon pools were assumed equal
to the ratio of total soil C and N, and the initial microbial
biomass was assumed to be equal for each MFT when more
than one MFT was considered. The initial AvailC (AvailC,0)
and AvailN (AvailN,0) pools were initialized by the initial

measured DOC and DON (dissolved organic nitrogen) con-
centration with an a priori uncertainty range of 50–150 %
of the observed values. The initial ratio of active biomass
(BAr) was set to 0.3 (ranging from 0 to 1). By assuming that
the Avail and Adsorb pools were at equilibrium, the initial
concentration of C and N in the Adsorb pool (AdsorbX,0)
can be calculated from AvailX,0 by Eq. (63). The theoretical
possible maximum initial enzyme concentrations (EFX,i,max
and SEX,i,max for EF and ES, respectively) can be estimated
based on Ke, EFri , ESri , dENZ and active microbial biomass
by assuming equilibrium between active microbial biomass
and enzyme concentrations (calculated by Eqs. (64) and (65),
respectively). The initial enzyme concentrations for EF and
ES is set to be any value between zero and the theoretical
possible maximum initial enzyme. FEr and SEr, defined as
the ratio of true initial enzyme concentration for EF and ES
to their theoretical possible maximum initial enzyme concen-
trations, respectively, were both set to 0.1 (with a range of
0–1). The initial concentrations for EF and ES are initialized
as FEr ×FEX,i,max and SEr ×SEX,i,max, respectively.

AdsorbX,0 =

Kads× e
−

Eaads
R
×

(
1
T
−

1
Tref

)
×Adsorbmax×AvailX,0

Kdes× e
−

Eades
R
×

(
1
T
−

1
Tref

)
+Kads× e

−
Eaads
R
×

(
1
T
−

1
Tref

)
×AvailX,0

(63)

FEX,i,max =
Ke×EFri
dENZ

×B0,X,i . (64)

SEX,i,max =
Ke×ESri
dENZ

×B0,X,i, (65)

where AdsorbX,0 is the initialX (C or N) concentration in the
Adsorb pool; FEX,i,max and SEX,i,max are theoretical maxi-
mum initial X concentrations in EF and ES enzyme pools,
respectively; and B0,X,i is the X in initial total microbial
biomass of MFT i.

4.2 Calibration of the parameter values in different
models

The Bayesian parameter inversion method with priors has
often been used to optimize model parameters with obser-
vations (Santaren et al., 2007; Guenet et al., 2016), and was
also applied in this study. The optimized parameters were
determined by minimizing the following cost function J (x)
(Eq. 66):

J (x)=
1
2

[
(y−H(x))tR−1 (y−H(x))

+(x− x0)
tP−1 (x− x0)

]
, (66)

where x is the parameters vector for optimization; x0 is
the prior values vector; P is the parameter error vari-
ances/covariances matrix; y is the observations vector; H(x)
is the model outputs vector; and R is the observation error
variances/covariances matrix. Errors are assumed to be Gaus-
sian distributed and independent.
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Table 2. List of optimized parameters with their prior values and ranges; for the description of each parameter see Table 1.

Parameters Units Prior values Ranges References

AdjSA Unitless 37 32–42 Parton et al. (1987)
AdjSP Unitless 29 24–34 Parton et al. (1987)
AvailCr Unitless 0.0041 0.0021–0.0061 Blagodatskaya et al. (2014), Wang et al. (2013)
b Unitless 0.01 0.0005–1 He et al. (2015), Wang et al. (2014)
BAr Unitless 0.3 0–1 Wang et al. (2014)
CAE Unitless 0.6 0.01–0.85 Schimel and Weintraub (2003), Six et al. (2006)
dENZ h−1 0.001 0.0005–0.016 Allison et al. (2010), Kaiser et al. (2014, 2015), He et

al. (2015)
dMFT h−1 0.002 0.0002–0.01 Allison et al. (2010), He et al. (2015), Kaiser et

al. (2014)
FEr Unitless 0.1 0.00001–1 This study
KBA Unitless 6 1–11 Wang et al. (2013)
Kdes h−1 0.001 0.0001–0.01 Wang et al. (2013)
Ke h−1 0.00001 0.000005–0.0008 Allison et al. (2010), He et al. (2015)
Krref h−1 0.002 0.0001–0.08 Kaiser et al. (2014), He et al. (2015)
KMF gC (kg soil)−1 50 0.01–100 Wang et al. (2013), Allison et al. (2010), He et al. (2015)
KMS gC (kg soil)−1 250 0.01–500 Wang et al. (2013), Allison et al. (2010), He et al. (2015)
KMuptake gC (kg soil)−1 0.26 0.0026–26 Wang et al. (2013), Allison et al. (2010)
LtoSS Unitless 0.02 0–0.5 Wieder et al. (2014), D’Odorico et al. (2003)
SEr Unitless 0.1 0.00001–1 This study
Adsorbmax g C (kg soil)−1 1.35 0.5–4.8 Mayes et al. (2012)
VmaxLM g C (g ENZ C)−1 h−1 56 7–447 Wang et al. (2012)
VmaxSS g C (g ENZ C)−1 h−1 1 0.008–50 Wang et al. (2012, 2013)
Vmaxuptake,C g C (g ENZ C)−1 h−1 0.24 0.0005–2 Wang et al. (2013), Zwietering et al. (1991), Weiger et

al. (1995)

All parameters optimized for ORCHIMIC and their prior
values and ranges are listed in Table 2. Considering that the
incubation experiment was conducted at constant tempera-
ture and pH, parameters related to these variables could not
be optimized and were excluded from the optimization. Also,
cellulose was the only type of FOM, so adjLS was set to one.
The observed variables used in the optimization are listed in
Table 3. All the parameters with prescribed non-optimized
values are listed in Table 4; while all parameters and ob-
served variables used in the optimization for the CENTURY
and PRIM models are summarized in Tables S1 and 3, re-
spectively. For the R observation error matrix, the uncertain-
ties of RF, RS and RSCtrl were set at 5 % of their mean ob-
served values. The priming effect is the difference between
RS and RSCtrl, so its uncertainty was set at 10 % of the mean
priming effect. The uncertainties of B and BCtrl were both
set at 5 % of observed value; whilst the uncertainty of BFOMr
was set at 10 % of the observed value. The uncertainties of
unknown parameters were set at 10 % of their range. The
number of parameters and observations used in the optimiza-
tion are summarized in Table 5.

To investigate the effects of including different numbers
of MFTs in addition to N dynamics, optimizations were per-
formed with six variants of ORCHIMIC (C-MFT1, C-MFT2,
C-MFT3, CN-MFT1, CN-MFT2 and CN-MFT3) summa-

rized in Table 6. C-only means no nitrogen dynamics are
considered and the number after MFT indicates the num-
ber of MFTs used in each variant of ORCHIMIC (see details
in Table 6). The gradient-based iterative algorithm L-BFGS-
B (limited-memory Broyden–Fletcher–Goldfarb–Shanno al-
gorithm) (Zhu et al., 1995) was used to minimize the cost
function. As this approach may find local minima that differ
from the absolute minimum of the complex function J (x),
it is very sensitive to the choice of initial parameter values.
Guenet et al. (2016) performed 30 optimizations by assign-
ing random initial values within a priori ranges to six param-
eters to reduce the sensitivity of the solution to the occur-
rence of local minima. This method proved to be effective
for avoiding potential local minima (Santaren et al., 2014).
Considering the number of parameters that needed to be op-
timized in this model, 400 sets of random initial parameter
values within their ranges were applied as initial conditions
to perform optimizations for each model.

5 Idealized simulations increasing FOM input and/or
increasing temperature

The six ORCHIMIC variants (Table 6) were forced with a
constant input of 1.6 g C (kg soil)−1 h−1 of litter where the
C /N ratio and lignin content were set to 50 and 0.2, re-

Geosci. Model Dev., 11, 2111–2138, 2018 www.geosci-model-dev.net/11/2111/2018/



Y. Huang et al.: ORCHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition 2125

Table 3. List of the observed variables used for optimization.

Variables Units Descriptions ORCHIMIC CENTURY/PRIM

RF gC (kg soil)−1 FOM derived respiration when soil was incubated with FOM
addition

Yes Yes

RS gC (kg soil)−1 SOM derived respiration when soil was incubated with FOM
addition

Yes Yes

RSCtrl gC (kg soil)−1 SOM derived respiration when soil was incubated without FOM
addition

Yes Yes

Priming effect gC (kg soil)−1 Differences between SOM derived respiration when soil was
incubated with and without FOM addition

Yes Yes

B gC (kg soil)−1 Total microbial biomass concentrations when soil was incu-
bated with FOM addition

Yes No

BCtrl gC (kg soil)−1 Total microbial biomass concentrations when soil was incu-
bated without FOM addition

Yes No

BFOMr Unitless Proportions of FOM derived C in microbial biomass when soil
was incubated with FOM addition

Yes No

Table 4. List of parameters with prescribed values.

Parameters Units Values References

Eamain kJ mol−1 20 van Iersel and Seymou (2002)
EaKM kJ mol−1 30 Davidson and Janssens (2006)
EaLM kJ mol−1 37 Wang et al. (2012)
EaLS kJ mol−1 53 Wang et al. (2012)
Eades kJ mol−1 20 Kaiser et al. (2001)
EaSA kJ mol−1 42 Assumed
EaSP kJ mol−1 52 Assumed
EaSS kJ mol−1 47 Allison et al. (2010)
Eaads kJ mol−1 5 Elshafei et al. (2009)
Eauptake kJ mol−1 47 Allison et al. (2010)
Kemin Unitless 0.1 Kaiser et al. (2014, 2015)

Table 5. Number of parameters and observations used in the opti-
mization for each model.

Models Number of Number of independent
parameters observations

ORCHIMIC 22 75
CENTURY 4 60
PRIM 7 60

spectively (Wang et al., 2013). In this study, only the max-
imum decomposition rate of cellulose was optimized; there-
fore maximum decomposition rates for C in LM and LS
pools were assumed to be the same. As the temperature dur-
ing the incubations was kept constant at 295.2 K, we also
fixed the temperature at 295.2 K. For the CN-MFT1, CN-
MFT2 and CN-MFT3 models, N was removed from the Avail
pool at each time step to model the uptake of N by vegeta-
tion. The size of the flux was chosen so that the total N flux
removed from the system, including N losses during decom-
position, was equal to the N input. All models were first run

to equilibrium, and then three abrupt changes in the model
forcings were applied, i.e., doubling the FOM input, increas-
ing the temperature by 5 K and both together.

6 Results

6.1 Respiration and priming effect during the
incubation experiment

The model simulations shown in Fig. 3 were obtained us-
ing the optimized parameters listed in Table 7 for the OR-
CHIMIC variants and Table S1 in the Supplement for the
CENTURY and PRIM models. The observed respiration rate
from FOM was high at the beginning of the experiment,
shortly after the initial addition of labeled cellulose and grad-
ually increased at a slow rate. Both CENTURY and PRIM
underestimated FOM derived respiration at the beginning
and overestimated it at the end. Similar results were found
for SOM respiration flux, with and without FOM addition
(Fig. 3b and c). The modeled respiration from FOM and
SOM by all variants of ORCHIMIC were similar and repro-
duced the observed trend.

The observed cumulative priming effect, diagnosed as the
difference (RS−RSCtrl) between CO2 fluxes derived from
SOM with and without FOM addition, was negative for the
first 12 days and gradually became positive (Fig. 3d). Then,
the cumulative priming effect increased very quickly from
day 14 to day 27; after day 27 the priming effect gradually
weakened. The modeled priming effect by CENTURY was
always zero – by construction of this model. For PRIM, the
modeled cumulative priming effect at the end was 190 mg C
(kg soil)−1, which is 14 % higher than that observed. How-
ever, the shape of the modeled cumulative PE curve also dif-
fered from the observations. The modeled priming effect by
PRIM was always positive and weakened very slowly with
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Table 6. Descriptions of the six ORCHIMIC variants with or without N dynamics and considering different combinations of MFTs.

ORCHIMIC variants MFTs C dynamics N dynamics

C-MFT1 One generalist Yes No
C-MFT2 One FOM specialist and one SOM specialist Yes No
C-MFT3 One generalist, one FOM specialist and one SOM specialist Yes No
CN-MFT1 One generalist Yes Yes
CN-MFT2 One FOM specialist and one SOM specialist Yes Yes
CN-MFT3 One generalist, one FOM specialist and one SOM specialist Yes Yes

Figure 3. Modeled and observed cumulative respiration from
(a) FOM, (b) SOM with FOM addition, (c) SOM without FOM
addition and (d) priming effect (difference between measured SOM
derived respiration with FOM addition minus without FOM addi-
tion) (C-MFT2 overlapped with CN-MFT2).

time (Fig. S1 in the Supplement). This meant the PRIM over-
estimated the cumulative priming effect at both the beginning
and the end; although, the additional C loss through the prim-
ing effect was well captured at the end of incubation (day
103) (Fig. 3d). The negative cumulative priming effect as
simulated by the various ORCHIMIC variants lasted between
6 and 8 days. Similar to the observations, the modeled cumu-
lative priming effect by the ORCHIMIC variants increased
very quickly from day 8 onwards, and subsequently slowed
down after 13–17 days. At the end of the experiment (day
103), the modeled cumulative priming effect values from the
six ORCHIMIC variants were between 170 and 183 mg C
(kg soil)−1, only 2.5–11 % higher than that observed.

It can be argued that ORCHIMIC only does a better job
at fitting the incubation data because it has more degrees of
freedom than the two other models (Table 5). The Akaike in-
formation criterion (AIC) takes this into account (Bozdogan,
1987) by considering the optimized model performance and
its number of adjustable parameters. The AIC values for each

Figure 4. Modeled and observed microbial biomass and propor-
tion of FOM derived C in the biomass of different MFTs (curve for
C-MFT2 overlapped with CN-MFT2). Solid lines show the evolu-
tion of microbial biomass or proportion of FOM derived C in MFT-
biomass C with FOM addition; dashed lines show the evolution of
microbial biomass without FOM addition. Black filled circles and
triangles are the observation with and without FOM addition, re-
spectively.

model are shown in Table S2. The AIC values of the six OR-
CHIMIC variants are much lower than those of CENTURY
and PRIM. The difference in AIC values among the six vari-
ants are very small for modeling RF, RS, RSCtrl and overall
performance, but C-MFT2 and CN-MFT2 have lower AIC
values in modeling the priming effect.

6.2 Microbial biomass evolution during the incubation

Next, we examine how ORCHIMIC simulates the observed
microbial biomass evolution throughout the experiment;
the two other models do not explicitly include microbial
biomass, so could not be evaluated here. The observed total
microbial biomass increased at the beginning and reached its
maximum (≥ 442 and ≥ 339 mg C (kg soil)−1 for the treat-
ments with and without FOM addition, respectively) between
day 14 and 60, after which it decreased both with and with-
out FOM addition (Fig. 4a). The modeled total microbial
biomass from the six ORCHIMIC variants all followed a
similar trend. With FOM addition, the biomass reached its
maximum value of between 425 and 451 mg C (kg soil)−1 on
days 28–30 for the different ORCHIMIC variants. Without
FOM addition, the biomass reached its maximum value of
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Table 7. Optimized values and uncertainties of parameters for the six variants of the ORCHIMIC model.

Parameters Units Prior values C-MFT1 C-MFT2 C-MFT3

Cost 208 201 206
AdjSA Unitless 37 36± 2 38± 2 39± 2
AdjSP Unitless 29 29± 2 31± 2 31± 2
AvailCr 10−3 4.1 5.3± 0.8 4.2± 0.8 4.2± 0.8
b Unitless 0.01 0.14± 0.04 0.16± 0.04 0.12± 0.03
BAr Unitless 0.3 0.26± 0.08 0.41± 0.09 0.36± 0.09
CAE Unitless 0.6 0.81± 0.09 0.79± 0.08 0.85± 0.09
dENZ 10−3 h−1 1 2.1± 0.7 2.7± 0.5 2.0± 0.5
dMFT 10−3 h−1 2 2.7± 1.5 1.9± 1.1 1.8± 1.4
FEr Unitless 0.1 0.45± 0.19 0.50± 0.19 0.45± 0.18
KBA Unitless 6 6.2± 1.9 8.1± 2.0 8.7± 2.0
Kdes 10−4 h−1 10 28± 10 6.7± 2.9 9.6± 3.5
Ke 10−4 h−1 0.1 1.3± 0. 9 2.3± 1.2 0.93± 0.54
Krref 10−3 h−1 2 2.5± 1.0 2.0± 0.6 2.9± 0.8
KMF gC (kg soil)−1 50 77± 20 50± 19 57± 19
KMS gC (kg soil)−1 250 224± 92 471± 96 314± 92
KMuptake gC (kg soil)−1 0.26 13± 4 13± 5 15± 5
LtoSS Unitless 0.02 0.24± 0.07 0.29± 0.06 0.24± 0.07
SEr Unitless 0.1 0.46± 0.17 0.70± 0.18 0.61± 0.17
Adsorbmax gC (kg soil)−1 1.35 3.1± 0.7 2.1± 0.7 3.2± 0.8
VmaxLM g C (g ENZ C)−1 h−1 56 177± 81 112± 68 157± 75
VmaxSS g C (g ENZ C)−1 h−1 1 7.5± 5.7 13± 7 18± 9
Vmaxuptake,C g C (g ENZ C)−1 h−1 0.24 0.74± 0.27 0.29± 0.13 0.52± 0.20

Parameters Units Prior values CN-MFT1 CN-MFT2 CN-MFT3

Cost 203 201 218
AdjSA Unitless 37 37± 2 38± 2 37± 2
AdjSP Unitless 29 32± 2 31± 2 29± 2
AvailCr 10−3 4.1 4.7± 0.8 4.2± 0.8 6.1± 0.8
b Unitless 0.01 0.18± 0.05 0.16± 0.04 0.24± 0.08
BAr Unitless 0.3 0.48± 0.10 0.41± 0.09 0.48± 0.12
CAE Unitless 0.6 0.85± 0.09 0.79± 0.08 0.85± 0.08
dENZ 10−3 h−1 1 1.8± 0.5 2.7± 0.5 1.5± 0.8
dMFT 10−3 h−1 2 2.3± 1.2 1.9± 1.1 2.6± 1.2
FEr Unitless 0.1 0.37± 0.19 0.50± 0.19 0.57± 0.20
KBA Unitless 6 5.7± 1.9 8.1± 2.0 11± 2
Kdes 10−4 h−1 10 14± 6 6.7± 2.9 35± 11
Ke 10−4 h−1 0.1 1.7± 1.0 2.3± 1.2 0.69± 0.59
Krref 10−3 h−1 2 2.0± 0.6 2.0± 0.6 1.6± 0.6
KMF gC (kg soil)−1 50 29± 18 50± 19 70± 20
KMS gC (kg soil)−1 250 401± 96 471± 96 120± 93
KMuptake gC (kg soil)−1 0.26 9.2± 4.8 13± 5 11± 5
LtoSS Unitless 0.02 0.27± 0.07 0.29± 0.06 0.14± 0.08
SEr Unitless 0.1 0.46± 0.15 0.70± 0.18 0.47± 0.19
Adsorbmax gC (kg soil)−1 1.35 3.8± 0.8 2.1± 0.7 2.9± 0.7
VmaxLM g C (g ENZ C)−1 h−1 56 83± 65 112± 68 190± 86
VmaxSS g C (g ENZ C)−1 h−1 1 13± 8 13± 7 2.7± 3.3
Vmaxuptake,C g C (g ENZ C)−1 h−1 0.24 0.29± 0.17 0.29± 0.13 0.48± 0.22
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Figure 5. Modeled and observed proportions of FOM derived C in
the AvailC pool. The curve of the C-MFT2 modeled curve overlaps
with the CN-MFT2 curve.

between 305 and 325 mg C (kg soil)−1 on days 27–34 for the
different ORCHIMIC variants.

According to the observations (14C labeling), the propor-
tion of FOM derived C in MFT-biomass C (BFOMr) increased
very quickly and peaked (≥ 18 %) before day 14. From day
14 to day 60, BFOMr declined, but subsequently increased
between day 60 and day 103 (Fig. 4b). The modeled BFOMr
also increased very quickly and reached its maximum value
of 13–16 % on days 9–16 for the different ORCHIMIC vari-
ants. Unlike the observations, the modeled BFOMr continued
to decrease after day 60 and declined to a value of 10–11 %
for the different ORCHIMIC variants.

6.3 Proportion of FOM derived C in the AvailC pool
during the incubation

Figure 5 shows the modeled and observed proportions of
FOM derived C in the AvailC pool (defined as AvailC,FOMr).
In the observations, this quantity was not estimated as the
proportion of FOM derived C in the AvailC pool, but as the
proportion of FOM derived C in dissolved organic carbon
(DOC). Although AvailC is not equal to DOC, we assumed
that the proportion of FOM derived C in AvailC and in DOC
was similar. The observed proportion of FOM derived C in
DOC increased quickly at the beginning and reached its max-
imum (≥ 9.9 %) before day 14, after which it then gradually
decreased to 4.3 % on day 103. The modeled AvailC,FOMr
reached their peaks of 29–41 % on days 2–4 for the differ-
ent ORCHIMIC variants. The modeled proportion of FOM
derived C in the AvailC pool on day 103 was 7–10 % for the
different ORCHIMIC variants.

Figure 6. Evolutions of active (BA) and dormant (BD) microbial
biomass; FOM decomposing enzymes (EF) and SOM decompos-
ing enzymes (ES); and maintenance respiration (Rm), growth respi-
ration (Rg) and overflow respiration (Ro) for CN-MFT3 (standard
version of ORCHIMIC) when temperature is stepwise increased by
5 K (a1, a2, a3), when FOM input doubles (b1, b2, b3) and when
both forcings are changed (c1, c2, c3). The vertical black dotted line
shows the time when the stepwise increase of temperature and/or
the doubling FOM input was implemented.

6.4 Modeled responses to step increases in temperature
and fresh organic matter inputs

6.4.1 Change of microbial biomass, enzymes and
respiration

Figure 6 shows that at equilibrium the standard model ver-
sion CN-MFT3 of ORCHIMIC simulated a total microbial
biomass of 0.17 g C (kg soil)−1, with approximately 80 %
of the microbes in the dormant and 20 % in the active
state. The total enzyme concentration was estimated to be
2.3 mg C (kg soil)−1 and the total respiration was 3.8 mg C
(kg soil)−1 d−1, which was equal to the C input rate. When
the temperature underwent a stepwise increase of 5 K (pan-
els a in Fig. 6), microbial biomass increased by 19 %, en-
zyme concentration increased by 12 % and respiration expe-
rienced a greater increase of 42 %. However, these effects
were ephemeral. After this initial peak, these three pools
and fluxes declined and reached new equilibrium values,
where microbial biomass was 11 % and enzyme concentra-
tions 12 % below their original values; while the respiration
rate returned to its original level, equal to FOM input.

When FOM input was doubled, microbial biomass, en-
zyme concentration and respiration all increased and equi-
librated at a higher level. Both active and dormant micro-
bial biomass increased by 100 %, although active biomass
increased faster at the beginning. Hence, the proportion of
active biomass increased for about 88 days and reached a
peak at 28 % (Fig. S2). Enzyme concentrations almost dou-
bled in response to doubling FOM inputs. Respiration fluxes
exactly doubled.
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Figure 7. Relative changes of C in metabolic (LM) and structural
(LS) litter pools (a1, b1, c1); in active (SA), slow (SS) and passive
(SP) soil pools (a2, b2, c2); and in available (Avail) and absorbed
(Absorb) pools (a3, b3, c3) for the CN-MFT3 model when temper-
ature underwent a stepwise increase of 5 K (a1, a2, a3); when FOM
input doubles (b1, b2, b3); and when both a stepwise increase of
5 K and FOM input doubling was implemented (c1, c2, c3). The
vertical black dotted line shows the time when the change of tem-
perature and/or FOM input was implemented.

When both doubled FOM input and increased tempera-
ture were implemented, the temporal dynamics of microbial
biomass, enzyme concentrations and respiration were very
similar to those when only the FOM input doubled. At the
new equilibrium, only the respiration was doubled and the to-
tal microbial biomass and enzyme concentrations increased
less (by 77 and 75 %, respectively).

Although the simulated sizes of the different pools were
slightly different for the other five variants of ORCHIMIC
(Figs. S3–S7), they followed similar trends to those of the
standard model version.

6.4.2 Change of soil carbon stock

The total SOC content, including microbial biomass and en-
zymes was 9.7 g C (kg soil)−1 under equilibrium for CN-
MFT3. When temperature underwent a stepwise increase of
5 K, there was a fast decrease of C in the litter and SA pools
(Fig. 7, results from the other model variants are given in
Figs. S8–S12). The loss of C from the LM and LS pools
reached 23 % and 26 % of their pre-warming values, respec-
tively. However, the decomposition rates subsequently de-
clined and at equilibrium only 2 % of C was lost from the
LS pool; moreover there was even a 9 % increase of C in the
LM pool. The C stocks in the SS and SP pools decreased by
4 and 1 %, respectively. C stocks in the SA, Avail and Adsorb
pools decreased by 12, 2 and 6 % at the new equilibrium, re-
spectively.

With doubled FOM input, C stocks in all pools increased
for a short time but, at the new equilibrium, almost did not

change (relative changes were lower than 0.1 % for all pools
after 100 years).

When both FOM input was doubled and temperature in-
creased by 5 K, responses were almost the same as in the
simulations in which only temperature was increased.

6.4.3 Changes of carbon use efficiency

At equilibrium, the carbon use efficiency (CUE), defined as
the ratio of carbon allocated to microbial growth to the sum
of that allocated to growth and respiration, was between 0.40
and 0.44 for the different ORCHIMIC variants. When T was
increased by 5 K, CUE first fluctuated but finally stabilized
at slightly lower values (between 0.39 and 0.42) in all OR-
CHIMIC variants (Fig. 8a).

When FOM input was doubled, CUE transiently increased
for 52–73 days to a maximum value between 0.46 and 0.49
for the different ORCHIMIC variants. At the new equilib-
rium, however, CUE was similar to its original level in all
ORCHIMIC variants (Fig. 8b).

When T underwent a stepwise increase of 5 K and FOM
input doubled, CUE responses were in between those of
warming and those of increased FOM additions. At equilib-
rium, however, the CUE response was similar to that of the
T -only treatment for all ORCHIMIC variants (Fig. 8c).

7 Discussion

7.1 Optimized parameter vs. literature values

The optimized values for most parameters were generally
consistent with those used by previous models and those ob-
served. For example, the ratios of the decomposition rates
for the active to slow SOC pool and for the slow to the
passive pool were close to those used in the original CEN-
TURY model (Parton et al., 1987). The optimized turnover
rate of enzymes (0.035–0.065 d−1 for the six ORCHIMIC
variants) was within the range of observed turnover rates for
enzymes (0.002–0.10 d−1) (Schimel et al., 2017) and also of
a similar magnitude to those used in the models of Allison
et al. (2010) (0.024 d−1), He et al. (2015) (0.012–0.048 d−1),
Schimel and Weintraub (2003) (0.05 d−1) and Lawrence et
al. (2009) (0.05 d−1). The optimized maximum C uptake rate
of microbes (0.29–0.74 h−1) was higher, but nonetheless of
the same order of magnitude than the value of 0.24 h−1 used
by Allison et al. (2010); however, they were much higher
than the value of 0.0005 h−1 used by Wang et al. (2013).
The optimized value of the death rate of active microbes
(0.0015–0.0027 h−1) was consistent with observations. For
example, the measured death rate for total microbial biomass
at 298.15 K was 0.016 d−1 (Joergensen et al., 1990). Hence,
considering an active biomass proportion of 4–49 %, the
death rate for active biomass would be 0.0014–0.017 h−1.
The optimized death rate for active microbial biomass was
also consistent with those used for active biomass by He et
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Figure 8. Temporal evolution of carbon use efficiencies (defined as ratio of carbon allocated to microbial growth to the sum of those allocated
to growth and respiration) when temperature undergoes a stepwise increase of 5 K (a), when FOM input doubles (b) and when both forcings
are changed (c), for the six variants of the ORCHIMIC model. The curve for C-MFT2 overlapped with that of CN-MFT2. The vertical black
dotted line shows the time when the change of temperature and/or input was applied.

al. (2015) (0.0002–0.002 h−1), and comparable to those used
by Allison et al. (2010) and Lawrence et al. (2009) (0.0002
and 0.0021 h−1 for total microbial biomass, respectively) if
considering an active biomass proportion of 4–49 % (Van de
Werf and Verstraete, 1987). Other optimized parameter val-
ues that were directly comparable to observations were also
consistent with empirical data. For example, the proportion
(0.0042–0.0053) of initial AvailC in total SOC was close to
the value of 0.0041 for the proportion of DOC in total SOC
reported by Blagodatskaya et al. (2014) for the incubated
soil. The initial active microbial biomass proportion was 26–
48 % of the total biomass, lying in the observed range of 4–
49 % reported by Van de Werf and Verstraete (1987).

Some other optimized parameters differed substantially
from the values used in previous models, yet were consistent
with those observed. For example, the ratio of maintenance
respiration in dormant relative to active microbes (0.12–0.24)
was within the range reported by Wang et al. (2014) (0.025–
0.351) which was estimated based on data from two incu-
bation experiments, but much higher than that used in the
model of He et al. (2015) (0.0005–0.005). The optimized
CAE of 0.8 was also higher than the value of 0.5 used by
Schimel and Weintraub (2003), yet close to the value (0.8)
for CAE of reserve metabolites used in the model of Tang
and Riley (2015). A wide range of CUE (0.01–0.85) was
reported by Six et al. (2006) in a review of studies mea-
suring CUE. High CUE (0.67–0.75) was also reported by
Hagerty et al. (2014). These high values indicate that CAE
could be as high as 0.8 because CAE should be larger than
CAE, which is due to the fact that CUE takes maintenance
respiration into account. The maximum decomposition rates
of substrates were higher than those used in previous mod-
els (Allison et al., 2010; Wang et al., 2013; Kaiser et al.,
2014, 2015). For example, in Wang et al. (2013), the op-

timized maximum decomposition rates for particulate or-
ganic matter and mineral-associated organic matter were
2.5 and 1.0 mg C (mg enzyme C)−1 h−1, respectively, while
0.24 mg C (mg enzyme C)−1 h−1 was used as maximum de-
composition rate for soil organic matter in the model of
Allison et al. (2010). However, the maximum decomposi-
tion rate for cellulose optimized from our study was 83 to
190 mg C (mg enzyme C)−1 h−1. One likely explanation for
such a large difference is that the data used by Wang et
al. (2013) and Allison et al. (2010) were to be applied to the
decomposition of SOM or litter; however, in this study, the
main substrate was cellulose which was milled before be-
ing added to soil and was also well mixed within the soil
during the incubation experiment. Moreover, cellulose has
a very homogeneous structure and is, therefore, easy to de-
compose. In any case, the maximum decomposition rate is
within the range reported by laboratory measurements for
cellulose. For example, according to data collected by Wang
et al. (2012), the maximum decomposition rate of cellulose
could be as high as 7900 mg C (mg enzyme C)−1 h−1 with an
average value of 80 mg C (mg enzyme C)−1 h−1.

7.2 Performance of ORCHIMIC model

The ORCHIMIC model generally performed better than
CENTURY and PRIM. Despite the larger number of param-
eters, the AIC values for the six variants of ORCHIMIC were
lower than those of the more parsimonious CENTURY and
PRIM models. The decomposition rates in CENTURY fol-
low first-order kinetics (Parton et al., 1987) and do not in-
teract; therefore, with and without FOM addition the SOM
derived respiration is always the same and priming can not
be captured. The PRIM model was developed with the aim
of modeling the priming effect (Guenet et al., 2016). The
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decomposition rate of FOM still follows first-order kinet-
ics, so FOM derived respiration has a similar trend to that
in the CENTURY model. However, the decomposition rate
of more recalcitrant SOC is accelerated when the FOM pool
is higher, as is the case in incubations with FOM (cellulose)
addition. Hence, SOM derived respiration will increase and
lead to a positive priming effect of rather constant magni-
tude for the simulations where cellulose is added. In contrast,
the ORCHIMIC model variations with different numbers of
MFTs and with or without N dynamics all better captured the
temporal dynamics of both respiration and priming effects as
measured by Blagodatskaya et al. (2014).

In ORCHIMIC, the substrate decomposition rate is non-
linear because ECA kinetics are applied to simulating sub-
strate decomposition (Eqs. 20–24). The decomposition rate
becomes lower as the substrate gradually depletes (Fig. 3a)
because the incubation experiments do not have a continuous
input of C like in the real world. This model result is consis-
tent with observations of decelerating respiration at the end
of the incubation (Fig. 3a). In ORCHIMIC, the depletion of
substrates lowers the saturation ratio of the substrate pool and
subsequently inhibits the production of enzymes and reduces
the decomposition rate of the substrates. The resulting lower
saturation ratio of the Avail pool then triggers dormancy and
reduces the growth rate of active microbial biomass, which in
turn reduces enzyme production and thereby generates a pos-
itive feedback to reduced decomposition. As a result, SOM
mineralization rates and respiration rates slow down at the
end of the incubation experiment.

The main mechanism underlying the positive priming ef-
fect in ORCHIMIC is that the FOM input stimulates the
growth of active microbes and the transformation of dor-
mant states to active states. This in turn leads to increased
enzyme production and thereby the faster mineralization of
SOM. However, at the beginning, the fast mineralization of
FOM decreases the fraction of SOM derived C in the Avail
pool. The total respiration does not change much, but less
respired C is SOM derived, thus, creating a negative priming
effect. Furthermore, because dynamic enzyme production is
applied, the increase of the saturation ratio of the Avail pool
due to FOM addition suppresses enzyme production per unit
of active biomass; this suppression then slows down the in-
crease of, or even decreases, the size of the SOM decompo-
sition enzyme pool, which partly suppresses SOM derived
respiration.

ORCHIMIC reproduced the observed microbial biomass,
a variable which is not modeled by CENTURY and PRIM.
Also, the transfer of FOM derived C to the Avail pool and the
assimilation of FOM derived C into microbial biomass were
well captured (Figs. 4b and 5). However, the observed in-
creased contribution of FOM derived C in microbial biomass
during the incubation was not reproduced by ORCHIMIC.
This suggests that some important processes related to mi-
crobial biomass are misrepresented or still lacking. As there
was no such increase for DOC, the increase of the propor-

tion of FOM derived C in microbial biomass was probably
not due to the increased uptake of FOM derived C. There-
fore, this is probably related to microbial turnover, which is
homogeneous for old (more is SOM derived) and new (more
is FOM derived) microbial biomass C in ORCHIMIC.

With the same FOM input but under a lower tempera-
ture 285.15 K, Wang et al. (2013) simulated a SOC stock
of about 17 g C (kg soil)−1, which was 2–3 times the value
simulated here. This may be attributed to the much smaller
decomposition rates applied in their model. In our study,
the equilibrium C concentration in the Avail pool was 0.11–
0.32 g C (kg soil)−1, comparable with 0.16 g C (kg soil)−1 in
their model for dissolved organic carbon (DOC), and within
one standard deviation interval of the range (0.04–0.52 g C
(kg soil)−1) reported in the literature (Wang et al., 2013).
In ORCHIMIC, the total enzyme concentration at equi-
librium was 1.78–5.75 mg C (kg soil)−1, which was close
to the reported upper range (0.01–5 mg C (kg soil)−1) for
α-glucosidase and β-glucosidase concentrations in soil by
Tabatabai (2003). However, considering that many kinds
of enzymes exist in soil, Wang et al. (2003) used a value
of 1 mg C (kg soil)−1 when estimating parameter values for
their model. Hence, the enzyme concentrations simulated by
ORCHIMIC are probably realistic. ORCHIMIC generated a
reasonable proportion of microbial biomass in the total soil
C stock (1.8–4.4 %), which is around the global average of
in situ measurements compiled by Xu et al. (2013). The ac-
tive biomass proportion was also close to that reported by
Van de Werf and Verstraete (1987) (19± 9 %), by Lennon
and Jones (2011) (18± 15 %) and by Stenström et al. (2001)
(5–20 %).

All soil C pools except LM, decreased in response to
warming, which was consistent with the simulations from
conventional SOM decomposition models. Unlike other
pools, there was an increase in the LM pool, because the in-
crease of the decomposition rate per unit of enzymes was
relatively small. This was due to the lower temperature sen-
sitivity of the decomposition of LM (prescribed smallest
Ea for LM in ORCHIMIC) and it was compensated for by
the decreased enzyme concentration. The soil C pools re-
mained practically unchanged, although microbial biomass
doubled, with double FOM inputs, as increasing FOM accel-
erated the decomposition of SOM by stimulating the growth
of microbes and the production of enzymes. These responses
were different from the proportional increase in soil C pools
as modeled by the conventional linear SOC decomposition
model, but consistent with those observed from microbial
models with a linear microbial death rate (Wang et al., 2013,
2016). It should be noted that with density-dependent micro-
bial mortality, the growth of microbes owing to an increase of
FOM input might be limited and lead to accumulation of soil
C (Georgiou et al., 2017). With double FOM input and warm-
ing, the modeled SOC stock from ORCHIMIC decreased in-
stead of increasing as modeled by conventional linear SOC
decomposition models. This was due to the fact that the prim-
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ing effect induced by FOM addition compensated for the in-
creased C input to the soil, and also because the increased
SOC decomposition rate due to warming decreased the SOC
stock.

7.3 Comparison of six ORCHIMIC variants

Regarding the simulation of respiration, the priming effect
and microbial biomass, the cost function value at the mini-
mum was the smallest for the two ORCHIMIC model vari-
ants with two MFTs and largest for the more comprehensive
standard version CN-MFT3 (Table 7). Thus, any improve-
ments associated with having more MFTs or including N dy-
namics in the model are not apparent when using the Blago-
datskaya et al. (2014) measurements. In ORCHIMIC, the
main differences among the MFTs are their different C /N
ratios and the ability to produce two kinds of enzymes. Al-
though ORCHIMIC can simulate different enzyme concen-
trations with different MFTs, their effects were partly offset
by the different maximum decomposition rates for the dif-
ferent enzymes; therefore models with more MFTs are not
always better than models with fewer MFTs. Furthermore,
there is the assumption that the initial biomass and active
biomass proportion of each MFT limited the performance of
the model with more MFTs.

According to our simulations for the different temperature
and FOM-addition scenarios, the amount of N required for
microbial growth was only 10 % of the initial DON in the
incubated soil. Therefore, sufficient N was available to feed
microbial demand, explaining why the model set ups without
the N cycle behaved similarly to those with the representa-
tion of the N cycle. Future applications of this model, using
N-limited soils are needed to assess the degree to which N
cycling needs to be represented in the SOC models. Because
the long-term limitation of N on microbial growth was ab-
sent from our study, we can not yet evaluate the potential
improvements by including N dynamics in the model.

When N is considered, N-limited conditions favor the
growth of MFTs with larger C /N ratios, while C-limited
conditions favor the growth of MFTs with smaller C /N ra-
tios. Also, different major sources (FOM or SOM) of C and
N favor different MFTs depending on their enzyme produc-
tion cost. Thus, with more than one MFT, the C /N ratio of
the microbial pool can be variable (Figs. S13–S15).

7.4 Dynamic enzyme production

Unlike some microbial models where enzyme production de-
pends solely on microbial biomass or microbial uptake, the
saturation level of substrate is an important factor affecting
enzyme production in ORCHIMIC. Microbes increase en-
zyme production if there is more substrate available to grow
faster, and they decrease enzyme production when the sub-
strate is depleting to avoid unnecessary allocation of C and N
to the enzyme production function. In ORCHIMIC, the sat-

uration level of directly available C also affects enzyme pro-
duction. Enzyme production per unit of microbial biomass
decreases with increasing available C (see Eq. 53), e.g., via
catabolic repression of enzyme synthesis by the product of
the reaction. This also corresponds to the fact that the frac-
tion of cheaters – microbes that do not produce enzymes –
increases with increasing available C. Cheaters were added
as an explicit microbial functional group in an individual-
based micro-scale microbial community model with the ex-
plicit positioning of microbes to access substrate (Kaiser el
al., 2015). Such an approach is only applicable in a micro-
scale model, as the coexistence of cheaters and enzyme-
producing microbes is only sustainable in heterogeneous en-
vironments. In non-spatially explicit zero-dimensional mod-
els, like ORCHIMIC, which assume a homogeneous envi-
ronment, cheaters will always have a competitive advantage
over other microbes in taking up C and N while not having
to invest in enzyme production. This will eventually drive
enzyme-producing MFTs to extinction at steady state (Alli-
son, 2005); the model will not produce enzymes anymore and
all microbes will die in the end. With the dynamic enzyme
production mechanism described in Eqs. (51)–(55), cheaters
can be included in ORCHIMIC in a possible coexistence
with non-cheater microbes in the model, although cheaters
are not parameterized in an explicit way as a separate MFT
group.

7.5 Changes in carbon use efficiency with warming and
increased FOM input

The ORCHIMIC model suggested that, upon a 5 K stepwise
increase of temperature, CUE initially decreased by 0.05–
0.08 due to the immediate increase of maintenance respi-
ration in response to the higher temperature. However, at
equilibrium, the change in temperature induced a decrease of
the CUE by 0.0018–0.0026 K−1, relative to the equilibrium
at lower temperature. The activation energy is a key factor
regulating the response of the maintenance respiration cost
to warming. In this study, the activation energy for main-
tenance respiration was set to 20 kJ mol−1 (van Iersel and
Seymour, 2002), while 60 kJ mol−1 was used by Tang and
Riley (2015). A larger activation energy implies lower respi-
ration rates, but also a larger temperature sensitivity of res-
piration; thus it also infers a larger relative increase of the
maintenance cost and a larger decrease of the CUE when
temperature increases (Davidson and Janssens, 2006; David-
son et al., 2012). Although not always consistent among
experimental studies (Dijkstra et al., 2011), a decrease of
the CUE with warming has often been observed. For ex-
ample, Van Ginkel et al. (2000) showed that the sensitivity
of the CUE in response to warming could be as large as
−0.049 K−1 and Steinweg et al. (2008) found a CUE sensi-
tivity to warming value of−0.009 K−1. After considering the
effect of temperature on the turnover of microbial biomass,
Hagerty et al. (2014) estimated a decrease of the CUE by
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0.005 and 0.003 K−1 for mineral and organic soil, respec-
tively. There are indications that the temperature response
of the CUE varies with substrate and temperature. For ex-
ample, in the study of Devêvre and Horwáth (2000), when
temperature increased from 278.15 to 288.15 K, the CUE de-
creased by 0.021 and 0.015 K−1 when the soil was incubated
with low C /N and high C /N of FOM, respectively. This
study also showed that, when temperature increased further
from 288.15 to 298.15 K, the decrease in the CUE was only
0.006 K−1. Thus, it seems that the CUE tends to decrease
more slowly when the applied temperature warming or the
C /N ratio of FOM is higher. If this is true, then the rela-
tively low decrease in CUE of 0.0018–0.0026 K−1 that we
observed was to be expected.

Besides temperature and the substrate’s C /N ratio, the de-
composition rate of the substrate is also an important factor
affecting the CUE. Normally, CUE is higher for substrates
with higher decomposition rates, because the maintenance
costs remain relatively stable (del Giorgio and Cole, 1998;
van Bodegom, 2007). As such, the short-lived increase of the
CUE that we observed in Fig. 8 after the temperature was
increased by 5 K may be related to the increase of the maxi-
mum decomposition rate for each substrate with temperature.
Furthermore, with doubled FOM input, a longer increase of
the CUE was observed compared to that found with the 5 K
stepwise increase in temperature. However, at the new equi-
librium, with doubled FOM inputs, the respiration doubled
because microbial biomass also doubled, and therefore the
CUE remained almost unchanged.

7.6 Implications

Increased greenhouse gases in the atmosphere warm air tem-
perature, and subsequently soil temperature, which increases
primary productivity in regions where water or nutrients are
not scarce. Thus, increases in both the input and the decom-
position rates of SOM are expected (Jones et al., 2005). The
response of SOC to these two drivers (input and decomposi-
tion rates) is determined by complex processes; however cur-
rent SOC decomposition models used in Earth system mod-
els (ESM) always simulate that increased input leads to in-
creased storage of SOC, and that soil warming leads to de-
creased storage from increased decomposition rates. Despite
different pathways of CO2 emission scenarios, SOC stocks
tends to increase in the near future in most ESMs (Burke
et al., 2017; Todd-Brown et al., 2014). In ORCHIMIC, as
shown in Fig. 7 for the 5 K and doubled FOM input simu-
lations, the canonical model response is that SOC stocks are
projected to decrease instead of increasing, implying a totally
different response of SOC stock to future climate change
than that projected by conventional linear SOC decomposi-
tion models.

The ORCHIMIC variant CN-MFT3 does not obviously
perform better than the variants with less MFTs or even those
without N dynamics in reproducing the results from incuba-

tion experiments. However, CN-MFT3, as the standard ver-
sion of ORCHIMIC, is preferable due to the fact that it is
able to model the dynamic C /N ratio of the microbial com-
munity and is also more accurate in modeling the dynamics
of soil SOM pools, including microbial biomass pools under
N-limited conditions.

Despite the complexity of ORCHIMIC compared to the
current SOC models embedded in ESMs for large-scale ap-
plications, the main soil carbon and litter pools in the model
are defined similarly to those of ESMs. Most of the input
variables (like litter fall and plant N uptake), and environ-
mental conditions (soil moisture and temperature) can also
be directly calculated by the ESM. Furthermore, the time step
of ORCHIMIC is similar to that of most ESMs (i.e., daily),
which makes it possible to embed ORCHIMIC into most cur-
rent ESMs. As ORCHIMIC includes key processes related to
microbial communities that can be measured in experiments,
it provides the basis for a refined representation of global
change effects on soil C by integrating intertwined processes
such as soil nutrient availability and organic matter inputs.

8 Conclusions

We developed a soil C and N model with a dynamic enzyme
production mechanism and a microbial dormancy strategy
considered for four microbial function groups: generalists,
FOM specialists and SOM specialists are explicitly repre-
sented and cheaters are inexplicitly included. This newly de-
veloped ORCHIMIC model not only reproduces respiration,
but also the priming effect. Moreover, it can reproduce sev-
eral measurable variables, such as microbial biomass, which
includes not only the total microbial biomass but also the
fractions of active microbial biomass and the SOM and FOM
derived C in the total microbial biomass. In addition, with
realistic inputs, ORCHIMIC generated realistic SOC stocks,
microbial biomass, proportion of microbial biomass in the
SOC stock, proportion of active microbial biomass in total
microbial biomass, as well as enzyme concentrations. Fi-
nally, ORCHIMIC can be easily integrated into ESMs for
more realistic predictions of changes in SOM under future
scenarios.

Code and data availability. The ORCHIMIC v1.0 is programmed
in the Python programming language. In order to run the model
the basic Python packages numpy, os and sys must be prein-
stalled. The source code, optimized parameter values and script
used to reproduce the results (shown in Sect. 6.4) are avail-
able online (https://github.com/huangysmile/ORCHIMIC/releases/
tag/v1.0; DOI: https://doi.org/10.5281/zenodo.1164740, Huangys-
mile, 2018).
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Appendix A: equations describing dynamics of pools for
CENTURY and PRIM models

DLM = KLM×LM×Fθ ×FT ,LM×FpH (A1)

DLS =
KLM

AdjLS
×LS×Fθ ×FT ,LS×FpH×Flignin

(A2)

DSA,CENT = KSS×AdjSA×SA×Fθ ×FT ,SA×FpH

×Fclay (A3)
DSS,CENT = KSS×SS×Fθ ×FT ,SS×FpH (A4)

DSP,CENT =
KSS

AdjSP
×SP×Fθ ×FT ,SP×FpH (A5)

DSA,PRIM = KSS×AdjSA×SA×Fθ ×FT ,SA×FpH

×Fclay×
[
1− e−cSA×(LM+LS)

]
(A6)

DSS,PRIM = KSS×SS×Fθ ×FT ,SS×FpH

×

[
1− e−cSS×(LM+LS+SA)

]
(A7)

DSP,PRIM =
KSS

AdjSP
×SP×Fθ ×FT ,SP×FpH

×

[
1− e−cSP×(LM+LS+SA+SS)

]
(A8)

In the above equations Fθ , FT ,j , FpH, Fclay and Flignin are the
respective functions of soil moisture, temperature, pH, clay
content and lignin content with the same definitions in OR-
CHIMIC; AdjLS, AdjSA and AdjSP are also defined the same
way as in ORCHIMIC; KLM and KSS are the decomposi-
tion rates of C in LM and SS pools, respectively; DSA,CENT,
DSS,CENT and DSP,CENT are decomposition fluxes of C for
the SA, SS and SP pools in CENTURY, respectively; and
DSA,PRIM,DSS,PRIM andDSP,PRIM are the respective decom-
position fluxes of C for SA, SS and SP pools in PRIM.
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