
Geosci. Model Dev., 11, 351–368, 2018
https://doi.org/10.5194/gmd-11-351-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Parametric decadal climate forecast recalibration (DeFoReSt 1.0)
Alexander Pasternack1, Jonas Bhend2, Mark A. Liniger2, Henning W. Rust1, Wolfgang A. Müller3, and Uwe Ulbrich1

1Institute of Meteorology, Freie Universität Berlin, Berlin, Germany
2Federal Office of Meteorology and Climatology (MeteoSwiss), Zürich, Switzerland
3Max-Planck-Institute for Meteorology, Hamburg, Germany

Correspondence: Alexander Pasternack (alexander.pasternack@met.fu-berlin.de)

Received: 6 July 2017 – Discussion started: 20 July 2017
Revised: 18 October 2017 – Accepted: 5 December 2017 – Published: 25 January 2018

Abstract. Near-term climate predictions such as decadal cli-
mate forecasts are increasingly being used to guide adapta-
tion measures. For near-term probabilistic predictions to be
useful, systematic errors of the forecasting systems have to
be corrected. While methods for the calibration of probabilis-
tic forecasts are readily available, these have to be adapted
to the specifics of decadal climate forecasts including the
long time horizon of decadal climate forecasts, lead-time-
dependent systematic errors (drift) and the errors in the rep-
resentation of long-term changes and variability. These fea-
tures are compounded by small ensemble sizes to describe
forecast uncertainty and a relatively short period for which
typically pairs of reforecasts and observations are available
to estimate calibration parameters. We introduce the Decadal
Climate Forecast Recalibration Strategy (DeFoReSt), a para-
metric approach to recalibrate decadal ensemble forecasts
that takes the above specifics into account. DeFoReSt opti-
mizes forecast quality as measured by the continuous ranked
probability score (CRPS). Using a toy model to generate syn-
thetic forecast observation pairs, we demonstrate the positive
effect on forecast quality in situations with pronounced and
limited predictability. Finally, we apply DeFoReSt to decadal
surface temperature forecasts from the MiKlip prototype sys-
tem and find consistent, and sometimes considerable, im-
provements in forecast quality compared with a simple cali-
bration of the lead-time-dependent systematic errors.

1 Introduction

Decadal climate predictions aim to characterize climatic con-
ditions over the coming years. Recent advances in model de-
velopment, data assimilation and climate-observing systems

together with the need for up-to-date and reliable informa-
tion on near-term climate for adaptation planning have led to
considerable progress in decadal climate predictions. In this
context, international and national projects like the German
initiative Mittelfristige Klimaprognosen (MiKlip) have de-
veloped model systems to produce a skillful decadal climate
prediction (Pohlmann et al., 2013a; Marotzke et al., 2016).

Despite the progress being made in decadal climate fore-
casting, such forecasts still suffer from considerable system-
atic biases. In particular, decadal climate forecasts are af-
fected by lead-time-dependent biases (drift) and exhibit long-
term trends that differ from the observed changes. To correct
these biases in the expected mean climate, bias correction
methods tailored to the specifics of decadal climate forecasts
have been developed (Kharin et al., 2012; Fučkar et al., 2014;
Kruschke et al., 2015).

Given the inherent uncertainties due to imperfectly known
initial conditions and model errors, weather and climate pre-
dictions are framed probabilistically (Palmer et al., 2006).
Such probabilistic forecasts are often affected by biases in
forecast uncertainty (ensemble spread); i.e., they are not re-
liable. Forecasts are reliable if the forecast probability of a
specific event equals the observed occurrence frequency on
average (Palmer et al., 2008). Briefly said, if some event is
declared with a certain probability, say 80 %, it should also
occur on average 80 % of all times such a forecast is issued.
Probabilistic forecasts, however, are often found to be under-
dispersive/overconfident (Hamill and Colucci, 1997; Eckel
and Walters, 1998); i.e., the ensemble spread underestimates
forecast uncertainty, and events with a forecast probability of
80 % occur on average less often.

Statistical postprocessing (Gneiting and Raftery, 2005)
can be used to optimize – or recalibrate – the forecast, e.g.,
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reducing systematic errors, such as bias and conditional bias,
as well as adjusting ensemble spread. The goal of recalibrat-
ing probabilistic forecasts is to maximize sharpness without
sacrificing reliability (Gneiting et al., 2003). A forecast is
sharp if its distribution differs from the climatological dis-
tribution. For example, a constant climatological probability
forecast is perfectly reliable but exhibits small sharpness. Re-
calibration methods have been developed for medium-range
to seasonal forecasting; it is unclear to what extent lead-time-
dependent biases (also called drift) and long-term trends of
decadal climate forecasts can effectively be corrected. Here,
we aim at adapting existing recalibration methods to deal
with the specific problems found in decadal climate forecast-
ing: lead-time- and start-time-dependent biases, conditional
biases and inadequate ensemble spread.

The most prominent recalibration methods proposed in the
context of medium-range weather forecasting are Bayesian
model averaging (BMA; Raftery et al., 2005; Sloughter et al.,
2007) and nonhomogeneous Gaussian regression (NGR;
Gneiting et al., 2005). In seasonal forecasting, the climate
conserving recalibration (CCR; Doblas-Reyes et al., 2005;
Weigel et al., 2009) is often applied, which is based on a
scalar conditional adjustment of ensemble mean and ensem-
ble spread. Here, Eade et al. (2014) applied this concept also
to decadal predictions. BMA assigns a probability density
function (PDF) to every individual ensemble member and
generates a weighted average of these densities where the
weights represent the forecasting skill of the corresponding
ensemble member. NGR extends traditional model output
statistics (MOS, Glahn and Lowry, 1972) by allowing the
predictive uncertainty to depend on the ensemble spread. A
further extension, proposed by Sansom et al. (2016), also ac-
counts for a linear time dependency of the mean bias. How-
ever, CCR is closely related to NGR in that the forecast mean
error and forecast spread are jointly corrected to satisfy the
necessary criterion for reliability that the time mean ensem-
ble spread equals the forecast root mean square error.

We expand on NGR and CCR by introducing a paramet-
ric dependence of the forecast errors on forecast lead time
and long-term time trends hereafter named Decadal Climate
Forecast Recalibration Strategy (DeFoReSt). To better under-
stand the properties of DeFoReSt, we conduct experiments
using a toy model to produce synthetic forecast observation
pairs with known properties. We compare the decadal recali-
bration with the drift correction proposed by Kruschke et al.
(2015) to illustrate its benefits and limitations.

The remainder of the paper is organized as follows. In
Sect. 2, we introduce the MiKlip decadal climate prediction
system and the corresponding reference data used. More-
over, we discuss how forecast quality of probabilistic fore-
casts is assessed. In Sect. 3, we motivate the extension of the
NGR method named DeFoReSt and illustrate how verifica-
tion and calibration can be linked by the way the calibration
parameters are estimated. The toy model used to study De-
FoReSt is introduced and assessed in Sect. 4.2. In the fol-

lowing section, we apply the drift correction and DeFoReSt
to decadal surface temperature predictions from the MiKlip
system (Sect. 5). We assess global mean surface temperature
and temperature over the North Atlantic subpolar gyre re-
gion (50–65◦ N, 60–10◦W). The investigated North Atlantic
region has been identified as a key region for decadal climate
predictions with forecast skill for different parameters (e.g.,
Pohlmann et al., 2009; van Oldenborgh et al., 2010; Matei
et al., 2012; Mueller et al., 2012). The paper closes with a
discussion in Sec. 6.

2 Data and methods

2.1 Decadal climate forecasts

In this study, we use retrospective forecasts (hereafter called
hindcasts) of surface temperature performed with the Max
Planck Institute Earth System Model in a low-resolution con-
figuration (MPI-ESM-LR). The atmospheric component of
the coupled model is ECHAM6 run at a horizontal resolu-
tion of T63 with 47 vertical levels up to 0.1 hPa (Stevens
et al., 2013). The ocean component is the Max Planck In-
stitute Ocean Model (MPIOM) with a nominal resolution of
1.58 and 40 vertical levels (Jungclaus et al., 2013).

We investigate one set of decadal hindcasts, namely from
the MiKlip prototype system, which consists 41 hindcasts,
each with 15 ensemble members, yearly initialized at 1 Jan-
uary between 1961 and 2000 and then integrated for 10 years.
The initialization of the atmospheric part was realized by
full field initialization from fields of ERA-40 (Uppala et al.,
2005) and ERA-Interim (Dee et al., 2011), while the oceanic
part was initialized with full fields from GECCO2 reanalysis
(Köhl, 2015). Here, the full field initialization nudges the at-
mospheric or oceanic fields from the corresponding reanaly-
sis to the MPI-ESM as full fields and not as anomalies. A de-
tailed description of the prototype system is given in Kröger
et al. (2017).

2.2 Validation data

This study uses the 20th Century Reanalysis (20CR; Compo
et al., 2011) for evaluation of the hindcasts. The reanalysis
has been built by solely assimilating surface pressure obser-
vations, whereas the lower boundary forcing is given from
HadISST1.1 sea surface temperatures and sea ice (Rayner
et al., 2003). Moreover, 20CR is based on ensemble Kalman
filtering with 56 members and therefore also addresses ob-
servation and assimilation uncertainties. Additionally, 20CR
covers the whole period of the investigated decadal hindcasts,
which is a major benefit over other common reanalysis data
sets.
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2.3 Assessing reliability and sharpness

Calibration or reliability refers to the statistical consistency
between the forecast PDFs and the verifying observations.
Hence, it is a joint property of the predictions and the ob-
servations. A forecast is reliable if forecast probabilities cor-
respond to observed frequencies on average. Alternatively,
a necessary condition for forecasts to be reliable is given
if the time mean intra-ensemble variance equals the mean
squared error (MSE) between ensemble mean and observa-
tion (Palmer et al., 2006).

A common tool to evaluate the reliability and therefore
the effect of a recalibration is the rank histogram or “Tala-
grand diagram” which was separately proposed by Ander-
son (1996), Talagrand et al. (1997) and Hamill and Colucci
(1997). For a detailed understanding, the rank histogram has
to be evaluated by visual inspection. Here, we have chosen
to use the ensemble spread score (ESS) as a summarizing
measure. The ESS is the ratio between the time mean intra-
ensemble variance σ 2 and the mean squared error between
ensemble mean and observation, MSE(µ,y) (Palmer et al.,
2006; Keller and Hense, 2011):

ESS=
σ 2

MSE(µ,y)
, (1)

with

σ 2 =
1
k

k∑
j=1

σ 2
j , (2)

and

MSE(µ,y)=
1
k

k∑
j=1
(yj −µj )

2. (3)

Here, σ 2
j ,µj and yj are the ensemble variance, the ensemble

mean and the corresponding observation at time step j , with
j = 1, . . .,k, where k is the number of time steps.

Following Palmer et al. (2006), ESS of 1 indicates perfect
reliability. The forecast is overconfident when ESS< 1; i.e.,
the ensemble spread underestimates forecast error. If the en-
semble spread is greater than the model error (ESS> 1), the
forecast is overdispersive and the forecast spread overesti-
mates forecast error. To better understand the components of
the ESS, we also analyze the MSE of the forecast separately.

Sharpness, on the other hand, refers to the concentration
or spread of a probabilistic forecast and is a property of the
forecast only. A forecast is sharp when it is taking a risk,
i.e., when it is frequently different from the climatology. The
smaller the forecast spread, the sharper the forecast. Sharp-
ness is indicative of forecast performance for calibrated and
thus reliable forecasts, as forecast uncertainty reduces with
increasing sharpness (subject to calibration). To assess sharp-
ness, we use properties of the width of prediction intervals as

in Gneiting and Raftery (2007). In this study, the time mean
intra-ensemble variance σ 2 is used to asses the prediction
width.

Scoring rules, finally, assign numerical scores to proba-
bilistic forecasts and form attractive summary measures of
predictive performance, since they address reliability and
sharpness simultaneously (Gneiting et al., 2005; Gneiting
and Raftery, 2007; Gneiting and Katzfusss, 2014). These
scores are generally taken as penalties; thus, the forecast-
ers seek to minimize them. A scoring rule is called proper
if its expected value is minimized when the observation is
drawn from the same distribution as the predictive distribu-
tion. If a scoring rule is not proper, it is possible to mini-
mize its expected value by predicting an unrealistic proba-
bility of occurrence. In simple terms, a forecaster would be
rewarded for not being honest. Moreover, a proper scoring
rule is called strictly proper if the minimum is unique. In this
regard, the continuous ranked probability score (CRPS) is a
suitable, strictly proper scoring rule for ensemble forecasts.

Given that F is the predictive cumulative distribution func-
tion (CDF) and o is the verifying observation, the CRPS is
defined as

CRPS(F,o)=

∞∫
−∞

(F (y)−F0(y))
2dy, (4)

where F0(y) is the Heaviside function and takes the value 0
if y is less than the observed value o and the value 1 oth-
erwise. Under the assumption that the predictive CDF is a
normal distribution with mean µ and variance σ 2, Gneiting
et al. (2005) showed that Eq. (4) can be written as

CRPS(N (µ,σ 2),o)=

σ

{
o−µ

σ
[28

(
o−µ

σ

)
− 1] + 2ϕ

(
o−µ

σ

)
−

1
√
π

}
, (5)

where 8(·) and ϕ(·) denote the CDF and the PDF, respec-
tively, of the standard normal distribution.

The CRPS is negatively oriented. A lower CRPS indicates
more accurate forecasts; a CRPS of zero denotes a perfect
(deterministic) forecast. Moreover, the average score over k
pairs of forecasts Fj and observations yj ,

CRPS=
1
k

k∑
j=1

CRPS(Fj ,yj ), (6)

reduces to the mean absolute error(
MAE= 1

k

k∑
j=1
|yj −µj |

)
for deterministic forecasts

(Gneiting and Raftery, 2004); i.e., Fi in Eq. (6) would also
be a step function. The CRPS can therefore be interpreted
as a distance measure between the probabilistic forecast and
the verifying observation (Siegert et al., 2015).

The continuous ranked probability skill score (CRPSS) is,
as the name implies, the corresponding skill score. A skill
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score relates the accuracy of the prediction system to the
accuracy of a reference prediction (e.g., climatology). Thus,
with a given CRPSF for the hindcast distribution and a given
CRPSR for the reference distribution, the CRPSS can be de-
fined as

CRPSS= 1−
CRPSF
CRPSR

. (7)

Positive values of the CRPSS imply that the prediction sys-
tem outperforms the reference prediction. Furthermore, this
skill score is unbounded for negative values (because hind-
casts can be arbitrarily bad) but bounded by 1 for a perfect
forecast.

3 DeFoReSt: Decadal Climate Forecast Recalibration
Strategy

In the following paragraphs, we discuss DeFoReSt and illus-
trate how forecast quality is used to estimate the parameters
of the recalibration method.

We assume that the recalibrated predictive PDF
f Cal(X|t, τ ) for random variable X is a normal PDF
with mean and variance being functions of ensemble mean
µ(t,τ ) and variance σ 2(t,τ ), as well as start time t and lead
year τ :

f Cal(X|t, τ )∼N (α(t,τ )+β(t,τ )µ(t,τ ),
γ (t,τ )2σ 2(t,τ )). (8)

The term α(t,τ ) accounts for the mean or unconditional bias
depending on lead year (i.e., the drift). Analogously, β(t,τ )
accounts for the conditional bias. Thus, the expectation
E(X)= α(t,τ )+β(t,τ )µ(t,τ ) could be a conditional- and
unconditional-biased and drift-adjusted deterministic fore-
cast (we call a deterministic forecast a forecast without spec-
ifying uncertainty). For now, we assume that the ensemble
spread σ(t,τ ) is sufficiently well related to forecast uncer-
tainty such that it can be adjusted simply by a multiplicative
term γ (t,τ )2. We thus refrain from using the additive term
suggested for NGR by Gneiting et al. (2005) to not end up
with a too-complex model, as the additive term should con-
sequently be also a function of start time t and lead time τ ;
this term might be included in a future variant.

In the following, we motivate and develop linear paramet-
ric functions for α(t,τ ), β(t,τ ) and γ (t,τ ).

3.1 Addressing bias and drift: α(t,τ)

For bias and drift correction, we start with a parametric ap-
proach based on the studies of Kharin et al. (2012) and Kr-
uschke et al. (2015). In their study, a third-order polyno-
mial captures the drift along lead time τ (Gangstø et al.,
2013; Kruschke et al., 2015). Here, Gangstø et al. (2013)
suggested that a third-order polynomial is a good compro-
mise between flexibility and parameter uncertainty. The drift-

corrected forecasts Ĥt,τ,i is approximated with a linear func-
tion of the forecast Ht,τ,i as

Ĥt,τ,i =Ht,τ,i − (a0+ a1t)− (a2+ a3t)τ

− (a4+ a5t)τ
2
− (a6+ a7t)τ

3. (9)

Here,Ht,τ,i , is the raw, i.e., uncorrected, hindcast for the start
time t , ensemble member i and lead year τ . In the case that
the observations and model climatology have different cli-
mate trends, the bias between model and observations is non-
stationary. Thus, the second term in Eq. (9) also accounts for
the dependency of the bias on the start year and therefore cor-
rects errors in time trends. Here, as suggested by Kharin et al.
(2012) the dependency on start time is only linear to avoid a
too-complex model. The parameters a0–a7 are estimated by
standard least squares using the differences between the en-
semble mean of all available hindcasts and the reanalysis cor-
responding to the given start and lead time (Kruschke et al.,
2015).

This motivates the following functional form for α(t,τ )
analogously to Eq. (9):

α(t,τ )=

3∑
l=0
(a2l + a(2l+1)t)τ

l . (10)

In principle, arbitrary orders are possible for t and τ as long
as there are sufficient data to estimate the parameters.

3.2 Addressing conditional bias and ensemble spread:
β(t,τ) and γ (t,τ)

In addition to adjusting the unconditional lead-year-
dependent bias, DeFoReSt aims at simultaneously adjusting
conditional bias and ensemble spread. As a first approach,
we take the same functional form for β(t,τ ) and γ (t,τ ):

β(t,τ )=

3∑
l=0
(b2l + b(2l+1)t)τ

l , (11)

γ (t,τ )= log

(
2∑
l=0
(c2l + c(2l+1)t)τ

l

)
. (12)

The ensemble inflation γ (t,τ ) is, however, assumed to be
quadratic at most and constrained to be greater zero by using
a static logarithmic link function. We assumed that a higher
flexibility may not be necessary, because the MSE – which
influences the dispersion – is already addressed by a third-
order polynomial of unconditional and conditional biases.

These assumptions on model complexity are supported
only by our experience; however, they remain subjective. A
more transparent order selection will be a topic of future
work.

3.3 Parameter estimation

The coefficients α(t,τ ),β(t,τ ) and γ (t,τ ) are now ex-
pressed as parametric functions of t and τ . The parame-
ters are estimated by minimizing the average CRPS over the
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training period (Gneiting et al., 2005). The associated score
function is

0(N (α(t,τ )+β(t,τ )µ,γ (t,τ )2σ 2),o)= CRPS=

1
k

k∑
j=1

√
γ (t,τ )2σ 2

j

{
Zj [28(Zj )− 1]

+ 2ϕ(Zj )−
1
√
π

}
, (13)

where

Zj =
Oj − (α(t,τ )+β(t,τ )µj )√

γ (t,τ )2σ 2
j

(14)

is the standardized forecast error for the j th forecast in the
training data set. In the present study, optimization is carried
out using the algorithm of Nelder and Mead (1965) as imple-
mented in R (R Core Team, 2016).

The initial guesses for optimization need to be carefully
chosen to avoid local minima. Here, we obtain the ai and bj
from linearly modeling the observations o with the forecast
ensemble mean µ, t and τ ,

o∼

A∑
l=0
(a2l + a(2l+1)t)τ

l
+

B∑
l=0
(b2l + b(2l+1)t)τ

lµ, (15)

using the notation for linear models from McCullagh and
Nelder (1989); c0,c1,c2 are set to zero which yields unity in-
flation (exp(γ (t,τ ))= 1). However, convergence to a global
minimum cannot be guaranteed.

4 Calibrating a toy model for decadal climate
predictions

In this section, we apply DeFoReSt to a stochastic toy model,
which is motivated from Weigel et al. (2009) but has been
significantly altered to suit the needs of this study. Here, a
detailed description of the toy models construction is given in
the following subsection. Subsequently, we assess DeFoReSt
for two exemplary toy model setups.

4.1 Toy model construction

The toy model consists of two parts which are detailed in
the following two subsections: (a) pseudo-observations, the
part generating a substitute x(t + τ) for the observations,
and (b) pseudo-forecasts, the second part deriving an asso-
ciated ensemble prediction f (t,τ ) from these observations.
The third subsection motivates the choice of parameters for
the toy model.

4.1.1 Pseudo-observations

We construct a toy model setup simulating ensemble pre-
dictions for the decadal timescale and associated pseudo-
observations. Both are based on an arbitrary but predictable

signal µx . The pseudo-observations x (e.g., annual means of
surface temperature over a given area) are the sum of this
predictable signal µx and an unpredictable noise term εx :

x(t + τ)= µx(t + τ)+ εx(t + τ) . (16)

Following Kharin et al. (2012) µx can be interpreted as
the atmospheric response to slowly varying and predictable
boundary conditions, while εx represents the unpredictable
chaotic components of the observed dynamical system. The
processes µx and εx are assumed to be stochastic Gaussian
processes:

µx(t + τ)∼N (0,σ 2
µx
) with σ 2

µx
= η2

≤ 1 (17)

and

εx(t + τ)∼N (0,σ 2
εx
) with σ 2

εx
= 1− η2. (18)

The variation of µx around a slowly varying climate signal
can be interpreted as the predictable part of decadal variabil-
ity, its amplitude is given by the variance Var(µx(t + τ))=
σ 2
µx

. The total variance of the pseudo-observations is thus
Var(x)= σ 2

x = σ
2
µx
+ σ 2

εx
. Here, the relation of the latter two

is uniquely controlled by the parameter η ∈ [0,1], which can
be interpreted as potential predictability (η2

= σ 2
µx
/σ 2
x ).

In this toy model setup, the specific form of the variabil-
ity of µx and εx is not considered and thus taken as random.
A potential climate trend could be superimposed as a time-
varying mean µ(t)= E(x(t)). For recalibration, only a dif-
ference in trends is important. Here, we use α(t,τ ), address-
ing this difference in trends of forecast and observations.

4.1.2 Pseudo-forecasts

We now specify a model giving a potential ensemble forecast
with ensemble members fi(t,τ ) for observations x(t + τ):

fi(t,τ )= µens(t,τ )+ εi(t,τ ) , (19)

where µens(t,τ ) is the ensemble mean and

εi(t,τ )∼N (0,σ 2
ens(t,τ )) (20)

is the deviation of ensemble member i from the ensemble
mean; σ 2

ens is the ensemble variance. In general, ensemble
mean and ensemble variance can both depend on lead time
τ and start time t . We relate the ensemble mean µens(t,τ ) to
the predictable signal in the observations µx(t,τ ) by assum-
ing (a) a systematic deviation characterized by an uncondi-
tional bias χ(t,τ ) (accounting also for a drift and difference
in climate trends), a conditional bias ψ(t,τ ) and (b) a ran-
dom deviation ε(t,τ ):

µens(t,τ )= χ(t,τ )+ψ(t,τ ) (µx(t,τ )+ εf(t,τ )) , (21)

with εf(t,τ )∼N (0,σεf(t,τ )) being a random forecast error
with variance σ 2

εf
(t,τ ) < σ 2

εx
in order to avoid negative values
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of the ensemble variance σ 2
ens. Although the variance of the

random forecast error can in principle be dependent on lead
time τ and start time t , we assume for simplicity a constant
variance σ 2

εf
(t,τ )= σ 2

εf
.

We further assume an ensemble dispersion related to the
variability of the unpredictable noise term εx with an infla-
tion factor ω(t,τ ):

σ 2
ens(t,τ )= ω

2(t,τ ) (σ 2
εx
− σ 2

εf
) . (22)

According to Eq. (21), the forecast ensemble mean µens
is simply a function of the predictable signal µx . In this toy
model formulation, an explicit formulation of µx is not re-
quired; hence, a random signal might be used for simplicity
and it would be legitimate to assume E(µx)= µ(t + τ)=
0 without restricting generality. Here, we propose a linear
trend in time to the pseudo-forecasts to emphasize a typical
problem encountered in decadal climate prediction: differ-
ent trends in observations and predictions (Kruschke et al.,
2015).

4.1.3 Choosing the toy models’ parameters

This toy model setup is controlled by four parameters. The
first parameter (η) determines the ratio between the vari-
ances of the predictable signal and the unpredictable noise
term (and thus characterizes potential predictability; see
Sec. 4.1.2). Here, we investigate two cases: one with low
(η = 0.2) and one with high potential predictability (η =
0.8).

The remaining three parameters are χ(t,τ ), ψ(t,τ ) and
ω(t,τ ), which control the unconditional and conditional bi-
ases and the dispersion of the ensemble spread. To have a
toy model experiment related to observations, χ(t,τ ) and
ψ(t,τ ) are based on the correction parameters obtained from
calibrating the MiKlip prototype ensemble surface tempera-
ture over the North Atlantic against NCEP 20CR reanalyses;
χ(t,τ ) and ψ(t,τ ) are based on ratios of polynomials up to
third order (in lead years), Eqs. (A1) and (A2) with coeffi-
cients varying with start years (see Fig. 1a and b).

The ensemble inflation factor ω(t,τ ) is chosen such that
the forecast is overconfident for the first lead years and be-
comes underconfident later; this effect intensifies with start
years; see Fig. 1c. A more detailed explanation and numer-
ical values used for the construction of χ(t,τ ), ψ(t,τ ) and
ω(t,τ ) are given in Appendix A.

Given this setup, a choice of χ(t,τ )≡ 0, ψ(t,τ )≡ 1 and
ω(t,τ )≡ 1 would yield a perfectly calibrated ensemble fore-
cast:

f perf(t,τ )∼N (µx(t,τ ),σ 2
εx
(t,τ )). (23)

The ensemble mean µx(t,τ ) of f perf(t,τ ) is equal to the
predictable signal of the pseudo-observations. The ensemble
variance σ 2

εx
(t,τ ) is equal to the variance of the unpredictable

noise term representing the error between the ensemble mean

of f perf(t,τ ) and the pseudo-observations. Hence, f perf(t,τ )

is perfectly reliable.
Analogous to the MiKlip experiment, the toy model uses

50 start years (t = 0, . . .,49), each with 10 lead years (τ =
1, . . .,10) and 15 ensemble members (i = 1, . . .,15). The cor-
responding pseudo-observations x(t+τ) run over a period of
59 years in order to cover lead year 10 of start year 50.

4.2 Toy model verification

To assess DeFoReSt, we consider two extreme toy model se-
tups. The two setups are designed such that the predictable
signal is stronger than the unpredictable noise for higher
potential predictability (setup 1), and vice versa (setup 2;
see Sect. 4.1). For each toy model setup, we calculated the
ESS, the MSE, time mean intra-ensemble variance and the
CRPSS with respect to climatology for the corresponding re-
calibrated toy model.

In addition to the recalibrated pseudo-forecast, we com-
pare

– a “raw” pseudo-forecast (no correction of uncondi-
tional, conditional bias and spread),

– a “drift-corrected” pseudo-forecast (no correction of
conditional bias and spread) and

– a “perfect” pseudo-forecast (Eq. 23, available only in
this toy model setup).

All scores have been calculated using cross validation with a
yearly moving calibration window with a width of 10 years.
A detailed description of this procedure is given in Ap-
pendix B.

The CRPSS and reliability values of the perfect forecast
could be interpreted as optimum performance within the as-
sociated toy model setup, due to the missing bias and ensem-
ble dispersion. For instance, the perfect model’s CRPSS with
respect to climatology would be 1 for a toy model setup with
perfect potential predictability (η = 1) and 0 for a setup with
no potential predictability (η = 0). Hence, the climatology
could not be outperformed by any prediction model when no
predictable signal exists.

4.2.1 A toy model setup with high potential
predictability

Figure 2a and c show the temporal evolution of the toy model
data before and after recalibration with DeFoReSt together
with the corresponding pseudo-observations. Before recal-
ibration, the pseudo-forecast apparently exhibits the char-
acteristic problems of a decadal ensemble prediction: un-
conditional bias (drift), conditional bias and underdisper-
sion, which are lead- and start-time-dependent. Additionally,
the pseudo-observations and the pseudo-forecast have dif-
ferent trends. After recalibration, the lead- and start-time-
dependent biases are corrected, such that the temporal evolu-
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Figure 1. Unconditional bias (a, χ(t,τ )), conditional bias (b, ψ(t,τ )) and dispersion of the ensemble spread (c, ω(t,τ )) as a function of
lead year τ with respect to different start years t .

tion of the pseudo-observations is mostly represented by the
pseudo-forecast.

Moreover, the pseudo-forecast is almost perfectly reli-
able after recalibration (not underdispersive), which could be
shown with the ESS (Fig. 3a). Here, the recalibrated model
is nearly identical to the perfect model for all lead years with
reliability values close to 1.

The recalibrated forecast outperforms the raw model out-
put and the drift-corrected forecast, whose ESS values are
lower than 1 and thus underdispersive. The lower perfor-
mance of the raw models and the drift correction is a result
of the toy model design, leading to a higher ensemble mean
variance combined with a decreased ensemble spread. In ad-
dition, the increased variance of the ensemble mean also re-
sults in an increased influence of the conditional bias. The
problem is that the raw model forecast and the drift correc-
tion could not account for that conditional bias, because nei-
ther the ensemble mean nor the ensemble spread were cor-
rected by these forecasts. Therefore, the influence of the con-
ditional bias also becomes noticeable for the reliability of
the raw model and the drift-corrected forecast; one can see
that the minimum and maximum of the conditional bias (see

Fig. 1) are reproduced by the reliability values of these fore-
casts.

Regarding the differences between the raw model and the
drift-corrected forecast, it is visible that the latter outper-
forms the raw model. The explanation is that the drift correc-
tion accounts for the unconditional bias, while the raw model
does not correct this type of error. Here, one can see the im-
pact of the unconditional bias on the raw model. Nonetheless,
the influence of the unconditional bias is rather small com-
pared to the conditional bias.

The effect of unconditional and conditional biases is illus-
trated in Fig. 3b, which shows the MSE of the different fore-
casts to the pseudo-observations. Here, the drift-corrected
forecast outperforms the raw model. These forecasts are out-
performed by the recalibrated forecast, which simultaneously
corrects the unconditional and conditional biases. In this re-
gard, both biases are corrected properly because the MSE of
the recalibrated forecast is almost equal to the perfect mod-
els’ MSE.

The sharpness of the different forecasts is compared
by calculating the time mean intra-ensemble variance (see
Fig. 3c). For all lead years, the raw model and the drift-
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Figure 2. Temporal evolution of the raw (a, b) and DeFoReSt recalibrated (c, d) pseudo-forecasts for different start years (colored lines)
with potential predictability η = 0.8 (a, c) and η = 0.2 (b, d). Each pseudo-forecast runs over 10 lead years. The black line represents the
associated pseudo-observation.

corrected forecast exhibit the same sharpness, because the
ensemble spread is unmodified for both forecasts.

Another notable aspect is that the raw and drift-corrected
forecasts have a higher sharpness (i.e., lower ensemble vari-
ance) than the perfect model for lead years 1 to 4, and vice
versa for lead years 5 to 10. This is because the toy models
incorporated underdispersion for the first lead years and an
overdispersion for later lead years. Therefore, the sharpness
of the perfect model could be interpreted as the maximum
sharpness of the model without being unreliable.

The sharpness of the recalibrated forecast is very similar to
the sharpness of the perfect model for all lead years. The re-
calibration therefore performs well in correcting under- and
overdispersion in the toy model forecasts.

A joint measure for sharpness and reliability is the CRPS
and consequently the CRPSS with respect to climatology,
where the latter is shown in Fig. 3d. The relatively low
CRPSS values of the raw and drift-corrected forecasts are
mainly affected by their reliability; i.e., the unconditional and
conditional bias influences are also noticeable for this skill
score. Thus, both models exhibit a maximum at lead year 2
and a minimum at lead year 7, where the drift-corrected fore-
cast performs better. However, the raw model and the drift-

corrected forecast are inferior to climatology (the CRPSS is
below zero) for all lead years.

In contrast, the recalibrated forecast approaches CRPSS
values around 0.5 for all lead years and performs nearly iden-
tical to the perfect model. This illustrates that the uncondi-
tional bias, conditional bias and ensemble dispersion can be
corrected with this method.

4.2.2 A toy model setup with low potential
predictability

Figure 2b and d show the temporal evolution of the toy
model data with low potential predictability before and after
recalibration with DeFoReSt together with the correspond-
ing pseudo-observations. Before recalibration, the pseudo-
forecast is underdispersive for the first lead years, whereas
the ensemble spread increases for later lead years. Moreover,
the pseudo-forecast exhibits lead- and start-time-dependent
(unconditional) bias (drift) and conditional bias.
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Figure 3. Reliability (a), MSE (b), ensemble variance (c) and CRPSS (d) of the raw toy model (black line), the drift-corrected toy model
forecast (red line), recalibrated (DeFoReSt) toy model forecast (blue line) and the perfect toy model (green line) for η = 0.8. The drift
correction method does not account for the ensemble spread; thus, the ensemble variance of the raw model and the drift-corrected forecast is
equal. For reasons of clarity, the raw models’ CRPSS with values between −5 and −9 is not shown here.

After recalibration, the lead- and start-time-dependent bi-
ases are corrected, such that the recalibrated forecast mostly
describes the trend of the pseudo-observations.

The recalibrated forecast is also reliable (Fig. 4a); it per-
forms as well as the perfect model. Here, the value of the ESS
is close to 1 for both forecasts. Thus, comparing the reliabil-
ity of the setups with low and high potential predictability, no
differences are recognizable. The reason is that the ratio be-
tween MSE and ensemble variance, characterizing the ESS,
does not change much; the lower MSE performance of the
recalibrated forecast (Fig. 4b) is compensated with a higher
ensemble variance (Fig. 4c).

In contrast, one can see a general improvement of the
raw and drift-corrected forecasts’ reliability compared to the
model setup with high potential predictability. The reason
is that the low potential predictability η of this toy model
setup leads to smaller variance of the ensemble mean; i.e.,
the conditional bias has a minor effect. Another aspect for
the comparatively good performance of the raw model, is the
increased ensemble spread, leading to an enhanced represen-
tation of the unconditional bias.

The minor effect of the conditional bias in the low po-
tential predictability setup is also represented by the MSE
(Fig. 4b). Here, the difference between drift-corrected and
recalibrated forecasts has decreased compared to the high
potential predictability setup. Comparing both toy model se-
tups, it is also apparent that, for a setup with η = 0.2, the
MSE generally has increased for all forecasts. The reason is
that the predictable signal decreases for a lower η. Therefore,
even the perfect models’ MSE has increased.

Figure 4c shows the time mean intra-ensemble variance
for the toy model setup with low potential predictability. It
is notable that the ensemble variance for this low potential
predictability setup is generally greater than for a high η
(Fig. 3c). This is due to the fact that the total variance in the
toy model is constrained to 1, and a lower η therefore leads
to a greater ensemble spread.

Nonetheless, the raw model and drift-corrected forecast
also still have a higher sharpness (i.e., lower ensemble vari-
ance) than the perfect model for lead years 1 to 4, and vice
versa for lead years 5 to 10. Here, the reason for this is again
the construction of the toy model, with an underdispersion
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Figure 4. Reliability (a), MSE (b), ensemble variance (c) and CRPSS (d) of the raw toy model (black line), the drift-corrected toy model
(red line), recalibrated (DeFoReSt) toy model (blue line) and the perfect toy model (green line) for η = 0.2. The drift correction method does
not account for the ensemble spread; thus, the ensemble variance of the raw model and the drift-corrected forecast is equal. For reasons of
clarity, the raw models’ CRPSS with values between −3 and −9 is not shown here.

for the first lead years and an overdispersion for later lead
years.

The recalibrated forecast reproduces the perfect models’
sharpness also quite well for the potential predictability
setup.

Figure 4d shows the CRPSS with respect to climatology.
Firstly, it is apparent that the weak predictable signal of this
toy model setup shifted the CRPSS of all models closer to
zero or the climatological skill. Nevertheless, please note
that the recalibrated forecast is almost as good as the perfect
model and that it is slightly superior to the drift-corrected
forecast. We conclude that the recalibration works well also
in situations with limited predictability.

5 Calibrating decadal climate surface
temperature forecasts

While in Sect. 4.2 DeFoReSt was applied to toy model data,
in this section, DeFoReSt will be applied to surface temper-
ature of MiKlip prototype runs with MPI-ESM-LR. Here,

global mean and spatial mean values over the North Atlantic
subpolar gyre (50–65◦ N, 60–10◦W) region will be analyzed.

Analogous to the previous section, we compute the ESS,
the MSE, the intra-ensemble variance and the CRPSS with
respect to climatology. The scores have been calculated for a
period from 1961 to 2005. In this section, a 95 % confidence
interval was additionally calculated for these metrics using a
bootstrapping approach with 1000 replicates. For bootstrap-
ping, we draw a new pair of dummy time series with replace-
ment from the original validation period and calculate these
scores again. This procedure has been repeated 1000 times.
Furthermore, all scores have been calculated using cross vali-
dation with a yearly moving calibration window with a width
of 10 years (see Appendix B).

5.1 North Atlantic mean surface temperature

Figure 5a and b show the temporal evolution of North At-
lantic mean surface temperature before and after recalibra-
tion with the corresponding NCEP 20CR reference. Before
recalibration, the MiKlip prototype hindcasts exhibit a lead-
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Figure 5. Temporal evolution of North Atlantic yearly mean sur-
face temperature from the MiKlip prototype (a) before and (b) after
recalibration with DeFoReSt. Shown are different start years with 5-
year intervals (colored lines). The black line represents the surface
temperature of NCEP 20CR. Units are in Kelvin (K).

time-dependent bias (drift) and a lead-time-dependent en-
semble spread. Here, lead-time-dependent bias of the pro-
totype is a consequence of an initialization shock due to a
full-field initialization (Meehl et al., 2014; Kruschke et al.,
2015; Kröger et al., 2017). After recalibration with DeFoR-
eSt, the drift of the MiKlip prototype was corrected and the
ensemble spread is also modified.

Regarding the reliability, Fig. 6a shows the ESS. The recal-
ibrated forecast is almost perfectly reliable for all lead years
because all ESS values of this model are close to 1. More-
over, the recalibrated forecast is more skillful than the drift-
corrected forecast for years 3 to 10, where the improvement
is only significant for lead years 4 to 8. It is also apparent that
the drift-corrected forecast is significantly overdispersive for
lead years 3 to 10. For lead years 1 and 2, both postprocessing
methods perform equally well. The raw model’s reliability is
obviously inferior to the postprocessed models and signifi-
cantly underdispersive for all lead years. This implies that
the unconditional bias induces most of the systematic error
of the MiKlip prototype runs.

Regarding the MSE, one can see that the recalibrated fore-
cast outperforms the drift-corrected forecast for lead years
1 and 2 and 8 to 10 (Fig. 6b). Although this improvement
of the recalibrated forecast is not significant, it may be still

attributed to its correction of the conditional bias. Here, the
raw model performs obviously worse compared to the post-
processed models, because neither the unconditional nor the
conditional bias were corrected.

Figure 6c shows the spread as measured by the time mean
intra-ensemble variance for the North Atlantic mean surface
temperature. The ensemble variance of the raw model and the
drift-corrected forecast is equal, since the ensemble spread of
the drift-corrected forecast was not corrected. Here, the en-
semble variance of both models is increasing with lead times.
The ensemble variance of the recalibrated forecast is lower
than the variance of the raw and drift-corrected forecasts for
the first lead years (2 to 10); i.e., the recalibrated forecast has
a higher sharpness than the other two forecasts. The combi-
nation of increasing ensemble variance and almost constant
MSE leads to the identified increasing lack of confidence (see
Fig. 6a) of the drift-corrected forecast for that period.

Figure 6d shows that in terms of CRPSS both the drift-
corrected forecast and the recalibrated forecast outperform
the raw model. Here, the CRPSS of the raw model is less
than −1 for all lead years; thus, the corresponding graph lies
below the plotted range. DeFoReSt performs slightly better
(but not significantly better) than the drift-corrected forecast
for almost all lead years, except lead years 3 and 4. Addi-
tionally, the CRPSS with respect to climatology shows that
the recalibrated forecast outperforms a constant climatolog-
ical forecast for all lead times and is significantly better for
lead years 1 and 3 to 10.

5.2 Global mean surface temperature

Figure 7a and b show the temporal evolution of global mean
surface temperature before (see Eq. 19) and after recalibra-
tion and the corresponding NCEP 20CR reference. Before
recalibration with DeFoReSt, the MiKlip prototype hindcasts
exhibit a lead-time-dependent bias (drift) and a lead-time-
dependent ensemble spread. The drift of the global mean
surface temperature is even stronger than the North Atlantic
counterpart. After applying DeFoReSt, the drift of the MiK-
lip prototype was corrected and the ensemble spread is basi-
cally constant for all lead times.

The ESS for a global mean surface temperature is shown
in Fig. 8a. It can be seen that the recalibrated forecast is also
perfectly reliable for the global mean surface temperature.
Here, all ESS values are near 1. Additionally, the recalibrated
forecast is more skillful than the drift-corrected forecast for
all lead years. Here, only lead years 1 and 10 are significant.
The reliability values of the drift-corrected forecast indicate
a significant overconfidence for almost every lead year. As
for the North Atlantic mean, the raw model’s reliability for
a global mean temperature is inferior to the postprocessed
models.

Figure 8b shows the MSE. It is apparent that the recal-
ibrated forecast outperforms the drift-corrected forecast for
all lead years, where the improvement for lead years 5 to 6
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Figure 6. Reliability (a), MSE (b), ensemble variance (c) and CRPSS (d) of surface temperature over the North Atlantic without any
correction (black line), after drift correction (red line) and recalibration with DeFoReSt (blue line). The CRPSS for the raw forecasts (black
line) is smaller than −1 and therefore not shown. As the drift correction method does not account for the ensemble spread, the ensemble
variance of the raw model and the drift-corrected forecast is equal. The vertical bars show the 95 % confidence interval due to 1000-wise
bootstrapping.

and 8 to 10 is significant. Moreover, the MSE of the drift-
corrected forecast increases with lead years, while the MSE
of the recalibrated forecast is almost constant. Thus, this in-
creasing difference between these forecasts is an effect of a
lead year dependency of the conditional bias.

Figure 8c shows the time mean intra-ensemble variance
for the global mean surface temperature. Regarding sharp-
ness, the drift-corrected and the recalibrated forecasts per-
form similarly for lead years 2 and 3. Hence, the improved
reliability of the recalibrated forecast could not attributed to
a modified ensemble spread. The explanation is that the re-
calibration method also accounts for conditional and uncon-
ditional biases, while the drift correction method only ad-
dresses to the unconditional bias. Thus, the error between
observation and ensemble mean of the recalibrated forecast
is lower than the error of the drift-corrected forecast (see
Fig. 8b). Consequently, the drift-corrected forecast is over-
confident for this period (see Fig. 8a), due to a greater error
combined with an equal sharpness.

Regarding the CRPSS, Fig. 8d shows that DeFoReSt per-
forms significantly better than the drift-corrected forecast for
lead years 1 and 8 to 10. Furthermore, the CRPSS shows that
these forecasts also outperform the climatology, where the

improvement of the drift-corrected forecast against climatol-
ogy is not significant for lead years 8 to 9. The CRPSS of the
raw model is smaller than −1 for all lead years and therefore
out of the shown range.

All in all, the better CRPSS performance of DeFoReSt
model could be explained due to a superior reliability for all
lead years (see Fig. 8a).

6 Summary and conclusions

There are many studies describing recalibration methods for
weather and seasonal forecasts (e.g., Gneiting et al., 2005;
Weigel et al., 2009). Regarding decadal climate forecasts,
those methods cannot be applied easily, because decadal cli-
mate prediction systems on that timescale exhibit charac-
teristic problems including model drift (lead-time-dependent
unconditional bias) and climate trends which could differ
from observations. In this regard, Kruschke et al. (2015) and
Kharin et al. (2012) proposed methods to account for lead-
and start-time-dependent unconditional biases of decadal cli-
mate predictions.
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Figure 7. Temporal evolution of global yearly mean surface temper-
ature from MiKlip prototype (a) before and (b) after recalibration
with DeFoReSt. Shown are different start years with 5-year intervals
(colored lines). The black line represents the surface temperature of
NCEP 20CR. Units are in Kelvin (K).

In addition to unconditional biases, probabilistic forecasts
could show lead- and start-year-dependent conditional bi-
ases and under- or overdispersion. Therefore, we proposed
the postprocessing method DeFoReSt which accounts for the
three abovementioned issues. Following the suggestion for
the unconditional bias (Kruschke et al., 2015), we allow for
the conditional bias and the ensemble dispersion to change
with lead time and linearly with start time. Two advantages
of a polynomial fit over the common exponential fit (e.g.,
as proposed by Kharin et al., 2012) are stated by Gangstø
et al. (2013). First, for a small sample size (this is given for
decadal climate predictions), the fit of an exponent with off-
set is relatively difficult and unreliable. Second, a polyno-
mial approach can capture a local maximum/minimum of the
abovementioned errors at a specific lead time; the evolution
of these errors may be nonmonotonous. Following Kruschke
et al. (2015), we chose a third-order polynomial approach
for the correction parameter of the unconditional bias and
the conditional bias. A second-order polynomial approach is
chosen for the correction parameter of the ensemble disper-
sion. Note that these choices might influence the resulting
forecast skill. It might be worth using a transparent model
selection strategy; this is the topic of future research. The
associated DeFoReSt parameters are estimated by minimiza-
tion of the CRPS (Gneiting et al., 2005). The CRPSS, the
ESS, the time mean intra-ensemble variance (as measure for

sharpness) and the MSE assess the performance of DeFoR-
eSt. All scores were calculated with 10-year block-wise cross
validation.

We investigated DeFoReSt using toy model simulations
with high (η = 0.8) and low potential predictability (η =
0.2). Errors based on the same polynomial structure as used
for the recalibration method were imposed. DeFoReSt is
compared to a conventional drift correction and a perfect toy
model without unconditional bias, conditional bias or ensem-
ble spread was used as a benchmark. Here, the recalibration
and drift correction benefits from the fact that the structure
of errors imposed is known. Although the model for the er-
ror structure is flexible, the gain in skill is an upper limit to
other applications where the structure of errors is unknown.
Conclusions on the relative advantage of DeFoReSt over the
drift correction for different potential predictability setups,
however, should be largely unaffected by the choice of toy
model errors.

A recalibrated forecast shows (almost) perfect reliability
(ESS of 1). Sharpness can be improved due to the correc-
tion of conditional and unconditional biases. Thus, given a
high potential predictability (η = 0.8), recalibration leads to
major improvements in skill (CRPSS) over a climatological
forecast. Forecasts with low potential predictability (η = 0.2)
improve also but the gain in skill (CRPSS) over a climatolog-
ical forecast is limited. In both cases, reliability, sharpness
and thus CRPSS of the recalibrated model are almost equal to
the perfect model. DeFoReSt outperforms the drift-corrected
forecast with respect to CRPSS, reliability and MSE, due to
additional correction of the conditional bias and the ensem-
ble dispersion. The differences between these two postpro-
cessed forecasts are, however, smaller for the low potential
predictability setup.

We also applied DeFoReSt to surface temperature data of
the MiKlip prototype decadal climate forecasts, spatially av-
eraged over the North Atlantic subpolar gyre region and a
global mean. Pronounced predictability for these cases has
been identified by previous studies (e.g., Pohlmann et al.,
2009; van Oldenborgh et al., 2010; Matei et al., 2012;
Mueller et al., 2012). Nonetheless, both regions are also af-
fected by model drift (Kröger et al., 2017). The North At-
lantic region shows overconfident forecasts for all lead years
for the raw model output. The drift-corrected forecast is un-
derconfident for lead years 8 to 10. The recalibrated fore-
cast is almost perfectly reliable for all lead years (ESS of 1)
and outperforms the drift correction method with respect to
CRPSS for lead years 1 and 2 and 5 to 10. For the global
mean surface temperature, DeFoReSt significantly outper-
forms the drift-corrected forecast for several lead years with
respect to CRPSS. The CRPSS for the global case is gen-
erally higher than that for the North Atlantic region. The
recalibrated global forecast is perfectly reliable; the drift-
corrected forecast, however, tends to be overconfident for all
lead years. This is in accordance to other studies suggesting
that ensemble forecasts typically underestimate the true un-
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Figure 8. Reliability (a), MSE (b), ensemble variance (c) and CRPSS (d) of global mean surface temperature without any correction (black
line), after drift correction (red line) and recalibration with DeFoReSt (blue line). The CRPSS for the raw forecasts (black line) is smaller
than −1 and therefore not shown. As the drift correction method does not account for the ensemble spread, the ensemble variance of the raw
model and the drift-corrected forecast is equal. The vertical bars show the 95 % confidence interval due to 1000-wise bootstrapping.

certainty and tend to be overconfident (Weigel et al., 2009;
Hamill and Colucci, 1997; Eckel and Walters, 1998). De-
FoReSt thus accounts for both underdispersive and overdis-
persive forecasts.

DeFoReSt with third-/second-order polynomials is quite
successful. However, it is worthwhile investigating the use
of order selection strategies, such as LASSO (Tibshirani,
1996) or information criteria. Furthermore, parameter uncer-
tainty due to a small training size may result in forecasts
that are still underdispersive after recalibration. For the sea-
sonal scale, this has been discussed by Siegert et al. (2015).
However, for decadal climate forecasts, this aspect should
be further considered in future studies. Recalibration based
on CRPS minimization is computationally expensive, which
might become problematic if not regional means but individ-
ual grid points are considered. As an alternative to the CRPS
minimization, the Vector Generalized Linear Model (VGLM;
Yee, 2008), which has been implemented in an efficient way,
might be considered. We proposed DeFoReSt to recalibrate
ensemble predictions of a single model. However, DeFoReSt
needs to be modified if it should be applied to a multimodel
prediction. This is necessary because single ensemble mem-

bers of a multimodel prediction may differ in their systematic
errors (Tebaldi et al., 2005; Arisido et al., 2017).

Based on simulations from a toy model and the MiKlip
decadal climate forecast system, we could show that DeFoR-
eSt is a consistent recalibration strategy for decadal fore-
cast leading to reliable forecast with increased sharpness due
to simultaneous adjustment of conditional and unconditional
biases depending on lead time.

Code and data availability. The NCEP 20CR reanalysis used in
this study is freely accessible through NCAR (National Centers
for Atmospheric Research) after a simple registration process. The
MiKlip prototype data used for this paper are from the BMBF-
funded project MiKlip and are available on request. The postpro-
cessing, toy model and cross-validation algorithms are implemented
using GNU-licensed free software from the R Project for Statisti-
cal Computing (http://www.r-project.org). Our implementations are
available on request.
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Appendix A: Construction of the toy model’s
free parameters

For this toy model setup, χ(t,τ ) and ψ(t,τ ) are obtained
from α(t,τ ) and β(t,τ ) as follows:

χ(t,τ )=−
α(t,τ )

β(t,τ )
(A1)

ψ(t,τ )=
1

β(t,τ )
(A2)

ω(t,τ )=
1

γ (t,τ )
. (A3)

The parameters χ(t,τ ), ψ(t,τ ) and ω(t,τ ) are defined such
that a perfectly recalibrated toy model forecast f Cal would
have the following form:

f Cal
i (t,τ )= α(t,τ )+β(t,τ )µens(t,τ )+ γ (t,τ )εi, (A4)

where εi is the deviation of each ensemble member i from the
ensemble mean µens(t,τ ). Here, σ 2

ens is the ensemble vari-
ance. Writing Eq. (A4) as a Gaussian distribution and apply-
ing the definitions of µens (Eq. 21) and σens (Eq. 22), leads
to

f Cal
i (t,τ )∼N (α(t,τ )+β(t,τ ) (χ(t,τ )
+ψ(t,τ )µx(t,τ )),γ (t,τ )ω(t,τ )σ

2
εx
(t,τ )), (A5)

and applying the definitions of χ(t,τ ), ψ(t,τ ) and ω(t,τ )
(Eqs. A1–A3) to Eq. (A5) would further lead to

f Cal
i (t,τ )∼N (α(t,τ )−β(t,τ )

α(t,τ )

β(t,τ )

+
β(t,τ )

β(t,τ )
µx(t,τ ),

γ (t,τ )

γ (t,τ )
σ 2
εx
(t,τ )). (A6)

This shows that f Cal is equal to the perfect toy model
f Perf(t,τ ) (Eq. 23):

f Cal(t,τ )∼N (µx(t,τ ),σ 2
εx
(t,τ )). (A7)

Table A1. Overview of the values coefficients al , bl and wl .

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7

al −0.61 0.0025 0.29 −0.00046 −0.11 0.0011 0.021 −0.00029
bl 0.13 0.006 0.23 −0.0027 −0.12 0.00097 0.025 −0.000197
wl 0.3 0 0.1 0.0014 0.01 0.0001 0 0

This setting has the advantage that the perfect estimation of
α(t,τ ), β(t,τ ) and γ (t,τ ) is already known prior to calibra-
tion with CRPS minimization.

Following the suggestion of Kruschke et al. (2015), a
third-order polynomial approach was chosen for uncondi-
tional α(t,τ ) and conditional biases β(t,τ ) as well as for
the inflation factor ω(t,τ ), yielding

α(t,τ )= (a0+ a1t)+ (a2+ a3t)τ + (a4+ a5t)τ
2

+ (a6+ a7t)τ
3 , (A8)

β(t,τ )= (b0+ b1t)+ (b2+ b3t)τ + (b4+ b5t)τ
2

+ (b6+ b7t)τ
3 and (A9)

ω(t,τ )= (w0+w1t)+ (w2+w3t)τ + (w4+w5t)τ
2

+ (w6+w7t)τ
3 . (A10)

For the current toy model experiment, we exemplarily
specify values for ui and vi as obtained from calibrating
the ensemble mean of MiKlip prototype GECCO2 (f Prot)
surface temperature over the North Atlantic against NCEP
20CR reanalyses (Tobs):

E(Tobs)∼(a0+ a1t)+ (a2+ a3t)τ + (a4+ a5t)τ
2

+ (a6+ a7t)τ
3
+ ((b0+ b1t)+ (b2+ b3t)τ

+ (b4+ b5t)τ
2
+ (b6+ b7t)τ

3)f Prot. (A11)

The values of the coefficients are given in Table A1 (upper
and middle rows). The last row of Table A1 gives the values
of wi , i.e., the series expansion of the inflation factor ω(t,τ ).
These are chosen such that the forecast is overconfident for
the first lead years and becomes underconfident for later lead
years (see Fig. 1c).
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Appendix B: Cross-validation procedure for decadal
climate predictions

We propose a cross-validation setting for decadal climate
predictions to ensure fair conditions for assessing the bene-
fit of a postprocessing method over a raw model without any
postprocessing. All scores are calculated with a yearly mov-
ing validation period with a length of 10 years. This means
that 1 start year including 10 lead years was left out for vali-
dation. The remaining start years and the corresponding lead
years were used for estimating the correction parameters for
the prediction within the validation period; start years within
the validation period were not taken into account. This pro-
cedure was repeated for a start-year-wise shifted validation
period.

This setting is illustrated in Fig. B1 for an exemplary vali-
dation period from 1964 to 1973; i.e., the correction parame-
ters are estimated for all hindcasts which are initialized out-
side the validation period (1962; 1963; 1974; 1975, . . . ).

Figure B1. Schematic overview of the applied cross-validation pro-
cedure for a decadal climate prediction, initialized in 1964 (red dot-
ted line). All hindcasts which are initialized outside the prediction
period are used as training data (black dotted lines). A hindcast
which is initialized inside the prediction period is not used for train-
ing (gray dotted lines).
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