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Abstract. The Background Error Analysis Testbed (BEAT-
BOX) is a new data assimilation framework for box mod-
els. Based on the BOX Model eXtension (BOXMOX) to the
Kinetic Pre-Processor (KPP), this framework allows users to
conduct performance evaluations of data assimilation experi-
ments, sensitivity analyses, and detailed chemical scheme di-
agnostics from an observation simulation system experiment
(OSSE) point of view. The BEATBOX framework incorpo-
rates an observation simulator and a data assimilation system
with the possibility of choosing ensemble, adjoint, or com-
bined sensitivities. A user-friendly, Python-based interface
allows for the tuning of many parameters for atmospheric
chemistry and data assimilation research as well as for educa-
tional purposes, for example observation error, model covari-
ances, ensemble size, perturbation distribution in the initial
conditions, and so on. In this work, the testbed is described
and two case studies are presented to illustrate the design of
a typical OSSE experiment, data assimilation experiments, a
sensitivity analysis, and a method for diagnosing model er-
rors. BEATBOX is released as an open source tool for the
atmospheric chemistry and data assimilation communities.

1 Introduction

Current regional and global models of the composition of
Earth’s atmosphere exhibit a high level of complexity due to
the combination of chemical and meteorological processes
such as transport, thermodynamics, radiation, or precipita-
tion. But “just” gas-phase chemistry itself already has a con-
siderable amount of complexity. The number of variables

(chemical compounds) and equations (chemical reactions)
in current model representations of tropospheric chemistry
(“mechanisms”) can vary by 2 orders of magnitude (from
102 to 104). Compare, for example, two well-known mecha-
nisms: the Model for Ozone And Related Chemical Tracers
version T1 (MOZART-T1; Emmons et al., 2010; Knote et al.,
2014) uses 134 species and 250 reactions, whereas the Mas-
ter Chemical Mechanism version 3.3 (MCMv3.3; Jenkin et
al., 2015) employs over 5000 species and over 15 000 reac-
tions. MCMv3.3 is called a “near-explicit” chemical mecha-
nism, which describes in detail the gas-phase chemical pro-
cesses involved in the tropospheric degradation of volatile
organic compounds (VOCs). On the other hand, MOZART-
T1 uses a simplified (“lumped”) representation of VOCs.
This reduction in complexity is advantageous as it reduces
the computational demand, but can lead to significant errors
in the prediction of atmospheric composition. The choice
of a chemical mechanism is therefore a trade-off: while
MCMv3.3 would be desirable due to its fidelity in repre-
senting atmospheric chemistry, it cannot currently be used in
large-scale 3-D atmospheric simulation due to its computa-
tional demand. MOZART-T1 is less accurate, but also much
more economic.

Investigating the performance of chemical mechanisms is
often done using zero-dimensional (0-D) box models. Nu-
merous studies have used box models to study reactive gas-
phase chemistry and provide intercomparisons and validation
of mechanisms. Emmerson et al. (2009) provided a com-
prehensive comparison of the MCM mechanism with six
tropospheric chemistry lumped schemes that could be used
within chemistry transport models. Archibald et al. (2010)
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performed an intercomparison of the gas-phase mechanism
for isoprene degradation in a box model with various mech-
anisms widely used in 3-D models. More recently, Coates et
al. (2015) compared MCM to simplified VOC mechanisms
to look at ozone production for a selection of VOCs repre-
sentative of urban air masses. Knote et al. (2015) conducted
box model simulations using different chemical mechanisms
and compared them to each other to understand mechanism-
specific biases during a 3-D model intercomparison. Maz-
zuca et al. (2016) used an observation-constrained box model
with a lumped carbon-bond mechanism to study photochem-
ical oxidation and ozone production processes along a re-
search aircraft campaign. Wolfe et al. (2016) presented a tool
for 0-D atmospheric modeling that can use different chemi-
cal mechanisms and methods of photolysis frequency calcu-
lations.

This non-exhaustive list of recent studies using box mod-
els to study tropospheric chemistry shows the importance of
and need for such tools. Box models are attractive due to their
simplicity and low computational cost, but cannot provide
a realistic representation of the entire atmosphere because
they lack vertical and horizontal diffusion, boundary condi-
tions, and numerous other processes that 3-D models take
into account. In that regard, box model studies should not
focus on replicating the most accurate predictions but rather
aim at gaining significant fundamental and conceptual under-
standing of a given system of ordinary differential equations
(ODEs), in the present case the one that governs tropospheric
chemistry.

Another aspect of box models or reduced complexity mod-
els is the applicability to data assimilation research. Low di-
mension and/or box models are often used to design new data
assimilation algorithms and to conceptually prove the advan-
tage of a given method. In data assimilation theory, the use
of the Lorenz model and other simple systems is common
practice: Sandu et al. (2005) used a box model approach
to design an adjoint-based sensitivity analysis for reactive
gas-phase tropospheric chemistry. Ott et al. (2004) used a
Lorenz-96 model to introduce a new formulation of the en-
semble Kalman filter approach. Van Leeuwen (2010) also
used the Lorenz model to investigate nonlinear advanced data
assimilation techniques such as the particle filter.

Atmospheric composition data assimilation, and more
generally inversion, is complex and computationally de-
manding. Reactive gas-phase photochemistry is highly non-
linear and has to deal with hundreds to thousands of vari-
ables. There is a need for a tool that allows for the explo-
ration of suitable novel data assimilation approaches for at-
mospheric chemistry, assesses uncertainty and errors of a
given chemical mechanism, and performs chemical sensitiv-
ity analysis from one parameter to another. All this should be
possible with minimal computational expenses and coding
skills required. In this paper, we present a new framework
based on BOXMOX (BOX MOdel eXtension to KPP; Knote
et al., 2015) called BEATBOX (Background Error Analysis

Testbed with Box Models) that is able to cycle data assimila-
tion windows, calculate adjoint, ensemble, or even more ad-
vanced sensitivity analysis, and assess box model errors and
uncertainties. In Sect. 2 we present in detail the structure of
BEATBOX and its algorithms, as exemplified through case
studies that we discuss in Sect. 3.

2 Design of BEATBOX

The Background Error Analysis Testbed with Box Models
(BEATBOX) is a suite of tools that allows for a simple and
fast investigation, comparison, and evaluation of any sys-
tem of ordinary differential equations (ODEs) evolving over
time. By “background error” we designate a general term
for model error characterization. In this study, BEATBOX is
used within the scope of atmospheric chemical mechanisms.
Currently, the BEATBOX framework consists of a forecast-
ing tool, the BOX MOdel eXtension (BOXMOX; Knote et
al., 2015) to the Kinetic Pre-Processor (KPP; Sandu and
Sander, 2006), presented in Sect. 2.1, and a data assimilation
tool, which will be introduced in Sect. 2.2.

The BEATBOX structure is built upon observing system
simulation experiments (OSSEs; Arnold and Dey, 1986).
OSSEs are generally used in the field of numerical weather
prediction (e.g., Kuo et al., 1998; Wang et al., 2008; Liu et
al., 2009) and atmospheric composition and air quality pre-
dictions (e.g., Edwards et al., 2009; Claeyman et al., 2011;
Barré et al., 2015, 2016). OSSEs allow for an assessment of
the benefit of a potential new type of instrument for envi-
ronmental predictions using a data assimilation system and
are of crucial importance to define the requirements of a
given instrument. Space agencies such as the National Aero-
nautics and Space Agency (NASA) and the European Space
Agency (ESA) hence support OSSEs as tools to verify sci-
entific readiness levels for proposed space missions. Also,
the model and data assimilation requirements should be as-
sessed to meet a required predictive capability. The current
BEATBOX framework employs a box modeling approach
to avoid the space dimension problem – the dimensionality
of the problem is reduced to time and variables only. Hence
the geometry, radiative specifications, and spatial resolution
of a new instrument type are irrelevant. What can be easily
explored within BEATBOX is the type of data assimilation
method used (e.g., background error covariance calculations,
localizations, inflation methods), the revisit time (or temporal
sampling) of a measurement, the variable(s) observed, and
straightforward comparisons between sets of ODEs (chemi-
cal schemes in our case).

A number of issues regarding the OSSE technique should
be mentioned as well. Performing an OSSE could be costly in
terms of setup, design, and computation. Numerical integra-
tion of the most state-of-the-art representation of the Earth
system for sampling observations and benchmarking could
be intensively costly and requires highly skilled staff and ex-
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Figure 1. General flowchart of the BEATBOX system.

tensive collaboration between research entities. Approxima-
tions are often required to make experiments possible (e.g.,
the “identical twin” problem), necessitating careful diagnosis
of the results that could limit scientific conclusions.

Ultimately an OSSE should be used to highlight model
deficiencies and inaccuracies, and provide direct guidance
for model improvement. In that context, BEATBOX could
be considered as a derived OSSE framework focused on data
assimilation techniques and model improvement rather than
the benefit of new or future types of observations. Starting
from a scientific question or hypothesis to be validated (or
rejected) that fits the topics mentioned above, several com-
ponents are required (Fig. 1):

– a nature run (NR) considered as the “true state” (the NR
supposes to use the best model representation possible
considering the state of the art; in this study, we used
the Master Chemical Mechanism (MCMv3.3.1) as the
NR);

– a control run (CR) as the prior estimated state of the
atmosphere (compared to the NR, a simplified or de-
graded model should be used, for example a set of
ODEs that can be implemented in large-scale 3-D mod-
els; in this study, we use MOZART-T1);

– an observation simulator that generates synthetic obser-
vation by sampling the NR (observation errors also need
to be simulated);

– an assimilation run (AR) that is produced using the data
assimilation tool merging the synthetic observation with
the CR to produce the best estimate possible of the state;
and

– a suite of diagnostic tools that use NR, CR, and AR de-
signed to point out model and data assimilation tech-
nique limitations, ultimately providing a direct feedback
for model improvement.

The BEATBOX framework has the capability to loop over
several assimilation cycles, also called “cycling”. Cycling

with BEATBOX is schematically displayed in Fig. 2. Every
cycle starts with the forecast step. By applying their respec-
tive model, the NR, the forecast (F ), and the CR are pro-
cessed from cycle t − 1 to cycle t . Then, NRt is used to gen-
erate synthetic observations through the observation opera-
tor H (see Sect. 2.2.2). These observations are assimilated
into the forecast F jt to produce the analysis Ajt with j as
the data assimilation method of choice using a gain Kj (see
Sects. 2.2.3–2.2.5). Then, Ajt will be used to generate new
initial conditions ICjt to start a new forecast. CRt serves as
a reference to determine the performance of the assimilation
method j after t forecast cycles. The forecast F jt can be taken
to quantify the skill of the assimilation method j at the cur-
rent cycle t . Afterwards, the cycle t+1 starts with its forecast
step.

2.1 Forecasting tool

2.1.1 The box model BOXMOX

BOXMOX performs box model simulations with different
chemical mechanisms using varying sets of input parameters.
BOXMOX relies on KPP, a code generator that simplifies
the numerical integration of systems of ODEs. The tempo-
ral evolution of concentrations of chemical compounds due
to photochemistry is a prime example of such a system. KPP
takes a predefined set of chemical equations (in our case a
chemical mechanism) written in a symbolic, human-readable
language and generates a computer code (FORTRAN, Mat-
lab, C) containing a numerical solver to integrate the sys-
tem over time. A number of integration methods are avail-
able (e.g., Rosenbrock or Runge–Kutta methods). In addi-
tion to predicting the evolution of concentrations over time,
the resulting solver also delivers the Jacobian and Hessian
matrices of the system. Adjoint models can be generated and
tuned (Sandu et al., 2003) and the Jacobians of the adjoint of
the model can be obtained (see Sect. 2.2.3). Building upon
KPP, BOXMOX provides additional processes typically used
in box model studies (emissions, photolysis, deposition, mix-
ing) and allows for convenient data input. BOXMOX makes
simulations of chamber experiments, Lagrangian-type air
parcel studies, and a description of the chemistry in the at-
mospheric boundary layer feasible without effort. Input is
done via simple text files: initial conditions, photolysis rates,
temperature, boundary layer height, detrainment and entrain-
ment, turbulent mixing, emission, and deposition are possi-
ble input parameters. BOXMOX is a stand-alone C and For-
tran program running on Linux or Mac OS X. In this work
we have extended BOXMOX with an interface written in the
Python language (boxmox package) to interface more easily
with BEATBOX.

BEATBOX uses BOXMOX to rapidly generate a large
number of simulations with perturbed input parameters. The
temperature, (time-varying) photolysis rates, and initial con-
centrations of each species included in the investigated chem-
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Figure 2. The cycling sequence with BEATBOX, with the assimilation window t , the assimilation method j , control run CR, nature run NR,
observation operator H , gain K , analysis A, initial condition IC, and forecast F .

ical mechanism can be perturbed independently. Ensem-
ble members can be generated by producing normal- or
lognormal-distributed perturbation factors with the possibil-
ity to adjust the mean and the standard deviation for each
perturbed variable. These perturbation factors are then mul-
tiplied by the relevant initial values to produce an ensemble
of initial conditions.

In this work, we demonstrate the BEATBOX capabilities
using MCMv3.3.1 as NR. Because of its near-explicit rep-
resentation of atmospheric chemistry, MCMv3.3.1 is a good
choice to be seen as the assumed “truth” within the context
of an OSSE. The MOZART-T1 chemical mechanism is em-
ployed as the simplified and/or degraded model (CR, AR).

2.1.2 Input data generation

BOXMOX comes with a tool to generate input data from
field campaign observations (the genbox Python pack-
age). Translation to mechanism-specific species naming
and lumping is achieved using a translation tool (the
chemspectranslator package) originally based on the
emission database created by Bill Carter (UC Riverside; http:
//www.cert.ucr.edu/~carter/emitdb). The current system uses
data collected in the FRAPPE (Front Range Air Pollution and
Photochemistry Experiment) field campaign (frappedata
package).

During FRAPPE, a number of flight measurements with
remote sensing and in situ devices of numerous quanti-

ties were performed, including concentrations of chemical
species, photolysis rates, and temperature. In the examples
shown we use measurements taken during FRAPPE with the
NCAR C130 research aircraft to initialize the box model.
Photolysis rates measured during FRAPPE are used in the
examples shown here. For other cases in which photoly-
sis rates are missing, we provide the ability to use photol-
ysis rates calculated by the Tropospheric Ultraviolet Visible
(TUV) radiation model version 5.1 (Madronich and Flocke,
1997) in BOXMOX using the tuv Python package.

In this current version of the code only measurements
taken during the FRAPPE campaign have been used, but data
from other field campaigns can be easily adapted as well with
minimal code development.

2.2 Data assimilation tool

The beatboxtestbed Python package provides a data as-
similation tool that samples observations from the NR, with
the possibility of tuning the observation error parameters. By
assimilating observations, different sensitivity analyses can
be used, such as adjoint, ensemble, or combined (in this pa-
per called hybrid), and are included in this version of BEAT-
BOX (see Sects. 2.2.3–2.2.5). For notation purposes, we rep-
resent x and y as variables in model or state space and obser-
vation space, respectively.
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2.2.1 The data assimilation problem

Data assimilation combines observations and model informa-
tion (also called forecast or background) to derive an optimal
state (analysis) with a reduced error to provide the best initial
condition for a subsequent forecast (see, e.g., Lahoz et al.,
2010). Consider n ∈ N and p ∈ N the dimensions of the state
(or model) space and the observation space, respectively. Fol-
lowing Nichols (2010) the solution to the data assimilation
problem is commonly expressed as follows:

xa = xb+K(yo−H(xb)), (1)

where xa is the analysis state, xb the background state, yo the
observation, H the observation operator (also known as for-
ward operator in the variational formalism), and K the gain
matrix. The gain matrix K handles the transformation from
the observation space to the state (or model) space. Con-
versely H handles the transformation from model space to
observation space. The above equation can also be expressed
in the incremental form, such as

1x =K1y, (2)

with 1x called the increment and 1y called the innovation
(or departure). The innovation in the observation space is
then translated to the model space by applying the gain ma-
trix K. Different methods exist to estimate the K gain; see
Sects. 2.2.3–2.2.5. Commonly the gain matrix is given by

K= BHT(HBHT
+R

)−1
, (3)

where B and R are the error covariance matrices of the
background (or model) and observation, respectively. In the
BEATBOX framework a single observation in a given assim-
ilation window (p = 1) and only the dimension along the
chemical variables is considered. Hence, R simplifies to a
1× 1 matrix, a scalar σ 2

o the observation error variance, and
HBHT also simplifies to a scalar σ 2

b (see Sect. 2.2.2 below)
the background error variance in the observation space. Then
BHT can be seen as σ 2

b s, where s can be called the sensitiv-
ity vector. The gain matrix in Eq. (3) then becomes a vector
κ and can be reformulated as follows:

κ = σ 2
b

(
σ 2

b + σ
2
o

)−1
s. (4)

2.2.2 Observation generator – synthetic observations

Generating observations consists of the following steps:

– sampling values from the nature run,

– perturbing those values to simulate an observation inac-
curacy, and

– specifying an observation error value.

BEATBOX forecasts have no dimensions in the 3-D at-
mospheric space (latitude, longitude, altitude). Sampling the
NR to simulate observations is straightforward. Convention-
ally, H is defined as the observation operator and handles
the transformation of information defined in the model space
to the observation space to compare model and observa-
tion quantities. Then, the H operator can be expressed as
HT
= [0,0, . . .,1, . . .,0]. If no observation error is simulated

the observation is defined as a perfect observation and the
observation value is yo =H(xNR).

If the observation error needs to be simulated, then yo is
generated by adding a perturbation. In that version of BEAT-
BOX the perturbation is assumed to be a normal distribution.
But other probability density functions can be implemented
easily (a lognormal perturbation is also implemented in this
version). Then,

yo =H (xNR)+N(M,6), (5)

with N(M,6) as a normal distribution of mean M and stan-
dard deviation 6. The latter two quantities can be viewed as
the observation bias or accuracy (M) and precision (6). Fi-
nally, an associated observation error σo is associated with
yo for data assimilation; σo can account for bias and/or pre-
cision, overestimating, or underestimating those parameters
depending on whether the effect of observation error needs
to be tested in BEATBOX. In the following case study (see
Sect. 3) we assume non-biased observation and non-biased
observation error with a Gaussian distribution, leading to
σo =6.

2.2.3 Adjoint sensitivity

Adjoint sensitivities can be calculated using the KPP Jaco-
bian matrix of output from the adjoint model at a given time
step. In our case, we make the approximation that the change
of the state x (that includes the observed variable y) at the
time step t relative to the change of the observed variable y
at a previous time step t−1 (i.e., dxt/dyt−1 or dyt/dyt−1) is
linear. In the current study, we assume t − 1 and t at the be-
ginning and the end of the assimilation window. The adjoint
sensitivity vector of the state x to a given observed variable
y at time t can be computed using the Jacobian vectors as
follows:

s =
dxt
dyt
=

dxt
dyt−1

·

(
dyt

dyt−1

)−1

. (6)

The adjoint assimilation method runs a single forecast with
the forward model and also runs the adjoint model and com-
putes the analysis by combining Eqs. (1), (4), and (6). The in-
novation in observation space 1y is calculated and the state
x is inferred using the κ gain that includes the adjoint sensi-
tivity s. In this method, σb should be determined with ad hoc
information and will not change during the cycling process.
However, different methods exist to scale σb appropriately
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between each cycle. In the BEATBOX context this can be
further explored using the provided OSSE framework.

2.2.4 Ensemble sensitivity

Ensemble methods run a perturbed set (ensemble) of model
realizations in parallel and derive model error and sensitivity
using the created ensemble. This gives multiple realizations
i of the model in the observation space yi and model space
xi . The standard deviation of the ensemble (or the ensemble
spread) is used to estimate σb in the observation space, such

as σy =
√
E
[(
yi −E

[
yi
])2]
= σb with E as the averaging

operator. Similarly, the ensemble spread in model space can

be estimated as σ x =
√
E
[
(xi −E [xi])2

]
. Then statistical

assumptions are made to derive the sensitivity between y and
x. One of the commonly used methods as described by An-
derson (2003) is to draw a linear fit in the least-squares sense
between y and x using the ensemble members, such as

s =
(∑

xiyi

)(∑
yiyi

)−1
=
σ xy

σ 2
y

= rxy ◦
σ x

σy
, (7)

where rxy and σ xy are respectively the correlation coefficient
and covariance vectors between y and each chemical variable
of x and ◦ is the Schur product operator. Then, the innovation
in the observation space 1yi is calculated for each ensemble
member. The ensemble state vector xi is inferred using the
same k gain that includes the same ensemble sensitivity s for
each ensemble member.

2.2.5 Hybrid sensitivity and further approaches

In the current version of BEATBOX the hybrid sensitivity is
defined as a combination between the two approaches men-
tioned above: it uses an adjoint sensitivity for each ensemble
member, such as

si =
dxt,i
dyt,i

=
dxt,i

dyt−1,i
·

(
dyt,i

dyt−1,i

)−1

. (8)

In that sense, each ensemble member has its own adjoint sen-
sitivity calculation si and its own innovation in observation
space 1yi . This results in an independent or different infer-
ence on the state vector for each ensemble member xi . This
method is just an example of what can be explored with the
BEATBOX system. Because of the simplicity of the code and
the low dimensionality of the problem, advanced techniques
can be easily implemented and analyzed. Other hybrid meth-
ods and filters, such as a polynomial filter or particle filters
and their benefits for highly nonlinear systems, can be ex-
plored with ease with the proposed framework as well.

2.2.6 Inflation

For ensemble methods, to avoid the filter divergence prob-
lem (Fitzgerald, 1971), inflation algorithms are needed. In

the BEATBOX framework we included the inflation method
as proposed by Anderson (2007), such as

xinfl
i =

√
λ(xi −E [xi])+E [xi] , (9)

with λ called the covariance inflation factor that determines
how much the ensemble members xi are spread out from the
mean E [x]. Many different methods exist to estimate λ; it
can be chosen as constant over time or adaptive given the
ensemble spread in observation space σb, observation error
σo, and the innovation norm from the ensemble mean θ =
|E[yi]− yo|. In the version of BEATBOX presented here we
calculate λ as

λ=
θ2
− σ 2

o

σ 2
b

. (10)

If λ is found to be smaller than 1, the ensemble spread is
assumed to be large enough and no inflation is calculated.
Straightforward computation of λ as above assumes linearity
between observation space and model space, which is true
in the current BEATBOX framework. More advanced ways
to compute λ as described in Anderson (2007, Appendix A)
have been tested and implemented in BEATBOX and can be
used as well. Finally, to conserve the positive definite nature
of the ensembles and also prevent forcing ensemble members
to zero that would otherwise be inflated to negative values,
we reduce the inflation factor iteratively on every value of
the state:

λ≤

(
E [xi]

xinfl
i −E [xi]

)2

. (11)

This is one of several methods to conserve the physical as-
pects of the ensemble: it might under-disperse the ensemble
in some cases of low concentrations but ensures that the in-
flation is kept to physical values. In the BEATBOX frame-
work, users can easily implement and explore new inflation
methods for nonlinear, definite positive, and perturbation of
highly sensitive systems, as in the case of reactive gas-phase
chemistry.

2.2.7 Localization

One should consider to what extent the sensitivities should
be relied on. Localization algorithms try to limit the im-
pact on the analysis of errors in the sample covariance be-
tween observations and model state variables (Mitchell and
Houtekamer, 2000). Depending on the ensemble size or the
mathematical assumptions to compute a sensitivity, a local-
ization function C should be used to define where to apply
the sensitivity s, such as

sloc = s ◦C. (12)

In the current BEATBOX framework, it is possible to
specify which species should be inferred, e.g., CT

=

[0,1, . . .,1, . . .,0].
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2.3 Flux method for model analysis

A flux tool has been included in boxmox that calculates the
production and loss fluxes for a given chemical component.
Consider the generalized chemical reactions, such as∑
i

[R]i
k
−→

∑
j

[P ]j , (13)

with k called the rate constant. The chemical flux can be ex-
pressed as

d [R]
dt
=−

d [P]
dt
=−k

∏
i

[R]i = k
∏
j

[P ]j . (14)

For a given chemical component, a detailed budget of chem-
ical production and loss can be made by identifying different
chemical reactions. An example of the application of the flux
tool is shown in Sect. 3.4.

3 Application to an urban pollution case study

In this section, we provide an example case study to show-
case the capabilities of the BEATBOX framework.

3.1 Control run and nature run

Temperature, concentrations, and photolysis rates from the
FRAPPE data (see Sect. 2.1.2) are used for initial condi-
tions. In the present simulations, all environmental param-
eters such as temperature and photolysis rates are kept con-
stant. Interactions between the simulated box and the sur-
rounding are neglected, and the box model simulation can be
seen as “chemistry in a jar” similar to a chamber experiment
without consideration of wall losses, in which only the tem-
poral evolutions due to chemical reactions are allowed. Initial
conditions for primary VOCs and inorganic compounds are
provided using the FRAPPE observations.

The present case study focuses on an air mass originat-
ing from the industrial area of Commerce City near Den-
ver, Colorado. Figure 3 shows the estimated temporal evo-
lution over the first 60 h of simulation for the VOC /NOx
(NOx =NO+NO2) and toluene / benzene ratio using the
MOZART-T1 scheme. The vertical lines suggest the VOC-
limited (VOC /NOx ratio<= 4), NOx-limited (VOC /NOx
ratio> 15), and transition region (4<VOC /NOx ra-
tio<= 15) to show that the simulation transitions through
different O3 production regimes with possibly very differ-
ent relevant chemical pathways. The measurements show an
initially strongly VOC-limited air indicative of an urban air
mass. The VOC /NOx ratio of the aging air increases in
time. During the first 15 h the simulation shows a strong
VOC-limited regime. A transition regime spans from 15 h
to approximately 30 h. After the transition period the chemi-
cal regime becomes NOx limited, which is representative of
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Figure 3. Temporal evolution of the VOC /NOx (blue line)
and toluene / benzene (red line) ratios over 60 h derived from
MOZART-T1 (CR).

more rural or background conditions. The toluene / benzene
ratio is used as a qualitative measure of photochemical age.
Toluene and benzene are considered to have the same sources
but toluene is more quickly oxidized than benzene, which
leads to a decline in the ratio over time.

The temporal evolutions of some key species in the NR
and the CR are displayed in Fig. 4. Nitrogen dioxide (NO2)

shows a decrease over time, with a stronger decay in the NR
than in the CR. Ozone (O3) production is observed over time
with a therefore stronger production in the NR than in the
CR. The hydroxyl-radical (OH) availability increases over
time, especially between 20 and 35 h, which can be iden-
tified as the end of the transition from a VOC-limited to a
NOx-limited regime. In the VOC-limited and NOx-limited
regimes, the OH increase is smaller. Formaldehyde (CH2O)
shows in both NR and CR a decrease followed by an increase
and finally a decrease. Those variations illustrate the change
of chemical regimes from VOC limited to transition to NOx
limited. If we compare the NR to the CR the change of chem-
ical regimes is lagged. The change of regimes seems to occur
faster in the NR than in the CR, suggesting different reactiv-
ity and pathways of oxidation in the NR than in the CR.

3.2 Assimilation runs

We focus on assimilating NO2 and CH2O concentrations
in two separate experiments to show the capabilities of the
BEATBOX framework. This is motivated by the fact that
NO2 and CH2O play a key role in atmospheric chemistry,
especially for short-lived chemical compounds. Also, NO2
and CH2O are, and will be, observed from space from both
low-Earth and geostationary orbiters and from in situ obser-
vations. We define a reduced state vector for simplicity of the
demonstration with the species described above: NO2, O3,
CH2O, and OH.
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Figure 4. Time series of concentrations of NO2, O3, CH2O, and
OH over 60 h from the control run (MOZART-T1, blue lines) and
from the nature run (MCMv3.3.1, black lines).

We use an assimilation window of 3 h. Unbiased observa-
tions have been defined and assumed to be at the end of the
assimilation window with an observation error of 0.75 ppbv
for NO2 and 0.07 ppbv for CH2O (corresponding to approx-
imately 2.5 and 5 % of the concentrations at initial time). All
the generated observations have well-estimated observation
error, such as σo =6 (see Sect. 2.2.2). The model error in
the observation space σb has to be specified for the adjoint
technique and is set to 2.5 % for NO2 and 5 % for CH2O of
the current forecast concentration (see Sect. 2.2.3). For the
ensemble method, the ensemble spread implicitly defines σb
using 50 ensemble members that are generated by perturbing
the initial NO2 concentration by 2.5 % for NO2 assimilation
and by perturbing the initial CH2O concentration by 5 % for
CH2O assimilation (see Sect. 2.2.4). Adaptive inflation is ap-
plied on the ensembles at every assimilation window to main-
tain a realistic ensemble spread to weight the observation and
model appropriately (see Sect. 2.2.6).

3.2.1 NO2 assimilation

We assimilate NO2 observations using two different local-
izations. The first experiment infers only NO2 concentration
and the second infers the entire state vector (i.e., NO2, O3,
CH2O, and OH concentrations). After looking at the evolu-
tion of NO2 concentrations (see Fig. 5), all three assimilation
methods in both experiments (adjoint, ensemble, and hybrid)
tend to move the analysis closer toward the observations and
hence the NR. Some differences among the three ARs can
be found. Recalling Sects. 2.2.1 and 2.2.2, because of the di-
mensionality of the problem the sensitivity from observation
space NO2 to the model variable NO2 is equal to identity,
s = 1, for every assimilation method. Hence, the difference

among assimilation runs will only result from differences in
xb and σb after a subsequent forecast. The ensemble and
hybrid methods show a quicker improvement than the sin-
gle member adjoint method due to the adaptive nature of σb
with the inflation (see Sect. 2.2.6). The single adjoint method
keeps σb = 2.5 %, while the ensemble and hybrid methods
can tune this value with the inflation.

When only NO2 is inferred the other species are modified
and this could be called the model response to assimilated
changes: NO2 is decreased, which increases the OH avail-
ability for other oxidation pathways. A slight increase in O3
is noted and more significantly for CH2O during the transi-
tion region. The ensemble methods have a stronger effect due
to the adaptive nature of σb. The adjustment of NO2 concen-
tration towards NO2 observation can be more effective and
this can have a stronger effect on the model response.

When the entire state vector is inferred, i.e., no localiza-
tion, slight additional increases occur in O3, CH2O, and OH
in the transition region. In general, in the first 10 to 15 h when
VOC-limited conditions dominate (see Fig. 3), the impact of
NO2 assimilation is low. By definition, VOC-limited air is
insensitive to changes in NO2, so if the model (CR) predicts
VOC-limited conditions either adjoint sensitivities or ensem-
ble sensitivity will remain small. After 15 h of simulation,
the chemical regime transitions significantly to NOx limited
with higher sensitivity of the state to changes in NO2. Af-
ter 40 h, NO2 concentrations drop to very low values, NO2
assimilation increments are very small, and hence almost no
inference on the other state variables is observed.

In the case study, inference from NO2 observation on the
rest of vector is not the major reason for improvement. Model
response from NO2 changes is mostly responsible for im-
proving the state. NOx concentrations drive the chemistry in
the transition region and NOx-limited regimes. NOx chem-
istry is well known and similarly represented between the NR
and the CR. Hence the model response is likely to improve
the state and not likely to produce additional errors.

3.2.2 CH2O assimilation

We repeat the experiments presented in Sect. 3.2.1, but as-
similate CH2O observations instead of NO2. Figure 6a–d
show the concentration evolution when only CH2O is in-
ferred. In the first 40 h CH2O is underestimated by the CR
mechanism. All three ARs show very similar results. During
the analysis phases the CH2O concentrations are pushed up
towards the NR. Those abrupt increases are systematically
compensated for by the chemical mechanism nudging the
system back into chemical equilibrium, i.e., towards the CR
concentrations. This makes the CH2O concentration evolu-
tion a sawtooth shape. CH2O is a short-lived chemical com-
pound (shorter than NO2 in this case study) and it is mainly
driven by other chemical species concentrations. Ultimately
CH2O concentrations in the ARs are slightly elevated after
each 3 h forecast. These changes will very mildly affect the
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Figure 5. Evolution of the state vector over 60 h, including the na-
ture run (NR, black line), control run (CR, blue), and assimilation
runs using adjoint (red), ensemble (pink), and hybrid (turquoise)
methods. Two experiments with different localizations are dis-
played: only NO2 inferred (a–d) and whole state vector inferred (e–
h). Shaded areas show corresponding ensemble spread for ensemble
and hybrid methods.

state vector concentrations. The model response to CH2O
changes in NO2, O3, and OH is slight and definitely smaller
than the model response to NO2 changes (see Sect. 3.2.1).

When the entire state vector is inferred, i.e., no localization
(Fig. 6e–h), we observe very different results. The two ARs
that are using adjoint sensitivities (hybrid and adjoint) show
similar results as the previous experiment, and the sawtooth
shape is still observed. The analysis shows strong increases
in CH2O and the chemical mechanism tries to come back to
the CR state. The inference on the other species of the state
vector is noticeable, and NO2, O3, and OH concentrations
are improved compared to the experiment when only NO2 is
inferred.

In the ensemble method in which no localization is ap-
plied, the improvement in CH2O is of a different nature.
The sawtooth behavior of the AR is not observed anymore
and the chemical mechanism now seems to have changed
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Figure 6. Same as Fig. 5 but with CH2O observations assimilated.

from systematic CH2O loss to CH2O production in the fore-
cast. This will drive the AR to better fit the observations and
hence the NR. The inference on other species shows signifi-
cant changes that will in general change the sign of the error
and sometimes increase it; NO2 becomes underestimated in
the transition region, O3 is overestimated but then underes-
timated after 35 h, and OH is overestimated in the transition
region. In the ensemble method for the case study, the com-
puted sensitivities seem significantly different from the ad-
joint sensitivities. This will allow us to change the chemical
production and loss rate of CH2O to better adjust the CH2O
concentration, but at the risk of disturbing the rest of the state
vector and increasing errors that might lead to unphysical re-
sults. We diagnose the difference among sensitivities from
the two experiments presented above in Sect. 3.3. We also
diagnose the chemical behavior change from CH2O assimi-
lation using fluxes in Sect. 3.4.

3.3 Sensitivities of the off-diagonal elements of the
background error covariance matrix

Figure 7 shows the sensitivities of the unobserved species to a
change in NO2 and CH2O, respectively, at the end of each 3 h
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assimilation window with the single member adjoint and the
ensemble method (see Sects. 2.2.3 and 2.2.4). To make sen-
sitivities comparable we have normalized (divided) them by
the state concentrations. For example, s (NO2,O3), the sensi-
tivity of NO2 changes over O3, will most likely be orders of
magnitude larger than s (NO2,OH) since O3 concentrations
are orders of magnitude larger than OH concentrations.

For NO2 assimilation, both methods deliver similar re-
sults. The sensitivities are in general small, not above 60 %.
Sensitivities are small or negligible in the VOC-limited
regime but become more significant during the transition and
the NOx-limited regimes, mostly after 30 h. The changes in
NO2 from assimilation after 30 h are rather small and hence
the inference on other species will be small. This then con-
firms that the most important part of the changes from NO2
assimilation is due to the model response from NO2 changes
and secondly due to the data assimilation inference on the
other species of the state.

For CH2O assimilation we saw significant differences in
behavior between adjoint and ensemble methods to compute
the sensitivities. The adjoint displays rather small sensitivi-
ties, peaking at 20 % but mostly below 10 %. Those sensitives
are observed during the VOC-limited regime when the chem-
istry is sensitive to changes from VOC concentrations and
disappear during the transition region and become insignifi-
cant in the NOx-limited regime. This explains the small but
reasonable impacts from CH2O changes on the rest of the
state. Concerning the ensemble method, the computed sensi-
tivities are much larger and do not decrease after the transi-
tion regime. Values switch abruptly from negative to positive
and are sometimes above 200 %. To understand this unphys-
ical behavior, we display tracer–tracer relationships during
the assimilation phase of the ninth cycle (27 h) in Fig. 8.

In Sect. 2.2.4, we defined the ensemble method sensitiv-
ity computation as a linear fit to the ensemble distribution
between two species. Most state-of-the-art EnKF methods
use this approximation. One can see the limitation to such
a linear assumption after looking carefully at Fig. 8a and b.
The prior and posterior states of the NO2–O3 distributions
are displayed. The ensemble method represents the observa-
tion well; the ensemble distribution is at the NO2 level of the
observation and the ensemble spread fits the observation er-
ror (green vertical bars). However, the relationship between
NO2 and O3 that has formed during the ensemble AR after
nine cycles is strongly curved and nonlinear, which is diffi-
cult to represent through the linear fit of the ensemble sensi-
tivity. In this example, moving the ensemble members along
the linear fit is moving the O3 distribution slightly away from
the NR. At the same time the adjoint sensitivities are in com-
parison very weak (the slope is along the y axis), slightly im-
proving the state distributions but not very strongly. Finally,
the hybrid distribution shows a larger spread and different
distribution shape than the ensemble distribution. The ad-
joint inference does not strongly change the rest of the state,
which maintains the chemical production and loss rates of
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Figure 7. Temporal evolution of the sensitivities of the unobserved
state species to changes from the observed one at the end of each 3 h
assimilation for NO2 assimilation (a) and CH2O assimilation (b).

CH2O that fall into a temporary attractor; the model wants
to go back to the CR concentrations and creates a sawtooth-
shaped concentration evolution over time (see Sect. 3.2.2).
After 3 h, the forecast will be significantly far from the ob-
servation and the distribution will be inflated. The ensemble
inference strongly changes the rest of the state, which will
change the chemical production and loss rates and drive the
system out of the attractor. To understand this more clearly,
the flux tool is presented in the following section.

3.4 Model diagnostics using fluxes

In this last section, we will focus on the CH2O fluxes (pro-
duction and loss) over the ninth cycle forecast (25 to 27 h)
of the CH2O assimilation without localization. In Fig. 9
are the individual contributions of production and loss of
CH2O for the NR and the same member of the CR, AR en-
semble, and AR hybrid. The flux tool isolates a few differ-
ent reactions with NR because the chemical scheme is dif-
ferent and more detailed than the CR. In this case study,
CH3O→CH2O+HO2 in the NR is simply an intermedi-
ate reaction of NO+CH3O2→CH2O+NO2+HO2. Other
than this reaction, the isolated reactions are similar.

The NR fluxes to the CR fluxes show the same order of
production and loss importance; however, the NR fluxes are
stronger. Overall the loss terms in the NR are stronger than
the CR, leading to a net chemical flux that is negative. The
CR rates are significantly faster than the AR ensemble rates,
and the slopes of the rates (i.e., the second derivative of the
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Figure 8. Tracer–tracer or observation space to state space relation-
ships during the ninth cycle of the CH2O assimilation without lo-
calization experiment.

concentration evolution) also differ. The production terms
are stronger, leading to almost no loss net flux. The order
of importance of the reactions in the budget is also different;
CH2O+OH→CO+HO2+H2O is much more important,
likely due to the increase in OH during the AR ensemble (see
Sect. 3.2.2). Finally, the AR hybrid fluxes are similar to the
CR fluxes with the same order of importance between reac-
tions. Except for the carbon monoxide (CO) formation from
photolysis, CH2O→CO+H2 is now stronger and is respon-
sible for the systematic decrease in CH2O in the AR adjoint
and AR hybrid (see Sect. 3.2.2). This increased flux from this
reaction explains the sawtooth behavior of CH2O. When no
other pathway of loss is possible, i.e., OH is not as strongly
changed in AR adjoint and hybrid as in AR ensemble, this
way of destroying CH2O is then increased.

We demonstrate here the usefulness of the flux tool to di-
agnose the effect of data assimilation on atmospheric chem-
istry in a detailed manner. The diagnostic of the flux tool can
be used on any species that a chemical scheme contains for
any kind of BOXMOX simulation.

4 Summary and future options

In this paper, we have presented a new suite of tools for box
models, BEATBOX. The design of BEATBOX is based on
an OSSE approach that can simultaneously integrate vari-
ous chemical schemes to simulate a nature run, control runs,
and assimilation runs. This framework includes the capabil-
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Figure 9. CH2O fluxes during the 3 h forecast of the ninth cycle
of the CH2O assimilation with no localization. For the NR (a), one
member of the CR (b), one member of the AR ensemble (c), and one
member of the AR hybrid (d). Net fluxes for each run are shown in
panel (e). Displayed are fluxes representative of 90 % of the budget.

ity of running assimilation windows of different chemical
schemes using a forecasting tool (BOXMOX) and an assimi-
lation tool allowing for sensitivity analysis. BEATBOX pro-
vides ensemble and adjoint sensitivity analyses that can be
combined or modified to explore new inverse or data assim-
ilation methodologies. Additionally, a flux tool is also inte-
grated into the framework to diagnose and assess in detail
model run differences and ultimately use data assimilation
to improve the model (chemical scheme) itself, not only the
model outputs. The systematic and detailed assessment of the
multivariate data assimilation problem indicates that BEAT-
BOX can tackle important scientific hypotheses at a limited
computational cost for future data assimilation configura-
tions in large-scale 3-D models for atmospheric chemistry,
but it is not limited to this. Any system of equations can be
integrated over time in the current framework.

A typical case study of ozone photochemical production
from NOx is presented to showcase the capability of BEAT-
BOX. Differences between the nature run and the control run
are presented followed by a data assimilation experiment of
synthetic NO2 and CH2O observations using adjoint and en-
semble sensitivity analyses with different localization param-
eters. The case studies shown in this paper illustrate the need
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to understand in detail the effect of data assimilation in a
complicated and nonlinear model as required by atmospheric
chemistry. In these case studies, we showcased BEATBOX as
a powerful and user-friendly tool for the following:

– understanding chemical mechanism differences and de-
ficiencies,

– performing chemical sensitivity analysis using ensem-
ble or adjoint methods,

– envisioning and designing new inverse and data assim-
ilation methods for atmospheric chemistry to optimally
constrain as much of the chemical state as possible,

– defining requirements for new chemical and data assim-
ilation schemes and ultimately improving them, and

– educational purposes for data assimilation and atmo-
spheric chemistry.

BEATBOX will continue to evolve according to user re-
quirements. For example, emission inversion capability is
currently being implemented. Setting any given observation
time into the assimilation window will also be possible. As-
similating multiple observations in a given assimilation win-
dow will also be implemented using sequential and varia-
tional minimization techniques. Using real observations, i.e.,
from field campaigns, is also possible with minimal code
modifications. Because of the user friendliness, flexibility,
and open source nature of most of BOXMOX–BEATBOX,
users could also contribute to model development and make
it a broad atmospheric chemistry community tool.

Code and data availability. All code developments presented here
are open source tools released under the GNU General Public Li-
cense v3. BEATBOX consists of a number of Python packages:

– beatboxtestbed (the BEATBOX Background Error Anal-
ysis Testbed),

– boxmox (Python interface for the chemical box model BOX-
MOX),

– genbox (input data generator for boxmox),

– frappedata (FRAPPE campaign dataset for genbox),

– tuv (TUV data connector for genbox),

– chemspectranslator (translator to translate species be-
tween chemical mechanisms and observations), and

– icartt (reader–writer for ICARTT files).

The underlying chemical box model BOXMOX is a stand-alone
C and Fortran executable and has to be installed before BEATBOX
can be used.

Source code version 1.0 used in this paper is archived online
at digital object identifier: 10.5281/zenodo.1118244 (Knote et al.,
2017). Full documentation for BOXMOX and all Python packages,
including examples on how to reproduce the case studies shown
in this paper, can be found at https://boxmodeling.meteo.physik.
uni-muenchen.de/documentation.
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