| Symbol | Units | Description | Relationship with SEDGES | |-------------------------------------|---|--|------------------------------| | C _{veg} | kg C m ⁻² | vegetative carbon | 0 | | L | $kg C m^{-2} s^{-1}$ | litterfall | O | | NPP | $kg C m^{-2} s^{-1}$ | net primary productivity | O | | GPP | $kg C m^{-2} s^{-1}$ | gross primary productivity | O | | GPP_L | $kg C m^{-2} s^{-1}$ | light-limited gross primary productivity | O | | GPP_W | $kg C m^{-2} s^{-1}$ | water-limited gross primary productivity | O | | $f_1(CO_2)$ | _ | CO ₂ fertilization function | | | $f_2(T_{\rm sfc})$ | -
TZ | temperature limitation function | O | | $T_{\rm sfc}$ | K | surface temperature | I | | f_{APAR} | _ | fraction of photosynthetically active radiation (PAR) that is absorbed by green vegetation | | | SW↓ | $\mathrm{W}\mathrm{m}^{-2}$ | surface downwelling shortwave radiation | I | | LAI | m ² leaf area (m ² ground area) ⁻¹ | leaf area index | O | | $f_{ m leaf}$ | - | vegetative leaf cover fraction | O | | ga | $m s^{-1}$ | aerodynamic conductance | I | | $r_{\rm a}$ | $\mathrm{s}\mathrm{m}^{-1}$ | aerodynamic resistance | | | $r_{\rm c}$ | sm^{-1} | canopy resistance | O | | ρ | $kg m^{-3}$ | surface air density | I | | $p_{\rm sfc}$ | Pa | surface pressure | I | | ET | $m^3 m^{-2} s^{-1}$ | evapotranspiration | calculated outside of SEDGES | | qsat _{sfc} | kg H ₂ O kg air ⁻¹ | surface saturation specific humidity | calculated outside of SEDGES | | q | kg H ₂ O kg air ⁻¹ | specific humidity at the lowest atmospheric level | EI | | C_{w} | _ | surface wetness factor | M | | $eta_{ m ss}$ | $\frac{-}{\text{s m}^{-1}}$ | soil surface water stress factor | | | r _{ss} | s m · | soil surface resistance
soil wetness fraction | | | $W_{ m frac} \ W_{ m soil}$ | m | soil water content | I | | $W_{\rm max}$ | m | soil bucket depth | M | | T | $m^3 m^{-2} s^{-1}$ | transpiration | O | | $r^*_{c_u}$ | $\frac{m}{s}\frac{m}{m^{-1}}$ | case-specific unconstrained canopy resistance | O . | | $r_{c_{\mathrm{u}}}$ | $\frac{sm}{sm^{-1}}$ | unconstrained canopy resistance | | | β_{tr} | = | water stress factor for transpiration | | | $r_{\rm c}$ min | $\rm sm^{-1}$ | minimum canopy resistance | 0 | | C _{soil} | $kg C m^{-2}$ | soil organic carbon | 0 | | $R_{\rm soil}$ | $kg C m^{-2} s^{-1}$ | soil respiration rate | O | | $T_{\rm soil}$ | K | soil temperature at 0.20 m depth | I | | LAI _m | m ² leaf area (m ² ground area) ⁻¹ | leaf area index without soil moisture stress | | | $f_{\rm leaf_m}$ | = | (green) leaf cover fraction | | | | | in the absence of soil moisture stress | | | $f_{ m leaf_{dry}}$ | _ | max. vegetative leaf cover fraction | | | Ť | | under soil moisture stress | | | $f_{ m for}$ | - | forest cover fraction | O | | α_0 | - | snow-free surface albedo | | | $\alpha_{ m soil}$ | _ | albedo of bare soil | | | α | _ | albedo | M | | $\alpha_{ m snowflat}$ | _ | snow-covered albedo of flat portion of grid cell | | | $\alpha_{\text{snow for}}$ | _ | snow-covered albedo of forested portion of the grid cell
fraction of "flat" portion of grid cell that is snow-covered | | | $f_{ m snowflat}$ | $m^{3} m^{-2}$ | snow depth in liquid water equivalent | I | | | - III | albedo of deep and pure snow | 1 | | $\alpha_{\text{deep snow,flat}}$ | m | surface roughness | M | | z ₀
z _{0oro} | m | surface roughness due to orography | I | | Z0veg | m | surface roughness due to vegetation | | | P Oveg | $m^3 m^{-2} s^{-1}$ | precipitation in liquid water equivalent | EI | | S | $m^3 m^{-2} s^{-1}$ | snowfall in liquid water equivalent | EI | | M | $m^3 m^{-2} s^{-1}$ | snowmelt in liquid water equivalent | EI | | ET _{soil} | $m^3 m^{-2} s^{-1}$ | bare-soil evaporation plus transpiration | see Sect. 4 | | E _{soil} | $m^3 m^{-2} s^{-1}$ | bare-soil evaporation | O (when snow present) | | PET | $m^3 m^{-2} s^{-1}$ | potential evapotranspiration | I | | | - | rI | |