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Abstract. A realistic representation of snowfall in general
circulation models (GCMs) of global climate is important to
accurately simulate snow cover, surface albedo, high-latitude
precipitation and thus the surface radiation budget. Hence, in
this study, we evaluate snowfall in a range of climate mod-
els run at two different resolutions by comparing to the lat-
est estimates of snowfall from the CloudSat Cloud Profiling
Radar over the northern latitudes. We also evaluate whether
the finer-resolution versions of the GCMs simulate the accu-
mulated snowfall better than their coarse-resolution counter-
parts. As the Arctic Oscillation (AO) is the prominent mode
of natural variability in the polar latitudes, the snowfall vari-
ability associated with the different phases of the AO is ex-
amined in both models and in our observational reference.
We report that the statistical distributions of snowfall differ
considerably between the models and CloudSat observations.
While CloudSat shows an exponential distribution of snow-
fall, the models show a Gaussian distribution that is heavily
positively skewed. As a result, the 10th and 50th percentiles,
representing the light and median snowfall, are overestimated
by up to factors of 3 and 1.5, respectively, in the models
investigated here. The overestimations are strongest during
the winter months compared to autumn and spring. The ex-
treme snowfall represented by the 90th percentiles, on the
other hand, is positively skewed, underestimating the snow-
fall estimates by up to a factor of 2 in the models in winter
compared to the CloudSat estimates. Though some regional
improvements can be seen with increased spatial resolution
within a particular model, it is not easy to identify a specific
pattern that holds across all models. The characteristic snow-

fall variability associated with the positive phase of AO over
Greenland Sea and central Eurasian Arctic is well captured
by the models.

1 Introduction

Snowfall is one of the key geophysical variables in the Earth
system. From the climate perspective, snowfall regulates the
surface albedo and air–surface interactions, thus playing a
key role in the radiation budget over the high-latitude re-
gions. Up to 80–90 % of incoming shortwave solar radiation
is reflected by snow-covered surfaces during winter (Geiger,
1957; Barry, 1996). At the same time, snow cover acts as an
excellent thermal insulator (Mellor, 1964; Sturm et al., 1997)
in winter when the radiation balance is dominated by long-
wave radiation losses to space. Loss of highly reflective Arc-
tic snow/ice surfaces would create more dark land or ocean
surfaces and hence enhance surface warming by increasing
the absorption of solar radiation. Snowfall is also the domi-
nant form of precipitation in the polar regions and an impor-
tant component of the hydrological cycle in the high-latitude
regions during the winter half year. Most recently, Li et al.
(2019) argued that the greenhouse effect of the falling snow
(longwave forcing) is an important process and can poten-
tially help explain the underestimated rate of sea-ice decline
in climate models.

From the weather perspective, snowfall is also a key vari-
able of socio-economic dimension. For example, snowfall
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events have an impact on air and surface traffic and winter
tourism. The lack of sufficient snowfall at ski resorts can have
large economic costs. Lake-effect snowfall is another exam-
ple that can have catastrophic impacts on resource planning
and economic costs down to a district level, as large amounts
of snow are deposited in a short time. Furthermore, heavy
snowfall events are linked to health concerns, such as heart
attacks, especially in the elderly and vulnerable population
(Auger et al., 2017).

In light of these multiple effects of snowfall, a good quan-
titative understanding of snowfall amount and its intrasea-
sonal and interannual variability is needed, not the least to
address key scientific questions related to future changes in
the Earth system. Recent studies indicate a decreasing trend
in snow cover over the Arctic, later snow cover onset and
earlier snow-free dates and decrease in snow cover duration
(Liston and Hiemstra, 2011; Callaghan et al., 2011). Declin-
ing Arctic sea ice is linked to heavy snowfall events over the
large parts of northern hemispheric continents during recent
winters (Liu et al., 2012). Also, studies have shown that the
Arctic Oscillation (AO), the main index of circulation in the
Arctic, has been in a positive phase over the last two decades,
thereby resulting in an increase in the winter precipitation in
northern Eurasia and a decrease over southern Eurasia and
northeast Canada (Givati and Rosenfeld, 2013; Qu et al.,
2015; Gong et al., 2014). The changes in the Arctic climate
system have further implications for the midlatitude weather
systems, including snowfall (Cohen et al., 2014, 2018).

In order to grasp a better understanding of such key pro-
cesses and, more importantly, to be able to predict future
changes in snowfall and associated feedbacks, both reli-
able observations of snowfall and high-fidelity global cli-
mate models are needed. Direct observations of snowfall
have been very difficult in the past. Most precipitation ob-
servations are available on land. Gridded snowfall observa-
tions over the polar and oceanic regions are lacking. As a
result, the snowfall variability and trends are often studied
based on the reanalysis datasets and models that determine
snowfall from climatology of temperature and precipitation
(Roesch, 2006; Krasting et al., 2013). In contrast to the snow-
fall amount, snow cover observations are available from a
number of passive satellite sensors with better spatiotempo-
ral coverage (Bokhorst et al., 2016).

With the launch of active Cloud Profiling Radar (CPR)
aboard NASA’s CloudSat satellite in 2006, realistic esti-
mates of global snowfall amounts are possible. Kulie et al.
(2016) provided a first near-global survey of snowfall from
shallow cumulus systems during CPR/CloudSat retrievals.
Most recently, Palerme et al. (2017) evaluated how well
the prominent global reanalysis datasets represent snowfall
over Antarctica. With a record spanning more than a decade,
CPR/CloudSat provides an unprecedented opportunity to sta-
tistically evaluate snowfall in global climate models.

The lack of snowfall observations in the past has meant
that the snowfall processes in global models are not likely

to be represented with high fidelity. Indeed, over the greater
Alpine region, Terzzago et al. (2017) have shown consider-
able differences between snowfall observations and model
simulations from the latest-generation regional and global
climate models (RCMs, GCMs) participating in the Coor-
dinated Regional Climate Downscaling Experiment over the
European domain (EURO-CORDEX) and in the fifth phase
of the Coupled Model Intercomparison Project (CMIP5) (Ja-
cob et al., 2014; Taylor et al., 2012).

The atmosphere–ocean coupled climate models from
CMIP5 indicate a snowfall redistribution in the Northern
Hemisphere in future climate scenarios (Krasting et al.,
2013). As greenhouse gases and surface temperature in-
creases in the Arctic are expected to continue for a few
more decades, studying snowfall–climate interactions be-
comes even more important. However, the first step in this
direction is to evaluate the fidelity of climate models in sim-
ulating spatiotemporal distribution of snowfall using obser-
vations. Such detailed evaluation of GCMs likely to partici-
pate in the next Intergovernmental Panel on Climate Change
(IPCC) assessments, using the latest CloudSat observations,
over the northern high latitudes, including the Arctic, is cur-
rently lacking. Hence, the main aim of this study is to eval-
uate the HighResMIP (High Resolution Model Intercompar-
ison Project) simulations for CMIP6 (Haarsma et al., 2016)
under the PRIMAVERA (PRocess-based climate sIMulation:
AdVances in high resolution modelling and European cli-
mate Risk Assessment) project. This project is a European
Union H2020 project, wherein a total of seven state-of-the-
art models are run at varying resolutions to understand the
impact of resolution on different global climate processes. In
this context, in the present study, we address the following
questions. (1) How well do the GCMs used in the framework
of the EU PRIMAVERA project simulate the northern high-
latitude snowfall? (2) Does increasing the spatial resolution
improve the snowfall representation in these models? (3) Do
the models simulate the snowfall variability associated with
the different phases of Arctic Oscillation (AO) realistically?

2 Models, observations and methodology

2.1 Models participating in the PRIMAVERA project

The snowfall from four HighResMIP models at different res-
olutions is evaluated against observations. Table 1 gives a
brief description of the models that were used in this study.
All models that are evaluated here are atmosphere-only mod-
els that are forced with the Hadley Centre Sea Ice and Sea
Surface Temperature dataset (HadISST2.2) (Kennedy et al.,
2017) and sea-ice concentrations and are run at two different
horizontal resolutions. Since the focus is on northern high
latitudes (beyond 50◦ N latitude), the models can be clas-
sified clearly into high (Hi-res) and low/coarse (Lo-res) se-
tups with high-/low-resolution setups having a resolution be-
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low/above 35 km. The model simulations cover the satellite
period from 1980 to 2015. The background aerosol climatol-
ogy varies from model to model. The anthropogenic aerosol
forcing is generated by the MACv2-SP method (Stevens
et al., 2017), wherein the aerosol forcing is calculated based
on the aerosol optical properties and fractional change in
cloud droplet number concentrations. External forcing fol-
lows the HighResMIP protocol described in Haarsma et al.
(2016). The state-of-the-art climate models feature prognos-
tic microphysics schemes with several species of condensed
water, typically liquid and ice cloud water, rain, snow and
possibly also graupel. All processes related to water clouds –
cloud condensation nuclei (CCN) activation, autoconversion
and accretion – are relatively well known and also well rep-
resented in climate models. Ice processes, on the other hand,
are far less explored and the parameterizations for ice nu-
clei activation or aggregation of ice crystals into snowflakes
are only crude approximations to the complex real processes.
Thus, the snowfall produced in the models is substantially
less validated against observations and therefore still rather
uncertain.

2.2 CloudSat snowfall retrievals

Launched in June 2006, nearly a decade-long record of
snowfall estimates is derived from the active CPR (94 GHz)
aboard NASA’s CloudSat satellite. While primarily designed
for studying the cloud vertical structure, CPR/CloudSat has
proved immensely useful in providing precipitation estimates
globally (cf. Stephens et al., 2018 for an overview). The
radar has an intrinsic vertical resolution of 485 m, but mea-
surements are oversampled to yield profiles at an effec-
tive vertical resolution of 239 m. CloudSat observes falling
snow between 82◦ N and 82◦ S latitude along a ground track
with a repeat cycle of 16 d (Kulie et al., 2016; McIlhattan
et al., 2017). Due to its Sun-synchronous orbital configura-
tion, the sampling is better at high-latitude regions (espe-
cially around 70◦ N), thus providing the first near-global esti-
mates of snowfall (Kulie et al., 2016; Hiley et al., 2011; Kulie
and Bennartz, 2009). In the present study, the 2C-SNOW-
PROFILE product (version 5.0) that gives the snowfall ac-
cumulation in mm month−1 from 2006 to 2016 is used for
evaluations (Wood, 2011; Wood et al., 2013). CloudSat ob-
servations are not available from May to October in 2011 due
to a battery failure. There were two other brief anomalies due
to battery failures in December 2009 and January 2011; how-
ever, neither lasted the whole month, so we still have data for
those months for the analysis.

Uncertainties in the CloudSat snowfall estimates de-
rive from numerous sources including the need to assume
an exponential particle size distribution with temperature-
dependent number concentration, the lack of explicit infor-
mation about particle density, potential influences of atten-
uation from supercooled liquid water and the blind zone
induced by ground clutter contamination in the four low-

est CPR range bins that extends to 1 km above the surface
(Hiley et al., 2011; Kulie and Bennartz, 2009). The im-
pacts of these uncertainties have been assessed through nu-
merous prior studies that compare CloudSat snowfall esti-
mates to ground-based radar, in situ accumulation measure-
ments, and seasonal and continental-scale accumulation es-
timates from reanalyses. While each source of snowfall in-
formation used in these studies has its own strengths and
weaknesses precluding absolute error estimates from being
derived, these studies generally suggest that the CloudSat
snowfall product performs well over midlatitude and high-
latitude regions. Comparisons against ground-based radar
networks in the United States and Sweden, for example, sug-
gest that CloudSat reproduces snowfall frequency and ac-
cumulation to within 25 % of ground-based radar over the
range of scenes where the latter provide these measurements
(Smalley et al., 2014; Norin et al., 2015, 2017). Palerme
et al. (2014, 2017) further demonstrate that on continen-
tal scales, CloudSat reproduces seasonal snowfall accumu-
lations in the ECMWF ERA-Interim reanalyses with high fi-
delity. While ERA-Interim regional snowfall accumulations
suffer from model uncertainties, the integrated accumula-
tion over Antarctica ultimately represents the net water va-
por convergence over the ice sheet. Since the reanalyses rou-
tinely assimilate water vapor from satellite observations, this
integrated accumulation is well constrained by independent
satellite observations and provides a strong constraint on the
net snowfall over the ice sheet. This result is further sup-
ported by Boening et al. (2012), who show remarkable con-
sistency between estimates of recent Antarctic snowfall vari-
ability derived from reanalyses and CloudSat and completely
independent ice sheet mass estimates from the Gravity Re-
covery and Climate Explorer (GRACE) satellite.

Nevertheless, a number of recent studies have pointed out
the inherent limitations in the CloudSat observations that
must be acknowledged when considering the results that fol-
low. For example, due to contamination from ground clut-
ter, CloudSat snowfall estimates must be extrapolated from
1 km above the surface (Smalley et al., 2014). This has im-
plications for the snowfall estimates in those regions in the
Arctic where low-level supercooled liquid clouds or diamond
dust that precipitate very light snow are observed (Lemonnier
and Wood, 2019). The snowfall from these systems could be
either underestimated or missed entirely by CloudSat (Ben-
nartz et al., 2019), although a recent study by Maahn et al.
(2014) showed that a fraction of this underestimation may be
offset by snow virga that CloudSat also fails to represent be-
low 1 km. It is beyond the scope of the current study to add
to the existing body of literature concerning the evaluation
of CloudSat snowfall estimates but additional discussion of
the strengths and limitations of the dataset can be found in
Panegrossi et al. (2017) and Milani et al. (2018).

Another important limitation associated with the Cloud-
Sat snowfall observations is the limited spatial sampling pro-
vided by the nadir-sampling CPR. This is somewhat miti-
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Table 1. List of the models analyzed in this study.

Models used Grid name Resolution at 0◦ N Resolution at 50◦ N Atmosphere References

HadGEM3-GC31-HM N512L85 ∼ 40 km ∼ 25 km MetUM-GA7.1 Williams et al. (2017)
HadGEM3-GC31-MM N216L85 ∼ 90 km ∼ 60 km MetUM-GA7.1 Williams et al. (2017)
EC-Earth3-HR T511L91 ∼ 40 km ∼ 35 km IFS CY36r4 Haarsma et al. (2019)
EC-Earth3 T255L91 ∼ 80 km ∼ 70 km IFS CY36r4 Haarsma et al. (2019)
MPI-ESM-XR T255L95 ∼ 50 km ∼ 35 km ECHAM6.3 Stevens et al. (2013)
MPI-ESM-HR T127L95 ∼ 100 km ∼ 65 km ECHAM6.3 Stevens et al. (2013)
ECMWF-HR Tco399L91 ∼ 25 km ∼ 25 km IFS CY43r1 Roberts et al. (2018)
ECMWF-LR Tco199L91 ∼ 50 km ∼ 50 km IFS CY43r1 Roberts et al. (2018)

gated at high latitudes where sampling is greatly increased
over lower latitudes, in particular if data are regridded to
coarser resolution.

2.3 Methodology

The models output snowfall as snowfall flux (kg m−2 s−1).
This monthly flux is converted into snowfall rate in
mm month−1 using standard density of water. For the analy-
sis, the model output is regridded to a 1◦

×1◦ grid. However,
in the case of the observations, CloudSat has poor sampling
(as mentioned in Sect. 2.2) along the latitudes as the spacing
between the longitudes in the Arctic is very low. Hence, so
as to avoid patchiness, CloudSat data are accumulated over a
3◦ longitude and 1◦ latitude grid and averaged over the sea-
sons. This would still provide a sufficient number of samples
to compute robust statistics. The following subsections de-
scribe the methodology adopted in this study to evaluate the
model-derived snowfall against observations.

2.3.1 Analysis of snowfall percentiles

The seasonality in monthly accumulated snowfall amounts
over the Arctic (north of 50◦ N) is evaluated in the
model simulations against CloudSat retrievals. In this study,
the results are presented for the autumn (September–
October–November), winter (December–January–February)
and spring (March–April–May) seasons separately. Since the
snowfall distribution is often skewed, we evaluated percentile
thresholds rather than averages to properly take into ac-
count the spread in the snowfall distribution. Three percentile
thresholds, p10, p50 and p90, are used. The evaluation of p10
and p90 provides information on how the light and extreme
snowfall events are captured by models, respectively, and p50
corresponds to the median snowfall. Since the CloudSat ob-
servations span the latest 10-year period from 2006 to 2016,
a similar 10-year period from 2005 to 2014 is chosen from
the model simulations.

2.3.2 AO analysis

The AO is the most dominant mode of natural atmo-
spheric variability in the Arctic (Thompson and Wallace,

1998, 2000). For the observational reference, AO index
from the NOAA web page (https://www.ncdc.noaa.gov/
teleconnections/ao/) is chosen. Since the CloudSat data span
only 10 years, the snowfall accumulation associated with all
the positive and negative AO cases is considered. The model-
simulated AO index (Thompson and Wallace, 1998) is de-
fined as the first leading mode of empirical orthogonal func-
tion (EOF) analysis of monthly sea-level pressure anomalies
poleward of 20◦ N latitude. The extended time period from
1980–2014 is used here to compute the AO index so as to dis-
regard the internal/interannual variability arising from other
sources.

3 Results

Statistical evaluations using CloudSat retrievals

Figures 1–3, respectively, show the p10, p50 and p90 per-
centiles in snowfall from CloudSat (first row) and from the
Hi-res models (rows 2–5). The three columns show the com-
parison for three seasons. The snowfall estimates from the
Lo-res models are shown in Figs. S1–S3 in the Supplement.
To establish that there is a sufficient number of snowfall
events to calculate the statistics, the total number of snowing
pixels available at the original 1◦

× 1◦ CloudSat grid, accu-
mulated for each season studied here from 2006 to 2014, and
the monthly time series of the number of snowing pixels ac-
cumulated over the three selected regions shown in Fig. 5 are
presented in Fig. S4. It can be seen that the monthly averages
during the SON, DJF and MAM months are not represented
by just a few strong events, and there are more than 2000
snowing pixels, depending on the region and the season.

The models simulate the spatial distribution of light snow-
fall (Fig. 1) reasonably well over southern Greenland, the
Eurasian Arctic and northwestern Pacific during the winter
months (DJF). However, p10 thresholds are up to a factor of 3
higher in the majority of the Hi-res models compared to the
CloudSat observations over these regions, suggesting heavy
overestimation of moderate snowfall and a strong negative
skewness in the snowfall distribution in the models com-
pared to the CloudSat observations. Here, it needs to be noted
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that CloudSat misses or underestimates the light snowfall be-
low 1000 m due to contamination from ground clutter as ex-
plained in Sect. 2.2. This means that when analyzing the per-
centiles, the p10 in CloudSat could further shift to the lower
values if we take into account these light snowfall events.
This could result in an even larger difference between mod-
els and satellite retrievals. However, the knowledge about the
frequency of occurrence of such events is lacking, as we do
not have sufficient observations covering the Arctic.

Among the Hi-res models, MPI-ESM captures the light
snowfall over these regions reasonably well. Excessive light
snowfall is simulated over eastern Europe and Russia in win-
ter compared to the observations. The Hi-res models, in gen-
eral, tend to overestimate light snowfall in those high oro-
graphic regions such as along the Rocky and Ural moun-
tain ranges and also at the border between the West Siberian
Plain and the central Siberian upland during winter, which
is not observed in the CloudSat retrievals. During autumn
and spring months, a similar tendency is seen, but the mod-
els simulate the light snowfall well over Eurasia. The 10th
percentiles lie around 5–10 mm month−1 in the Hi-res mod-
els, whereas this threshold is around 2–4 mm month−1 in the
observations during these months. The southward extent of
light snowfall that is observed in CloudSat, particularly over
Europe/western Eurasia and over northern North America,
is not simulated by the models. Irrespective of the season,
the models strongly underestimate the light snowfall over the
Gulf of Alaska.

The spatial distribution of median snowfall (Fig. 2) is
represented well by the models, including over the moun-
tainous regions in all the seasons. The regridding applied
to the CloudSat snowfall data to obtain sufficient samples
and to increase the robustness of the results has smoothed
out such specifics to a certain extent compared to the Hi-
res simulations. The increase of snowfall over the regions
of high orography is still evident during the winter months.
Here, too, the snowfall distribution in the models is nega-
tively skewed compared to the observations, with the median
snowfall overestimated by up to a factor of 1.5 in the Hi-
res model setups in winter. The median snowfall lies around
40–50 mm month−1 in the heavy snowfall regions in the ob-
servations such as over southern Greenland and over the An-
des mountain range, whereas in the models this lies above
60 mm month−1. The models simulate the snowfall reason-
ably well during autumn and spring months both spatially
and in magnitude; however, it has to be noted that the me-
dian snowfall in the models does not extend as far as 50◦ N
as it does in the observations.

The accumulated extreme snowfall amounts, expressed as
the 90th percentile, are shown in Fig. 3 from observations
and Hi-res model setups. In this case, an opposite picture to
that seen in the light and median snowfall is evident. Here,
the models do not capture the spatial distribution of extreme
snowfall, particularly, in autumn and spring months. The
snowfall amount is markedly underestimated in all the sea-

Figure 1. The 10th percentile thresholds of monthly snowfall ac-
cumulations (mm month−1) for the SON, DJF and MAM months
in the three columns, respectively. The top row shows the CloudSat
observations and the other four rows below show snowfall from the
Hi-res setups of HadGEM3, EC-Earth3, MPI-ESM and ECMWF,
respectively.
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Figure 2. Same as Fig. 1 but at the 50th percentile threshold.

sons by all the models. In winter, though the models simu-
late the regions of heavy snowfall realistically over southern
Greenland, over the western Pacific, they underestimate the
magnitude by up to almost one-half compared to the observa-

tions. In this case, the snowfall distributions simulated by the
models are positively skewed, with the 90th percentile value
lying between 100 and 150 mm month−1 in the CloudSat re-
trievals and between 50 and 100 mm month−1 in the Hi-res
model simulations.

These results are consistent with the study by Kay et al.
(2018) applying a CloudSat simulator to the Community
Earth System Model (CESM version 1) to evaluate the pre-
cipitation globally. Fully coupled simulations also showed
similar tendencies, such as excessive light snow and inade-
quate heavy snowfall amounts, as atmospheric-only simula-
tions over midlatitudes and high latitudes. This means that
the main biases are from the atmospheric model due to the
simplified parameterizations used in the representation of the
complex ice processes.

4 The impact of higher spatial resolution

As discussed in the previous section, the Hi-res model se-
tups tend to overestimate light snowfall and underestimate
extreme snowfall amounts more strongly in winter compared
to the other months. To understand if increasing the spatial
resolution would impact the snowfall distribution, the dif-
ference between the Hi-res model setups and their standard-
resolution (Std-res) counterparts is analyzed and shown in
Fig. 4 for the winter months. In this section, we focus on
three main regions, namely, the north Pacific, Eurasian Arc-
tic Ocean and south of Greenland. Columns 1–3 denote the
three percentiles, p10, p50 and p90, respectively.

Over the northeast Pacific, the Hi-res setup of ECMWF
overestimates light snowfall (i.e., 10th percentiles) by around
10–15 mm, whereas the Hi-res HadGEM3 model underesti-
mates this compared to its Std-res counterpart. This means
that the Hi-res setup of the HadGEM3 model reduces the
positive bias, whereas the Std-res setup of the ECMWF
model reduces the positive bias over this region. The Hi-res
ECMWF and EC-Earth model versions overestimate the light
snowfall amounts over Norwegian and Greenland seas. Light
snowfall is overestimated in the Hi-res HadGEM3 model
over the south of Greenland, whereas this is underestimated
in EC-Earth and ECMWF models. Light snowfall is underes-
timated in the Hi-res ECMWF model along the east coast of
Greenland. A change in resolution does not impact the sim-
ulation of light snowfall in the MPI-ESM model over these
regions.

No notable change in the simulation of median snowfall
(i.e., 50th percentiles) with change in resolution is seen in all
the three models over the north Pacific, except HadGEM3,
wherein a strong underestimation is seen in its Hi-res ver-
sion. There is a marginal overestimation in the Barents Sea
by the Hi-res EC-Earth model and an underestimation south
of Greenland. A very patchy picture is seen in the median
snowfall differences between the Hi-res and the Std-res setup
of MPI-ESM, where no clear conclusions can be drawn. Over
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Figure 3. Same as Fig. 1 but at the 90th percentile threshold.

southern Greenland, the Hi-res setup of HadGEM3 overesti-
mates the snowfall amount, whereas an opposite sign is seen
in the EC-Earth model.

As explained in the previous section, the Hi-res setups
of all the models used in this study underestimate the ex-
treme snowfall (90th percentiles) by more than 50 %. Strik-
ing changes can be seen in the all the models with increasing
resolution in this case. The Hi-res setups of HadGEM3, EC-
Earth and ECMWF models overestimate the extreme snow-
fall over the Norwegian, Barents and Greenland seas com-
pared to their low-resolution counterparts. This means that
the Hi-res setup of these models improves the simulation
of extreme snowfall in these regions. Similarly, an improve-
ment can be seen around the Bering Strait in HadGEM3 and
ECMWF models. The differences are patchy in the MPI-
ESM model.

It was previously reported that the impact of using a
higher model resolution is more profound when going from
a coarser than 1◦ to about 50 km grid resolution but only has
relatively small changes for further resolution increases to
10–20 km (Jung et al., 2012) in the simulation of extratrop-
ical cyclone characteristics. In this study, the high-latitude
model resolutions vary from 50–60 to ∼ 25 km. Therefore, it
is not surprising that only marginal changes are found. How-
ever, it needs to be noted that the resolution impact for single
snowfall events on smaller temporal scales might differ from
the monthly accumulated snowfalls.

5 Seasonality and interannual variability over selected
regions

To analyze the interannual variability in snowfall, four re-
gions are selected: three as shown in Fig. 5 and the Arctic
region north of 70◦ N. The selection is based on Figs. 1 to 3.
These regions show high snowfall variability. Regions 1 to
3 are southern Greenland, the Eurasian Arctic Ocean and
northwest Pacific, respectively. The time series of average
snowfall in mm month−1 is presented in Fig. 6 for these
three regions for the period 2005–2015. CloudSat observa-
tions are not available from May to October in 2011 due to a
battery failure. The ensemble mean of monthly accumulated
snowfall amounts from the Hi-res models and Std-res mod-
els are presented as the red and green curves and the Cloud-
Sat retrievals as the blue curve. Over southern Greenland, the
northwest Pacific and Arctic, the simulated snowfall is over-
estimated, irrespective of the model resolution. Similar over-
estimation in snowfall is also simulated in the CMIP5 mod-
els over Antarctica (Palerme et al., 2017). The models seem
to agree well with the observations over the Eurasian Arc-
tic ocean. It can be noted that the wintertime seasonality in
snowfall is more prolonged in the models, irrespective of the
region, compared to the CloudSat observations. Simulation
of snowfall is almost insensitive to the change in resolution
over these regions.

The observed differences between the models and Cloud-
Sat observations can be best explained by investigating the
statistical distribution of snowfall accumulation over the se-
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Figure 4. The differences between Hi-res and Std-res model-
simulated snowfall (Hi-res minus Std-res) for the DJF months for
the 10th (left column), 50th (center) and 90th percentiles (right col-
umn).

lected regions. Figure 7 shows this comparison of these dis-
tributions. In addition to the selected three regions, the snow-
fall distribution covering nearly the entire Arctic (70–82◦ N,
180◦ W–180◦ E; denoted as R4) is also shown. It is evident
that the snowfall follows an exponential distribution, while
all models show a Gaussian distribution that is heavily pos-
itively skewed. The light snowfall amounts are strongly un-
derrepresented in the models. The right-hand tail of the dis-
tribution in CPR/CloudSat derived snowfall is much longer
compared to the models. It is also interesting to note that
the distributions have different shapes over the three selected

Figure 5. Regions selected for this study. Reg1: southern Green-
land; Reg2: Eurasian Arctic Ocean; and Reg3: northwest Pacific.

areas, both in the models and observations, suggesting the
importance of evaluating the distributions regionally.

To summarize the model evaluation in a more quantitative
manner and to add another dimension to the evaluation, the
standard deviations, root mean squared differences and Pear-
son correlation coefficients are presented in Fig. 8 as a Tay-
lor diagram using the entire time series for the three regions
shown in Fig. 5 and as well as for the Arctic region (70–
83◦N, 180◦ W–180◦ E, denoted as Reg4). The color-filled
circles show results for the high-resolution versions and the
empty circles their standard resolution counterparts. The cor-
relations typically range between 0.6 and 0.8 irrespective of
the region. Over all the regions and in the models, the snow-
fall variability is higher compared to the CloudSat obser-
vations. The regional differences among models are strong.
For example, over Reg1, the standard deviations have large
spread among models, while over Reg3 the models tend to
cluster together (except MPI-ESM versions which are closest
to the observations) and have similar variability. The compar-
ison of standard resolution model versions with their high-
resolution counterparts against CloudSat observations does
not show a clear improvement in the high-resolution versions
or a particular tendency that holds across all models.

6 Response of snowfall to the AO

AO determines the degree to which the Arctic air penetrates
into the midlatitudes, and vice versa. The phases of the AO
determine the interannual precipitation variability not only in
the Arctic but also over Eurasia and North America (Bamzai,
2003). Considering the importance of wintertime snowfall
variability associated with the AO in the Arctic climate sys-
tem, we evaluated how well the models in question are able
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Figure 6. Time series of snowfall (mm month−1) for the period 2005–2015 from CloudSat (blue line), Hi-res ensemble model mean (red)
and Std-res ensemble model mean (green) over the three regions shown in Fig. 5 and over the whole Arctic.

Figure 7. Statistical distribution of snowfall accumulation (mm month−1) over the three regions (R1–R3) shown in Fig. 5 and R4: over the
entire Arctic (70–82◦ N) from Hi-res models and CloudSat observations. The vertical lines denote the p10 and p90 percentiles.

to capture the changes in the snowfall associated with the
positive and negative phases of winter AO (DJF).

Figure 9 shows the snowfall response to the AO in terms
of the differences in snowfall amounts between the positive
and negative phases of the AO. The top row shows this re-
sponse in the CloudSat observations. The other rows show

the same for the Hi-res and Std-res setups. During the posi-
tive phases, the cyclonic systems penetrate deeper northward
into the Greenland Sea and central Eurasian Arctic, leading
to increased snowfall over these regions. In these cases, the
snowfall is reduced over southern Greenland (Appenzeller
et al., 1998). This characteristic snowfall response to the AO

www.geosci-model-dev.net/12/3759/2019/ Geosci. Model Dev., 12, 3759–3772, 2019



3768 M. A. Thomas et al.: Evaluation of Arctic snowfall

Figure 8. Taylor diagram of snowfall accumulation over the four regions from both Hi-res and Std-res models with respect to CloudSat
observations. The empty circles denote the Std-res version of the models and the filled circles denote their Hi-res counterparts.

is captured well in the CloudSat observations. All models,
however, show a consistence increase in the oceanic snowfall
from the northern North Atlantic to the northernmost parts
of the Greenland Sea. Irrespective of the models or model
resolutions, the observed decrease in snowfall over southern
Greenland is not simulated. This is due to the fact that the
North Atlantic storm tracks during the positive phase of AO
are either too zonal or shifted more southward in the climate
models resulting in weaker cyclonic systems over the Green-
land and Norwegian seas and stronger systems over conti-
nental Europe (Zappa et al., 2013). The Hi-res versions of
the EC-EARTH and ECMWF models show even a stronger
snowfall response to the AO over the oceanic regions around
Greenland compared to their Std-res counterparts. The oppo-
site tendency is observed in the case of HadGEM and MPI-
ESM models over the same region. The CloudSat observa-
tions further show increased snowfall over continental re-
gions covering the Ural Mountains and West Siberian Plain.
All models also show this increase, albeit to a varying degree.
In the Pacific sector of the Arctic, CloudSat observations do
not show any clear, robust snowfall response to the AO. The
simulated snowfall responses in the Hi-Res and Std-res se-
tups of EC-Earth are strikingly different from one another in
this sector.

7 Conclusions

The ice processes and their parameterizations in the climate
models, especially snowfall, are not adequately evaluated us-
ing observations. Given the importance of snowfall both from
the climate and weather perspectives and the recent avail-
ability of snowfall estimates from CloudSat, we carried out
a detailed comparison from a wide range of climate models
at two horizontal resolutions each with satellite observations,
with a focus over the Arctic. The following conclusions can
be drawn from the comparisons.

The statistical distribution of snowfall is narrower in the
GCMs compared to the CloudSat observations. In the case of
light snowfall (10th percentiles), all high-resolution versions
of the GCMs that are investigated here simulate the spatial
distribution of light snowfall realistically. However, the 10th
percentiles are overestimated by a factor of up to 3 in all the
GCMs compared to the CloudSat observations. The Hi-res
model setups overestimate light snowfall over the mountain-
ous regions such as along the Rockies and Ural Mountains
compared to their Std-res counterparts. The median snowfall
represented by 50th percentiles is also up to a factor of 1.5
high in the models. The median snowfall lies around 40–
50 mm month−1 in those heavy snowfall regions such as over
southern Greenland and over the Andes in the observations,
whereas these percentiles lie above 60 mm month−1 in the
models. While the extreme snowfall accumulation (90th per-
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Figure 9. Difference between positive and negative phases of AO
(AOP-AON) in snowfall accumulation (mm month−1) from Cloud-
Sat (top row) and models (rows 2–5). The Hi-res setups are on the
left and their Std-res counterparts are on the right.

centiles) is simulated better by the models, it is, in contrast to
light and median snowfall, underestimated compared to the
CloudSat observations.

The main reason behind the observed differences in the
10th, 50th and 90th percentiles of monthly snowfall accumu-
lation is the fact that the CloudSat and models have different
statistical distributions. The observed snowfall distribution
follows an exponential distribution over the Arctic (north of
50◦ N), while all models follow a Gaussian distribution that
is strongly positively skewed. This indicates that the light
drizzle in the models is not adequately sensitive to the trig-
gering/initiation and sustenance processes. On the other side
of the statistical distribution, the models often remove cloud
water quicker than expected in the heavy precipitation sce-
nario, thus not allowing the building up of extreme snowfall
as observed by CloudSat.

The wintertime seasonality in snowfall is more prolonged
in the models compared to the CloudSat observations. The
overestimation in model-simulated snowfall in the p10 and
p50 percentiles is strongest during the DJF months. This in-
dicates that the hydrometeor phase partitioning in the models
is probably not realistic, in that the supercooled cloud liquid
water and light liquid drizzle are underrepresented. This has
implications for the local radiation budget, as the dynamical
and radiative impacts of having prolonged wintertime snow-
fall at the expense of adequate liquid precipitation can be
quite different.

Apart from the traditional statistical comparisons summa-
rized above, we further investigated the snowfall response
during the Arctic Oscillation. Such process-oriented eval-
uation provides an additional insight into how the models
simulate a process that is a key for representing the dom-
inant natural variability over this region. The characteristic
snowfall variability during the AO, with increased snowfall
over Greenland Sea and central Eurasian Arctic and reduced
snowfall over southern Greenland and continental Europe, is
captured well in CloudSat despite the short time period of the
observations. The models simulate the increased snowfall in
the above-mentioned regions realistically at varying magni-
tudes, but the snowfall reduction over southern Greenland is
not simulated by any of the models.

Finally, since one of the main aims of the PRIMAVERA
project is to examine the importance of having high spatial
resolution, here, the high-resolution model simulations are
contrasted against their standard-resolution counterparts. Al-
though some regional improvements are seen in the snowfall
estimates with a change in atmospheric resolution within a
particular model, these improvements are minor and it is not
easy to single out a particular pattern or systematic behavior
that holds across all high-resolution models. This indicates
that representing physical processes accurately in models is
more important than purely improving spatial resolution, al-
though both go hand in hand to a certain extent.

In a cautionary note, it should be acknowledged here that,
although 10 years of snowfall estimates are now available
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from CPR/CloudSat, this time period is still shorter consid-
ering that the natural/internal variability can occur on multi-
decadal timescales. It is therefore not expected that the mod-
els simulate all regional features realistically compared to
CloudSat observations. CloudSat nonetheless provides the
most reliable estimates of snowfall to date globally, and
hence such evaluation provides insight into how well mod-
els can simulate snowfall to a first order.
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in this study will be available through the European Re-
search Council Horizon 2020 PRIMAVERA project (https://www.
primavera-h2020.eu/modelling/, last access: 21 June 2019). More
information regarding model configurations and data availability
are available from the authors upon request. All CloudSat data
used here are freely available through the CloudSat Data Pro-
cessing Center and at the time of writing can be accessed on-
line at http://www.cloudsat.cira.colostate.edu (last access: 19 March
2019). The MATLAB and CDO scripts used in this intercomparison
are available from the lead author upon request.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-12-3759-2019-supplement.

Author contributions. The first author performed the analysis and
drafted the manuscript. TL’E provided the snowfall estimates from
CloudSat. All the co-authors contributed to the interpretation of the
results and review of the manuscript.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This study was financially supported by PRI-
MAVERA (PRocess-based climate sIMulation: AdVances in high
resolution modelling and European climate Risk Assessment), a
Horizon 2020 project funded by the European Commission. We
thank the two anonymous referees and the editor, Alexander Robel,
for providing constructive suggestions in improving the manuscript.

Financial support. This research has been supported by the Hori-
zon 2020 Framework Programme, H2020 European Research
Council (PRIMAVERA (grant no. 641727)).

Review statement. This paper was edited by Alexander Robel and
reviewed by two anonymous referees.

References

Appenzeller, C., Stocker, T. F., and Anklin, M.: North Atlantic Os-
cillation dynamics recorded in Greenland ice cores, Science, 282,
446–449, 1998.

Auger, N., Potter, B. J., Smargiassi, A., Bilodeau-Bertrand, M.,
Paris, C., and Kosatsky, T.: Association between quantity and du-
ration of snowfall and risk of myocardial infarction, CMAJ, 189,
235–242, https://doi.org/10.1503/cmaj.161064, 2017.

Bamzai, A. S.: Relationship between snow cover variability and
Arctic Oscillation on a hierarchy of time scales, Int. J. Climatol.,
23, 131–143, 2003.

Barry, R. G.: The parameterization of surface albedo
for sea ice and its snow cover, Progress in Physi-
cal Geography: Earth and Environment, 20, 63–79,
https://doi.org/10.1177/030913339602000104, 1996.

Bennartz, R., Fell, F., Pettersen, C., Shupe, M. D., and Schuet-
temeyer, D.: Spatial and temporal variability of snowfall over
Greenland from CloudSat observations, Atmos. Chem. Phys., 19,
8101–8121, https://doi.org/10.5194/acp-19-8101-2019, 2019.

Boening, C., Lebsock, M., Landerer, F., and Stephens, G.: Snowfall
driven mass change on the East Antarctic Ice Sheet, Geophys.
Res. Lett., 39, L21501, https://doi.org/10.1029/2012GL053316,
2012.

Bokhorst, S., Pedersen, S. H., Brucker, L., Anisimov, O., Bjerke,
J. W., Brown, R. D., Ehrich, D., Essery, R. L. H., Heilig,
A., Ingvander, S., Johansson, C., Johansson, M., Jónsdóttir,
I. S., Inga, N., Luojus, K., Macelloni, G., Mariash, H., McLen-
nan, D., Rosqvist, G. N., Sato, A., Savela, H., Schneebeli, M.,
Sokolov, A., Sokratov, S. A., Terzago, S., Vikhamar-Schuler, D.,
Williamson, S., Qiu, Y., and Callaghan, T. V.: Changing Arctic
snow cover: A review of recent developments and assessment
of future needs for observations, modelling and impacts, Ambio,
45, 516–537, https://doi.org/10.1007/s13280-016-0770-0, 2016.

Callaghan, T., Johansson, M., Brown, R., Groisman, P., Labba, N.,
Radionov, V., Barry, R., Bulygina, O., Essery, R., Frolov, D., Gol-
ubev, V., Grenfell, T., Petrushina, M., Razuvaev, V., Robinson,
D., Romanov, P., Shindell, D., Shmakin, A., Sokratov, S., War-
ren, S., and Yang, D.: The changing face of Arctic snow cover: A
synthesis of observed and projected changes, Ambio, 40, 17–31,
https://doi.org/10.1007/s13280-011-0212-y, 2011.

Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D.,
Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland,
J., and Jones, J.: Recent Arctic amplification and extreme mid-
latitude weather, Nat. GeoSci., 7, 627–637, 2014.

Cohen, J., Pfeiffer, K., and Francis, J. A.: Warm Arctic
episodes linked with increased frequency of extreme win-
ter weather in the United States, Nat. Commun., 9, 869,
https://doi.org/10.1038/s41467-018-02992-9, 2018.

Geiger, R.: The Climate near the ground, Harvard Univ. Press, Cam-
bridge, MA, USA, 1957.

Givati, A. and Rosenfeld, D.: The Arctic Oscillation, climate change
and the effects on precipitation in Israel, Atmos. Res., 132–133,
114–124, https://doi.org/10.1016/j.atmosres.2013.05.001, 2013.

Gong, D. Y., Gao, Y. Q., Guo, D., Mao, R., Yang, J., Hu, M., and
Gao, M. N.: Interannual linkage between Arctic/North Atlantic
oscillation and tropical Indian Ocean precipitation during boreal
winter, Clim. Dynam., 42, 1007–1027, 2014.

Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci,
A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von
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