Corrigendum to Geosci. Model Dev., 12, 4375–4385, 2019 https://doi.org/10.5194/gmd-12-4375-2019-corrigendum © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Corrigendum to

"The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions" published in Geosci. Model Dev., 12, 4375–4385, 2019

Chris D. Jones¹, Thomas L. Frölicher^{2,3}, Charles Koven⁴, Andrew H. MacDougall⁵, H. Damon Matthews⁶, Kirsten Zickfeld⁷, Joeri Rogelj^{8,9}, Katarzyna B. Tokarska^{10,11}, Nathan P. Gillett¹², Tatiana Ilyina¹³, Malte Meinshausen^{14,15}, Nadine Mengis^{7,16}, Roland Séférian¹⁷, Michael Eby¹⁸, and Friedrich A. Burger^{2,3}

Correspondence: Chris D. Jones (chris.d.jones@metoffice.gov.uk)

Published: 3 April 2020

An error has been found in the calculation of the emissions for the Bell-shaped simulations B1–B3.

Due to a rounding error in Python code, the calculation of $\sigma = 100/6$ resulted in an integer value of 16 rather than a float value of 16.667. The result is that the emissions presented in table A1 and provided on the C4MIP website are slightly inconsistent with the stated equation.

The difference in cumulative total is minor but non-zero. The values given sum to 750.695, 1000.927, and

2001.855 PgC, respectively, rather than 750, 1000, and 2000 PgC. We believe that most model groups have used the data provided, and so the recommendation from ZECMIP is to continue to use these numbers. If groups have normalised their emissions profile to give the correct cumulative total, then that is acceptable as the impact will be very minor (< 0.1%). But if groups need to derive their own emissions – for example to create monthly timeseries – then we now provide the python code below to replicate the values pub-

¹Met Office Hadley Centre, Exeter, EX1 3PB, UK

²Climate and Environmental Physics, Physics Institute, University of Bern, Bern, 3012, Switzerland

³Oeschger Centre for Climate Change Research, University of Bern, Bern, 3012, Switzerland

⁴Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

⁵St. Francis Xavier University, Antigonish, B2G 2W5, Canada

⁶Concordia University, Montreal, Quebec, H3G 1M8, Canada

⁷Department of Geography, Simon Fraser University, Burnaby, V5A 1S6, Canada

⁸International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria

⁹Grantham Institute for Climate Change and the Environment, Imperial College London, London, SW7 2AZ, UK

¹⁰School of Geosciences, The University of Edinburgh, Edinburgh, EH9 3FF, UK

¹¹Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

¹²Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC, V8W 2Y2, Canada

¹³Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany

¹⁴Climate & Energy College, School of Earth Sciences, The University of Melbourne, Parkville 3010, Victoria, Australia

¹⁵Potsdam Institute for Climate Impact Research (PIK), Telegrafenberg, 14412 Potsdam, Germany

¹⁶Helmholtz Centre for Ocean Research Kiel (GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany

¹⁷Centre National de Recherches Météorologiques (CNRM), Université de Toulouse, Météo-France, CNRS, Toulouse, France

¹⁸School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada

lished. Essentially, a value of 96/16 should be used in place of 100/16. Note that Python2 and Python3 behave differently with respect to integer division.

```
#-----
# Import modules
#-----
import numpy as np
#-----
# Parameters
#----
#Period = 100 # use 96 instead of 100 to
re-create published values
Period = 96
CumulativeE = [750,1000,2000] # cumulative
emissions (PgC)
m=np.size(CumulativeE)
#----
# Variables
#-----
Time = np.arange(0.5, 200.5, 1)
t=np.size(Time)
Pathways = np.zeros((t,m))
#-----
# Create Emission Pathways
for j in range (0, m):
  #-----
  # Constants
  #-----
  SD=Period/6
  CE=CumulativeE[j]/0.997300204
  Mu=Period/2
  #-----
  # Function
  #-----
  Emissions = CE*((1/(SD*np.sqrt(2*np.pi)))
  *np.exp(-0.5*(((Time-Mu)/SD)**2)))
  # Zero after period ends
```

```
Emissions[Period:]=0
    # enter into holding array
    Pathways[:,j]=Emissions
print (Pathways)
```