Corrigendum to Geosci. Model Dev., 14, 1987–2010, 2021 https://doi.org/10.5194/gmd-14-1987-2021-corrigendum © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Corrigendum to "Global evaluation of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 (r5986)" published in Geosci. Model Dev., 14, 1987–2010, 2021

Yan Sun¹, Daniel S. Goll^{1,2}, Jinfeng Chang³, Philippe Ciais¹, Betrand Guenet^{1,4}, Julian Helfenstein⁵, Yuanyuan Huang^{1,6}, Ronny Lauerwald^{1,7}, Fabienne Maignan¹, Victoria Naipal^{1,8}, Yilong Wang^{1,9}, Hui Yang¹, and Haicheng Zhang^{1,7}

¹Laboratoire des Sciences du Climat et de 1'Environnement/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif sur Yvette, 91191, France

²Department of Geography, University of Augsburg, Augsburg, Germany

³Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361 Laxenburg, Austria

⁴Laboratoire de Géologie, UMR 8538, Ecole Normale Supérieure, PSL Research University, CNRS, Paris, France ⁵Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland

⁶CSIRO Oceans and Atmosphere, Aspendale 3195, Australia

⁷Department Geoscience, Environment & Society, Universite libre de Bruxelles, 1050 Brussels, Belgium

⁸Department of Geography, Ludwig-Maximilian University, Munich, Germany

⁹Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Correspondence: Yan Sun (ysun@lsce.ipsl.fr) and Daniel S. Goll (dsgoll123@gmail.com)

Published: 21 April 2021

During the production process, a mistake was inserted into Eq. (4). Please find the correct paragraph from Sect. 4.2 hereinafter: Here, we evaluate the resource use efficiencies of GPP for light (L), water (W), C, N and P defined by

$$LUE = \frac{GPP}{fAPAR \times PAR},$$
(2)

$$WUE = \frac{GPP}{ET},$$
(3)

$$CUE = \frac{NPP}{GPP},$$
(4)

$$NUE = \frac{GPP}{F_N},$$
(5)

$$PUE = \frac{GPP}{F_P},$$
(6)

where NPP is net primary productivity (g C m⁻² yr⁻¹), GPP is the annual gross primary productivity (g C m⁻² yr⁻¹),

fAPAR the fraction of absorbed photosynthetically active radiation (%), PAR the annual photosynthetically active radiation (W m⁻² yr⁻¹), ET the annual evapotranspiration (mm m⁻² yr⁻¹), and $F_{\rm N}$ and $F_{\rm P}$ the total N uptake (g N m⁻² yr⁻¹) and P uptake by plants (g P m⁻² yr⁻¹), respectively. We calculated fAPAR in ORCHIDEE-CNP and ORCHIDEE as a function of leaf area index (LAI): fAPAR = $1 - \exp(-0.5 \cdot \text{LAI})$ (Ito et al., 2004).