

Supplement of

A lumped species approach for the simulation of secondary organic aerosol production from intermediate-volatility organic compounds (IVOCs): application to road transport in PMCAMx-iv (v1.0)

Stella E. I. Manavi and Spyros N. Pandis

Correspondence to: Spyros N. Pandis (spyros@chemeng.upatras.gr)

The copyright of individual parts of the supplement might differ from the article licence.

A. Model requirements for the implementation of the new lumped species approach.

The new lumped species approach has been first implemented in PMCAMx, a regional/urban threedimensional chemical transport model (CTM), for testing and evaluation. Different CTMs or global models can implement the proposed approach given that they fulfill certain requirements.

First, the model needs to be able to simulate the gas-phase chemistry of volatile organic compounds (VOCs) by using a lumped species gas-phase mechanism. For the simulations of the gas-phase chemistry, PMCAMx utilizes a modified version of the SAPRC gas-phase chemistry mechanism. The implementation of the new approach to models utilizing any version of SAPRC is straightforward. If the model utilizes a different gas-phase mechanism, then the new approach can be still implemented, but one would need to adjust the volatile products that are produced from the oxidation reactions of the new lumped IVOC species taking into account the simulated stable molecules and radicals simulated in the specific mechanism. The volatile products for the SAPRC application are given in reactions R3 and R4 of the main paper.

Second, for the implementation of the new approach, a model needs to simulate the formation of secondary organic aerosol (SOA) by using the volatility basis-set (VBS) approach. Specifically, the VBS framework is not needed for the simulation of the IVOC species, but rather for the simulation of the various SOA-iv products and their partitioning between the gas and particulate phases.

Finally, to calculate the new lumped IVOC species emissions, the temporally and spatially resolved source specific emissions of the total VOCs emitted over the domain are needed.

Species	Components	Type of Source
ALK1	Ethane (100%)	Anthropogenic
ALK2	Propane (59%)	Anthropogenic
	Acetylene (41%)	
ALK3	n-Butane (68%)	Anthropogenic
	Isobutane (30%)	
	2,2-Dimethyl Butane (2%)	
ALK4	Iso-Pentane (45%)	Anthropogenic
	n-Pentane (18%)	
	2-Methyl Pentane (11%)	
	3-Methyl Pentane (8%)	
	2,4-Dimethyl Pentane (5%)	
	Methylcyclopentane (5%)	
	n-Hexane (4%)	
	2,3-Dimethyl Butane (3%)	
	Cyclopentane (2%)	
ALK5	2,4-Dimethyl Hexane (11%)	Anthropogenic
	n-Decane (10%)	
	3-Methyl Hexane (10%)	
	n-Heptane (7%)	
	2,3-Dimethyl Pentane (6%)	
	2-Methyl Heptane (6%)	
	4-Methyl Heptane (6%)	
	2,4-Dimethyl Heptane (5%)	
	Methylcyclohexane (4%)	
	2,6-Dimethyl Octane (4%)	
	n-Nonane (4%)	
	n-Octane (4%)	
	Cyclohexane (4%)	
	2-Methyl Hexane (3%)	
	4-Methyl Octane (2%)	
	2-Methyl Octane (2%)	
	4-Methyl Nonane (2%)	
	2-Methyl Nonane (2%)	
	n-Dodecane (2%)	
	Ethylcyclohexane (1%)	
	n-Undecane (1%)	
	3,6-Dimethyl Decane (1%)	
OLE1	Propene (29%)	Anthropogenic
	1-Butene (12%)	
	1-Hexene (24%)	
	1-Pentene (12%)	
	1-Heptene (11%)	
	1-Nonene (5%)	
	3-Methyl-1-Butene (3%)	
	1-Octene (2%)	
	1-Undecene (2%)	
	1-Decene (0.9%)	
OLE2	cis-2-Pentene (14%)	Anthropogenic

Table S1: Major components of each lumped VOC in the SAPRC mechanism.	

	trans-2-Pentene (14%)	
	trans-2-Butene (14%)	
	Isobutene (11%)	
	cis-2-Butene (9%)	
	2-Methyl-1-Butene (8%)	
	1,3-Butadiene (6%)	
	2-Methyl-2-Butene (5%)	
	Cis-2-Hexene (5%)	
	Trans-2-Hexene (5%)	
	Trans-3-Heptene (4%)	
	Trans-4-Nonene (2%)	
	Trans-4-Octene (2%)	
	Trans-5-Undecene (2%)	
	Trans-2-Heptene (2%)	
	Cyclohexene (2%)	
	Trans-4-Decene (0.7%)	
	3,4-Diethyl-2-Hexene (0.2%)	
ARO1	Toluene (70%)	Anthropogenic
	n-Propyl Benzene (10%)	
	Ethyl Benzene (10%)	
	Benzene (7%)	
	s-Butyl Benzene (2%)	
	Isopropyl Benzene (1%)	
ARO2	m-Xylene (22%)	Anthropogenic
	p-Xylene (22%)	
	o-Xylene (20%)	
	1,3,5-Trimethyl Benzene (14%)	
	1,2,3-Trimethyl Benzene (14%)	
	1,2,4-Trimethyl Benzene (9%)	
TERP	α-Pinene (38%)	Biogenic
	β-Pinene (27%)	_
	3-Carene (17%)	
	Sabinene (10%)	
	d-Limonene (9%)	
ISOP	Isoprene (100%)	Biogenic
SESQ	Sesquiterpenes	Biogenic
		-

Table S2: On-road emission factors and molar fractions of the individual compounds lumped in the new lumped IVOC species.

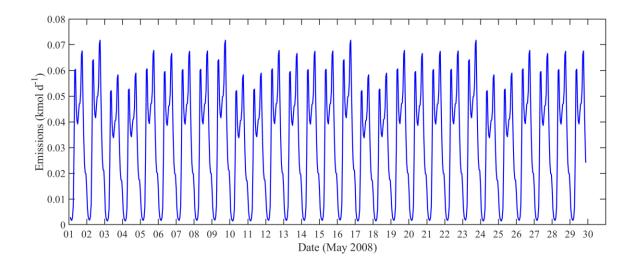
			EFs for	EFs for	
Lumped	Nº		diesel	gasoline	Molar
Species	Carbons	Compound	vehicles	vehicles	fraction
-			(mg / kg _{fuel})	(mg / kg _{fuel})	
	12	Dodecane	9.8	0.6	0.02
	13	Tridecane	10.3	0.4	0.02
	14	Tetradecane	6.0	0.2	0.01
	14	2,6,10-Trimethylundecane	6.1	0.2	0.01
	12	Hexylcyclohexane	1.5	0.0	< 0.01
ALK6		Unspeciated b-alkanes B12	34.0	8.9	0.10
		Unspeciated b-alkanes B13	28.5	3.9	0.07
		Unspeciated b-alkanes B14	18.2	2.1	0.04
		Unspeciated cyclic alkanes B12	124.2	0	0.22
		Unspeciated cyclic alkanes B13	168.2	0	0.30
		Unspeciated cyclic alkanes B14	119.3	0	0.21
	15	Pentadecane	5.5	0.1	0.02
	16	Hexadecane	4.3	0.1	0.01
	17	Heptadecane	3.4	< 0.01	0.01
	15	2,6,10-Trimethyldodecane	3.0	0.1	0.01
	16	2,6,10-Trimethyltridecane	1.9	< 0.01	0.01
	13	Heptylcyclohexane	1.3	< 0.01	< 0.01
ALK7	14	Octylcyclohexane	0.7	< 0.01	< 0.01
	15	Nonylcyclohexane	0.7	< 0.01	< 0.01
		Unspeciated b-alkanes B15	16.3	1.1	0.05
		Unspeciated b-alkanes B16	15.9	0.8	0.05
		Unspeciated b-alkanes B17	9.0	0.6	0.03
		Unspeciated cyclic alkanes B15	107.4	0	0.31
		Unspeciated cyclic alkanes B16	93.8	0	0.27
		Unspeciated cyclic alkanes B17	72.7	2.1	0.22
	18	Octadecane	3.4	0.1	0.02
	19	Nonadecane	2.0	< 0.01	0.01
	20	Eicosane	1.3	< 0.01	0.01
	18	2,6,10-Trimethylpentadecane	2.3	< 0.01	0.01
	19	Pristane	3.1	< 0.01	0.01
	20	Phytane	2.1	< 0.01	0.01
	16	Decylcyclohexane	0.4	< 0.01	< 0.01
ALK8	17	Undecylcyclohexane	0.3	< 0.01	< 0.01
	18	Dodecylcyclohexane	0.3	< 0.01	< 0.01
		Unspeciated b-alkanes B18	11.7	0.5	0.06
		Unspeciated b-alkanes B19	8.3	0.4	0.04
		Unspeciated b-alkanes B20	5.6	0.4	0.03
		Unspeciated cyclic alkanes B18	73.9	2.1	0.37
		Unspeciated cyclic alkanes B19	50.7	1.6	0.25
		Unspeciated cyclic alkanes B20	33.0	1.5	0.17

	21	Heneicosane	0.7	< 0.01	0.02
-	22	Docosane	0.5	0.1	0.02
-	19	Tridecylcyclohexane	0.2	<0.01	<0.01
-	20	Tetradecylcyclohexane	0.1	<0.01	0.01
-	20	Pentadecylcyclohexane	0.0	<0.01	< 0.01
ALK9	22	Hexadecylcyclohexane	0.0	<0.01	<0.01
-	22	Heptadecylcyclohexane	0.0	<0.01	<0.01
-	20	Unspeciated b-alkanes B21	3.4	0.3	0.08
		Unspeciated b-alkanes B22	2.6	0.4	0.07
		Unspeciated cyclic alkanes B21	19.2	1.2	0.44
		Unspeciated cyclic alkanes B22	14.9	1.2	0.36
	11	Pentylbenzene	0.5	0.2	0.25
	12	Hexylbenzene	0.4	0.1	0.15
	13	Heptylbenzene	0.5	< 0.01	0.13
-	14	Octylbenzene	0.2	< 0.01	0.06
-	15	Nonylbenzene	0.1	< 0.01	0.03
ARO3	16	Decylbenzene	0.1	< 0.01	0.20
_	17	Undecylbenzene	0.1	< 0.01	0.16
-	18	Dodecylbenzene	< 0.01	< 0.01	0.01
	19	Tridecylbenzene	< 0.01	< 0.01	0.01
	20	Tetradecylbenzene	< 0.01	< 0.01	< 0.01
	22	Pentadecylbenzene	< 0.01	< 0.01	< 0.01
	10	Naphthalene	4.0	8.5	0.10
	11	2-methylnaphthalene	5.0	3.2	0.05
	11	1-methylnaphthalene	2.8	1.6	0.03
	12	C2-naphthalene	7.7	1.8	0.05
	13	Fluorene	0.2	0.1	< 0.01
	14	Phenanthrene	0.4	0.3	< 0.01
	15	C1-Phenanthrene	0.3	0.1	< 0.01
PAH1	16	Fluoranthene	< 0.01	0.1	< 0.01
	16	Pyrene	0.1	0.1	< 0.01
		Unspeciated aromatic compounds B12	0	44.7	0.46
		Unspeciated aromatic compounds B13	0	20.0	0.21
		Unspeciated aromatic compounds B14	0	8.4	0.09
	12	Acenaphthylene	0.2	0.4	0.05
-	12	Acenaphthene	0.1	0.1	0.03
-	13	C3-naphthalene	4.7	0.6	0.08
	13	C4-naphthalene	0.5	0.0	0.08
PAH2	13	C1-Fluorene	0.3	0.1	0.03
	14	Anthracene	<0.01	0.1	0.01
	-				
F	16	C2-Phenanthrene/anthracene	0.2	0.1	0.01

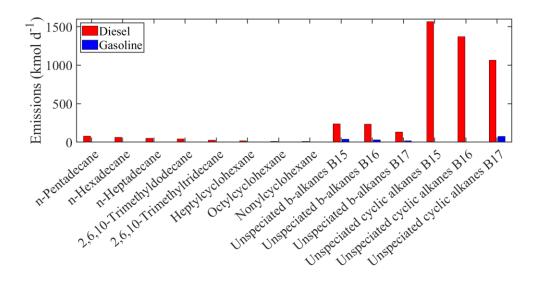
Unspeciated aromatic compounds B15	0	4.3	0.42
Unspeciated aromatic compounds B16	0	3.4	0.33

Reactants	Products	k _{OH}
		(ppm ⁻¹ min ⁻¹)
ALK6 + OH	0.653 RO2R + 0.347 RO2N + 0.948 R2O2 + 0.026 HCHO +	1.4×10^{4}
	0.099 CCHO + 0.204 RCHO + 0.072 ACET + 0.089 MEK +	
	$0.417 \text{ PROD} + \sum_{i}^{n=5} a_i \text{ OCG}_i$	
ALK7 + OH	0.653 RO2R + 0.347 RO2N + 0.948 R2O2 + 0.026 HCHO +	1.4×10^{4}
	0.099 CCHO + 0.204 RCHO + 0.072 ACET + 0.089 MEK +	
	$0.417 \text{ PROD} + \sum_{i}^{n=5} a_i \text{ OCG}_i$	
ALK8 + OH	0.653 RO2R + 0.347 RO2N + 0.948 R2O2 + 0.026 HCHO +	1.4×10^{4}
	0.099 CCHO + 0.204 RCHO + 0.072 ACET + 0.089 MEK +	
	$0.417 \text{ PROD} + \sum_{i}^{n=5} a_i \text{ OCG}_i$	
ALK9 + OH	0.653 RO2R + 0.347 RO2N + 0.948 R2O2 + 0.026 HCHO +	1.4×10^{4}
	0.099 CCHO + 0.204 RCHO + 0.072 ACET + 0.089 MEK +	
	$0.417 \text{ PROD} + \sum_{i}^{n=5} a_i \text{ OCG}_i$	
ARO3 + OH	0.187 HO2 + 0.804 RO2R + 0.009 RO2N + 0.097 GLY + 0.287	3.9×10^4
	MGLY + 0.087 BACL + 0.187 CRES + 0.05 BALD + 0.561	
	DCB1+ 0.099 DCB2 + 0.093 DCB3 + $\sum_{i}^{n=5} a_i OCG_i$	
PAH1 + OH	0.187 HO2 + 0.804 RO2R + 0.009 RO2N + 0.097 GLY + 0.287	3.9×10^4
	MGLY + 0.087 BACL + 0.187 CRES + 0.05 BALD + 0.561	
	DCB1+ 0.099 DCB2 + 0.093 DCB3 + $\sum_{i}^{n=5} a_i OCG_i$	
PAH2 + OH	0.187 HO2 + 0.804 RO2R + 0.009 RO2N + 0.097 GLY + 0.287	3.9×10^4
	MGLY + 0.087 BACL + 0.187 CRES + 0.05 BALD + 0.561	
	DCB1+ 0.099 DCB2 + 0.093 DCB3 + $\sum_{i}^{n=5} a_i \text{OCG}_i$	

Table S3: Reactions and reaction rate constants for the seven lumped IVOC species. (Definition of the products is given in the main document.)


Table S4: The surrogate compounds assigned to the compounds with insufficient experimental yield data.

Compound	Compound Surrogate compound					
	nds lumped in ALK6					
2,6,10-Trimethylundecane n-undecane						
Hexylcyclohexane	n-dodecane					
Unspeciated b-alkanes B12	n-decane					
Unspeciated b-alkanes B13	n-undecane					
Unspeciated b-alkanes B14	n-dodecane					
Unspeciated cyclic alkanes B12	n-dodecane					
Unspeciated cyclic alkanes B13	n-tridecane					
Unspeciated cyclic alkanes B14	n-tetradecane					
Compour	nds lumped in ALK7					
2,6,10-Trimethyldodecane	n-dodecane					
2,6,10-Trimethyltridecane	n-tridecane					
Heptylcyclohexane	n-tridecane					
Octylcyclohexane	n-tetradecane					
Nonylcyclohexane	n-pentadecane					
Unspeciated b-alkanes B15	n-tridecane					
Unspeciated b-alkanes B16	n-tetradecane					
Unspeciated b-alkanes B17	n-pentadecane					
Unspeciated cyclic alkanes B15	n-pentadecane					
Unspeciated cyclic alkanes B16	n-hexadecane					
Unspeciated cyclic alkanes B17	n-heptadecane					
Compoun	nds lumped in ALK8					
Octadecane	n-heptadecane					
Nonadecane	n-heptadecane					
Eicosane	n-heptadecane					
2,6,10-Trimethylpentadecane	n-pentadecane					
Pristane	n-pentadecane					
Phytane	n-hexadecane					
Decylcyclohexane	n-hexadecane					
Undecylcyclohexane	n-heptadecane					
Dodecylcyclohexane	n-heptadecane					
Unspeciated b-alkanes B18	n-heptadecane					
Unspeciated b-alkanes B19	n-heptadecane					
Unspeciated b-alkanes B20	n-heptadecane					
Unspeciated cyclic alkanes B18	n-heptadecane					
Unspeciated cyclic alkanes B19	n-heptadecane					
Unspeciated cyclic alkanes B20	n-heptadecane					
Compoun	nds lumped in ALK9					
Heneicosane	n-heptadecane					
Docosane	n-heptadecane					
Tridecylcyclohexane	n-heptadecane					
Tetradecylcyclohexane	n-heptadecane					
Pentadecylcyclohexane	n-heptadecane					
Hexadecylcyclohexane	n-heptadecane					
Heptadecylcyclohexane	n-heptadecane					
Unspeciated b-alkanes B21	n-heptadecane					
Unspeciated b-alkanes B22	n-heptadecane					
Unspeciated cyclic alkanes B21	n-heptadecane					
Unspeciated cyclic alkanes B22	n-heptadecane					


Compounds lumped in PAH1				
C2-naphthalene	2-methylnaphthalene			
Fluorene	2-methylnaphthalene			
Phenanthrene	2-methylnaphthalene			
C1-Phenanthrene	2-methylnaphthalene			
Fluoranthene	2-methylnaphthalene			
Pyrene	2-methylnaphthalene			
Unspeciated aromatic compounds B12	2-methylnaphthalene			
Unspeciated aromatic compounds B13	2-methylnaphthalene			
Unspeciated aromatic compounds B14	2-methylnaphthalene			
Compounds la	umped in PAH2			
Acenaphthylene 2-methylnaphthalene				
Acenaphthene	2-methylnaphthalene			
C3-naphthalene	2-methylnaphthalene			
C4-naphthalene	2-methylnaphthalene			
C1-Fluorene	2-methylnaphthalene			
Anthracene	2-methylnaphthalene			
C2-Phenanthrene/anthracene	2-methylnaphthalene			
C1-Fluoranthene/pyrene	2-methylnaphthalene			
Unspeciated aromatic compounds B15	2-methylnaphthalene			
Unspeciated aromatic compounds B16	2-methylnaphthalene			

Speciated n-alkanes	Aerosol mass-based yields				
under high NO _x conditions	0.1 μg m ⁻³	1 μg m ⁻³	10 µg m ⁻³	100 µg m ⁻³	10 ³ µg m ⁻³
n-decane ($C_{10}H_{22}$)	0	0	0.112	0.184	0
n-undecane $(C_{11}H_{24})$	0.011	0.004	0	0	0.325
n-dodecane (C ₁₂ H ₂₆)	0.014	0.022	0.043	0.153	0.183
n-tridecane (C ₁₃ H ₂₈)	0.055	0.051	0.022	0	0.424
n-tetradecane (C ₁₄ H ₃₀)	0.069	0.056	0	0	0.434
n-pentadecane (C ₁₅ H ₃₂)	0	0.111	0.523	0	0
n-hexadecane (C ₁₆ H ₃₄)	0	0.233	0.233	0.235	0
n-heptadecane (C ₁₇ H ₃₆)	0.077	0.024	0.629	0.151	0
	Aerosol mass-based yields				
Speciated PAH species	0.1 μg m ⁻³	1 μg m ⁻³	10 µg m ⁻³	100 µg m ⁻³	10 ³ µg m ⁻³
	Hig	h NO _x condition	ons	•	
naphthalene (C ₁₀ H ₈)	0	0.02	0.35	0	0
1-methylnaphthalene (C ₁₁ H ₁₀)	0	0	0.41	0.08	0.16
2-mehtylnaphthtalene ($C_{11}H_{10}$)	0	0.06	0.31	0.26	0.62
Low NO _x conditions					
naphthalene (C ₁₀ H ₈)	0	0.01	0.44	0	0
1-methylnaphthalene $(C_{11}H_{10})$	0	0	0.63	0	0.07
2-mehtylnaphthtalene (C ₁₁ H ₁₀)	0	0	0.46	0	0.05

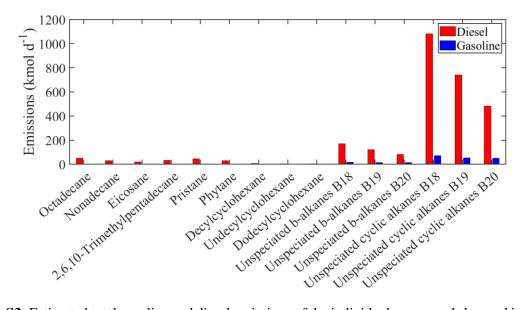

Table S5: Estimated mass-based yields of the individual compounds.

Figure S1: Temporal distribution of the estimated n-dodecane emissions from diesel and gasoline vehicle emissions over Paris for May 2008.

Figure S2: Estimated total gasoline and diesel emissions of the individual compounds lumped in ALK7 for Europe.

Figure S3: Estimated total gasoline and diesel emissions of the individual compounds lumped in ALK8 for Europe.

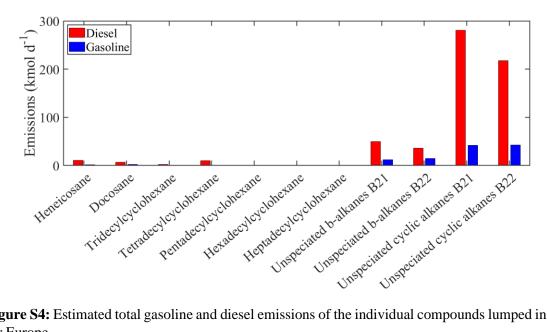


Figure S4: Estimated total gasoline and diesel emissions of the individual compounds lumped in ALK9 for Europe.

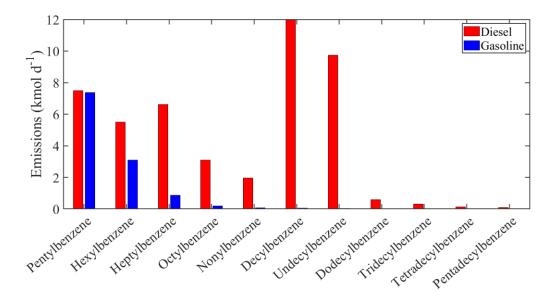
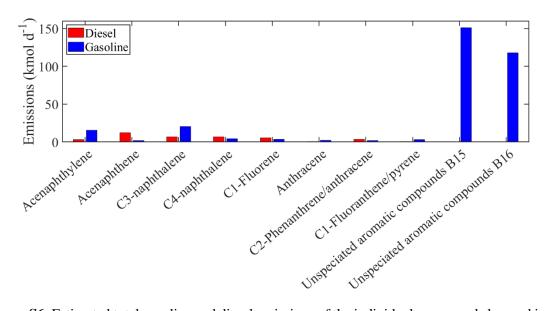



Figure S5: Estimated total gasoline and diesel emissions of the individual compounds lumped in ARO3 for Europe.

Figure S6: Estimated total gasoline and diesel emissions of the individual compounds lumped in PAH2 for Europe

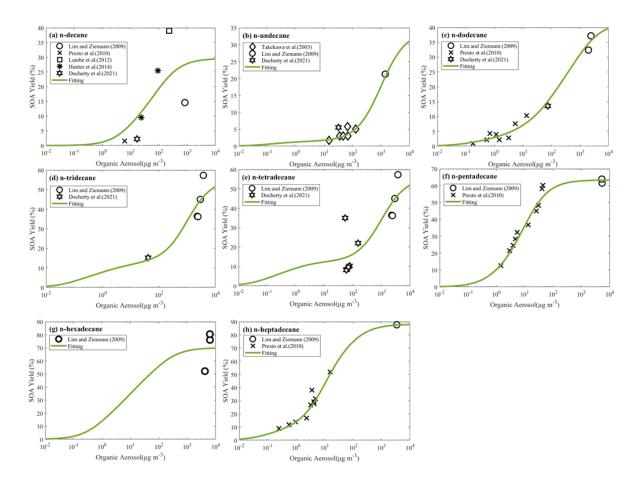


Figure S7: Estimated SOA yields of linear alkanes with 10 to 17 carbons.