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S1 Technical description of validation models

Here the numerical models that were used as independent means to validate the formulations and simu-
lations using central moments are described.

S1.1 Application 1: Particle-tracking model

The simulated dynamics in the particle tracking model will correspond to

∂C

∂t
= D

∂2C

∂x2
+ P +R (S1)

and also account for the aging of the particles. The model simulates diffusion as discrete jumps, con-
ceptually following Crank (1956), whereby D = 0.5fδ2x. The spacing of grid cells matches the jumping
distance (δx), and advection is not included, allowing for a spatially non-continuous Lagrangian model
formulation that is only designed to validate the model based on centralized moments in the first appli-
cation. The term P accounts for the production of new material with an age of zero, and the last term
denotes a consumption reaction, which is implemented as R = −kC.

For all particles i ∈ [1, n], a vector C⃗ stores the locations of particles, which are numbers corresponding
to cell indices in a 1-D grid. Another vector χ⃗ stores the ages of the particles. The boundary conditions,
which are contained in the first and last cell of the one-dimensional domain, are defined as populations
of particles with ages. For instance, we chose arbitrarily

χ⃗L = [χ1, χ2, χ3, . . . , χ2000], where


χi ∼ N (0, 22) for the first 1000 elements,

χi ∼ N (−0.5, 12) for the next 500 elements,

χi ∼ N (0.5, 12) for the next 500 elements,

(S2)

to represent the left boundary condition, which, for this example, means that 1000 samples were taken
from a normal distribution of µ = 0 and σ = 2, 500 samples from a normal distribution with µ = −0.5
and σ = 1, and 500 samples from a normal distribution with µ = 0.5 and σ = 1. The right boundary
condition was set to

χ⃗R = [χ1, χ2, χ3, . . . , χ4000], where
{
χi ∼ N (1, 0.22) for all 4000 elements. (S3)

Thus, 4000 samples from a normal distribution were taken with µ = 1 and σ = 0.2. These populations
at the boundaries do not change during simulations.

As initial conditions, it is assumed that all interior cells of the grid have the population of the left
boundary condition

χ⃗0 =

 χ⃗L︸︷︷︸
(m−1) times

, χ⃗R

 (S4)

whereby subscript ‘0’ indicates initial conditions, and m is the number of grid cells. Note that the first
and last cell contain the boundary conditions. The corresponding vector with particle locations is

C⃗0 =

[1, 2, . . . , (m− 1)]︸ ︷︷ ︸
|χ⃗L|

, m
|χ⃗R|

 (S5)

whereby the notation |v⃗| indicates the length of v⃗. Here |χ⃗L| and |χ⃗R| are the number of times that the
vector [1, 2, . . . , (m− 1)] and scalar m are repeated in the array, respectively.

A discrete time-step is defined as ∆t = 1/f is the inverse particle jumping frequency. At each time
step, the status of the particles is updated by

χ⃗ = χ⃗+∆t (S6)

C⃗ = C⃗ + s([−1, 1], n) (S7)

Equation S6 accounts for aging, which can also be turned off. The function s in equation S7 is defined
as s(A,n) = (x1, x2, . . . , xn), whereby each xi is independently sampled from the set A. It changes the
location of particles randomly by ±1, so that each particle is moved to an adjacent cell.
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The boundary conditions are enforced by first removing all particles at the boundaries, i.e., removing
all indices from C⃗ and χ⃗ when Ci = 1 or Ci = m. Then the initial particles at the boundaries, as in
equations S4 and S5, are concatenated to C⃗ and χ⃗.

To account for the consumption, the number of particles at each location (except not the cells at the
boundaries) in a grid are counted, and the particle indices are stored in a vector p⃗i for cell i. The rate for
each cell becomes Ri = ⌊k|p⃗i|⌉, whereby ⌊. . .⌉ indicates rounding to the nearest integer. Then the indices
vector p⃗i is randomly shuffled, and the indices corresponding to the first Ri entries from the randomized
p⃗i are the indices of C⃗ and χ⃗ that will be removed.

Production (P in equation S1) is implemented by

C⃗ =

C⃗, [2, 3, . . . , (m− 1)]︸ ︷︷ ︸
P

 (S8)

χ⃗ =

(
χ⃗, 0

(m−2)P

)
(S9)

whereby the production rate P needs to be a round number. Equation S8 adds at each location in the
grid new particles to account for production. Equation S9 sets the age of the new particles to zero.

Finally, n = |C⃗| updates the total number of particles. A single time step has finished, and it can be
repeated until the simulation finishes.

S1.2 Application 2: Multi-G model

In this validation model, the reactivity distribution is divided in n bins, whereby the bin width ∆k =
(χmax − χmin)/n. The reactivites for each bin for i ∈ [1, n] are defined as

ki = ∆k(i− 0.5) (S10)

and each bin i is also implemented as a state variable. The upper boundary is included in the upper
domain cell, which does not change over time. The concentrations in this upper layer are set to

C∗
i =

∫ kmin+i∆k

kmin+(i−1)∆k

f(χ) dχ (S11)

whereby f(χ) is the distribution function defined for the upper boundary. The upper boundary condition
is also used as initial condition throughout the domain. The simulation solves

∂Ci

∂t
=

∂

∂x

(
D
∂Ci

∂x
− ωCi

)
+ kiCi (S12)

which is discretized with finite differences (Soetaert and Meysman, 2012; R Core Team, 2022). A zero-
gradient lower boundary condition was imposed. Using a 15 cm long domain divided into 50 evenly spaced
cells, the simulation was run with the vode solver (Brown et al., 1989).

S1.3 Application 3: Age bins model

In this approach, bins are used for ages. A moving grid is used, meaning that the boundaries of the
age grid, defining the boundaries of the age bins, change during the simulation. In this way, material in
one bin does not have to be moved to another bin due to aging, which avoids numerical diffusion and
preserves the moments of the age distribution.

S1.3.1 Age grid

A grid for ages is constructed for a simulation that runs for t ∈ [t0, tf ]. There is a continuous age
distribuion f(χ) defined as upper boundary condition, which has only non-zero values for χ ∈ [χ0, χf ].
The grid is a vector g⃗ that corresponds to boundaries of age bins. The first indice corresponds to the
highest age boundary. The age at the boundary during the simulation is

g(t, i = 1) = χf + (t− t0) (S13)
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The distance between nodes of g⃗ depends on the age distribution imposed as upper boundary condition
and the number of age bins (o):

∆χ = (χf − χ0)/o (S14)

The total number of bins in the simulation is set to

m = [χf − χ0 + tf − t0]/∆χ (S15)

whereby the simulation time for tf and t0 is chosen in such a way that m becomes an integer. A function
is defined to return the age at the boundaries defined by g⃗:

g(t, i) = χf + (t− t0)−∆χ(i− 1) (S16)

for i ∈ [1,m + 1]. The function can return negative values for gi that are located in the future of the
simulation. To avoid evaluating non-physical ages, it may be convenient to define

g+(t, i) = max{g(t, i), 0} (S17)

The mean age of the bins can be defined

h(t, j) =
g+(t, j) + g+(t, j + 1)

2
(S18)

for j ∈ [1,m]. When h(t, j) = 0, the result is ignored.

S1.3.2 Implementation of diffusion, advection, reactions, boundary and initial conditions

The depth domain for z ∈ [0, L] in the model is divided into N evenly spaced layers. The matrix
describing the state of the simulations has m columns to account different age bins and N rows to
account for different depth. A standard finite differences scheme is applied for each column to simulate

∂C

∂t

∣∣∣∣
column

=
∂

∂z

(
D
∂C

∂z
− wC

)
+R (S19)

The equation was discretized by finite differences. For advection, both upwind and central differences
have been tested. In the test runs, the central differences gave best results when diffusion was turned on,
but when D = 0 it gives unphysical oscillations. The upwind scheme avoids these oscillations, but leads
to the moments of variance and higher moments to be off due to numerical diffusion. Since diffusion is
normally turned on, central differences are used per default.

For the reaction,
R(χ) = R(h(t, j)) = f(χ)C(χ) (S20)

When h(t, j) = 0, the expression may be ignored. It should be noted that f(0) is not necessarily zero,
but C(0) should in principle be zero.

Dirichlet upper boundary conditions are implemented. The age distribution at the upper boundary
condition is defined by a function

f(p, χ)z=0 = f(p0, χ) (S21)

whereby p0 are the parameters for the distribution function at the upper boundary. In the state matrix,
the first column represents material with age g(t, 1) ≤ χ ≤ g(t, 2). For all columns,

C∗
j =

1

g+(t, j)− g+(t, j + 1)

∫ g+(t,j)

g+(t,j+1)

f(p0, χ) dχ (S22)

defines the concentration at the upper boundary of the domain when g+(t, j) > 0 and else C∗
j = 0. The

integration was performed numerically in R (R Core Team, 2022; Piessens et al., 1983).
As initial conditions, at all depths (i.e, for all columns of the state matrix) the age distribution was

set to the upper boundary distribution (eqns. S21, S22). All age bins were of uniform width, spanning 1
year each. For the age bins, differences of 1 year were used. The simulations were run by the vode solver
(Brown et al., 1989).
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S2 Mathematical validation of partial differential equations for
the diffusion of central moments

Here it will be showed that the equations for variance and other higher central moments are consistent
with the equations for non-central moments derived by Delhez and Deleersnijder (2002).

S2.1 Validation for the variance PDE

The noncentralized and centralized second moments are defined as

Cµ2 =

C∑
i=1

χ2
i (S23)

Cσ2 =
∑

(χi − µ)2 (S24)

The following ∑
(χi − µ)2 =

∑
χ2
i − Cµ2 (S25)

implies ∑
χ2
i = C(σ2 + µ2) (S26)

which can also be obtained by applying the binomial theorem. The derivative is

∂(
∑

χ2
i )

∂t
=

∂(Cσ2)

∂t
+ 2µC

∂µ

∂t
+ µ2 ∂C

∂t
(S27)

One can write

∂µ

∂t
=

(
∂(Cµ)

∂t
− µ

∂C

∂t

)
/C (S28)

2Cµ
∂µ

∂t
= 2µ

∂(Cµ)

∂t
− 2µ2 ∂C

∂t
(S29)

yielding

∂(
∑

χ2
i )

∂t
=

∂(Cσ2)

∂t
+ 2µ

∂(Cµ)

∂t
− µ2 ∂C

∂t
(S30)

Inserting the expressions derived in the manuscript yields

∂(
∑

χ2
i )

∂t
=

∂

∂x

(
D
∂(Cσ2)

∂x

)
+ 2DC

(
∂µ

∂x

)2

+

2µ
∂

∂x

(
D
∂(Cµ)

∂x

)
− µ2 ∂C

∂t
(S31)

Delhez and Deleersnijder (2002) gave

∂
∑

χ2
i

∂t
= 2Cµ+

∂

∂x

(
D
∂(
∑

χ2
i )

∂x

)
(S32)

and here we shall test if equations S31 and S32 are mathematically equivalent. Starting with the last
term on the right-hand side,

D
∂(
∑

χ2
i )

∂x
= D

∂

∂x

(
Cσ2 + Cµ2

)
(S33)

∂(
∑

χ2
i )

∂x
=

∂(Cσ2)

∂x
+

∂(Cµ2)

∂x

=
∂(Cσ2)

∂x
+ 2Cµ

∂µ

∂x
+ µ2 ∂C

∂x
(S34)

∂

∂x

(
D
∂(
∑

χ2
i )

∂x

)
=

∂

∂x

(
D
∂(Cσ2)

∂x

)
+ 2

∂

∂x

(
DCµ

∂µ

∂x

)
+

∂

∂x

(
Dµ2 ∂C

∂x

)
(S35)
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The comparison of the last results with equation S31 is

∂

∂x

(
D
∂(Cσ2)

∂x

)
+ 2DC

(
∂µ

∂x

)2

+ 2µ
∂

∂x

(
D
∂(Cµ)

∂x

)
− µ2 ∂C

∂t

?
=

2Cµ+
∂

∂x

(
D
∂(Cσ2)

∂x

)
+ 2

∂

∂x

(
DCµ

∂µ

∂x

)
+

∂

∂x

(
Dµ2 ∂C

∂x

)
(S36)

Removing equal terms and substituting ∂C/∂t yields

2DC

(
∂µ

∂x

)2

+ 2µ
∂

∂x

(
D
∂(Cµ)

∂x

)
− µ2 ∂

∂x

(
D
∂C

∂x

)
?
=

2Cµ+ 2
∂

∂x

(
DCµ

∂µ

∂x

)
+

∂

∂x

(
Dµ2 ∂C

∂x

)
(S37)

Clearly, the second and third terms on the left and right-hand side, respectively, are very similar. Applying
again the product rule:

∂

∂x

(
Dµ2 ∂C

∂x

)
= µ2 ∂

∂x

(
D
∂C

∂x

)
+ 2µD

∂C

∂x

∂µ

∂x
(S38)

and

2
∂

∂x

(
DCµ

∂µ

∂x

)
= 2µ

∂

∂x

(
DC

∂µ

∂x

)
+ 2DC

(
∂µ

∂x

)2

(S39)

We see that the second term of equation S39 on the right-hand side cancels out with the first term on
the left-hand side of equation S37. The first term on the right-hand side of equation S38 does not cancel
out with third term of the left-hand side of equation S37 due to the different sign, but it can be brought
over to the other side.

2µ
∂

∂x

(
D
∂(Cµ)

∂x

)
− 2µ2 ∂

∂x

(
D
∂C

∂x

)
?
=

2Cµ+ 2µ
∂

∂x

(
DC

∂µ

∂x

)
+ 2µD

∂C

∂x

∂µ

∂x
(S40)

Applying again the product rule yields

2µ
∂

∂x

(
Dµ

∂C

∂x
+DC

∂µ

∂x

)
− 2µ2 ∂

∂x

(
D
∂C

∂x

)
?
=

2Cµ+ 2µ
∂

∂x

(
DC

∂µ

∂x

)
+ 2µD

∂C

∂x

∂µ

∂x
(S41)

leaving

2µ
∂

∂x

(
Dµ

∂C

∂x

)
− 2µ2 ∂

∂x

(
D
∂C

∂x

)
?
=

2Cµ+ 2µD
∂C

∂x

∂µ

∂x
(S42)

Applying the product rule again

2µ2 ∂

∂x

(
D
∂C

∂x

)
+ 2µD

∂C

∂x

∂µ

∂x
− 2µ2 ∂

∂x

(
D
∂C

∂x

)
?
=

2Cµ+ 2µD
∂C

∂x

∂µ

∂x
(S43)

leaves

0 ̸= 2Cµ (S44)

The term 2Cµ, causing the inequality, is an additional term used by Delhez and Deleersnijder (2002) to
account for aging. This can be shown, starting from

∂(µC)

∂t
= C

∂µ

∂t
+ µ

∂C

∂t
(S45)
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Aging does not change the concentration, and ∂µ/∂t = 1, since a particle gains 1 unit age per one unit
time. This leaves ∂(µC)/∂t = C. The temporal derivative of the second non-central moment is

∂
∑

χ2
i

∂t
= 2

∑
χi

∂χi

∂t
(S46)

Since
∑

χi = Cµ and ∂χi/∂t = 1, we obtain

∂
∑

χ2
i

∂t
= 2Cµ (S47)

for aging. Ignoring this term shows that the result of Delhez and Deleersnijder (2002) is in agreement
with the PDE for diffusion of the second centralized moment.

S2.2 Initial value problem with a delta distribution as analytical validation
test

This section aims to validate the PDE derived for the skewness and all higher moments, but it will only
be specifically tested for the skewness. For this, the temporal derivative of the skewness for a theoretical
initial δ-distribution will be solved analytically.

Following Delhez and Deleersnijder (2002), a density function is defined as ρ(x, t, χ). For the initial
value problem, the skewed initial distribution

ρ(x, t = 0, χ) = 2δ(χ) + δ(χ− ax2) (S48)

was chosen, whereby δ(χ) denotes Dirac’s distribution, which is symmetric (δ[χ] = δ[−χ]). When these
appear in integrals, the integrations can be performed as follows

∞∫
−∞

δ(χ) dχ = 1 (S49)

∞∫
−∞

δ(a− χ)f(χ) dx = f(a) (S50)

The derivative δ′ = ∂δ/∂χ is antisymmetric

δ′(χ) = −δ′(−χ) (S51)

and allows integration by parts

∞∫
−∞

δ′(χ)f(χ) dχ = [δ(χ)f(χ)]
∞
−∞ −

∞∫
−∞

δ(χ)f ′(χ) dχ (S52)

= −
∞∫

−∞

δ(χ)
∂f(χ)

∂χ
dχ (S53)

= −∂f(χ)

∂χ
(S54)

The term in the square brackets vanishes because δ(χ) is zero at the integration boundaries. This
integration by parts also works with higher-order derivatives of δ, which means that the integral over
δ′(χ), δ′′(χ), and other derivatives are zero.

S2.2.1 Diffusion of the delta distribution

The diffusion equation for the density distribution is

∂ρ

∂t
=

∂

∂x

(
D

∂ρ

∂x

)
. (S55)
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In density function (ρ), only the term δ(χ − ax2) depends on x. Its derivative inside the parentheses is
calculated by the chain rule

∂ρ

∂x
=

∂

∂x
δ(χ− ax2) (S56)

= δ′(χ− ax2)(−2ax) (S57)

For the outer derivative, the product rule is applied for three factors.

∂ρ

∂t
=

∂

∂x

(
Dδ′(χ− ax2) · (−2ax)

)
(S58)

=

[
∂D

∂x
δ′(χ− ax2) · (−2ax) +

Dδ′′(χ− ax2) · (−2ax)2 +Dδ′(χ− ax2) · (−2a)

]
(S59)

Now the expressions and their temporal derivatives can be calculated.

S2.2.2 The PDE for concentration

The concentration is

C =

∞∫
−∞

ρ(x, t, χ) dχ = 3 (S60)

Its temporal derivative can be solved by

∂

∂t
C =

∞∫
−∞

∂

∂t
ρ(x, t, χ) dχ (S61)

=

∞∫
−∞

[
∂D

∂x
δ′(χ− ax2) · (−2ax)+

Dδ′′(χ− ax2) · (−2ax)2 +Dδ′(χ− ax2) · (−2a)
]
dχ (S62)

Since only the derivatives of δ depend on χ, the integral yields zero.

S2.2.3 The PDE for the mean

The mean is

µ =
1

C

 ∞∫
−∞

χρ(x, t, χ) dχ

 =
ax2

3
(S63)

and its temporal derivative

∂

∂t
µ =

1

C

 ∞∫
−∞

χ
∂

∂t
ρ(x, t, χ) dχ

 (S64)

This equation is valid because ∂C/∂t = 0.

∂

∂t
µ =

1

C

∞∫
−∞

χ

[
∂D

∂x
δ′(χ− ax2) · (−2ax)+

Dδ′′(χ− ax2) · (−2ax)2 +Dδ′(χ− ax2) · (−2a)

]
dχ (S65)
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Integrating by parts implies switching the sign, integrating the delta distribution, and differentiating the
rest with respect to χ

∂

∂t
µ = − 1

C

∞∫
−∞

[
∂D

∂x
δ(χ− ax2) · (−2ax)+

Dδ′(χ− ax2) · (−2ax)2 +Dδ(χ− ax2) · (−2a)

]
dχ (S66)

Since only the delta function and its derivative depend on χ, the integral over δ is one and the integral
over δ′ is zero, which gives

∂

∂t
µ =

2ax

3

∂D

∂x
+

2a

3
D . (S67)

For a constant D, the first-moment equation can be tested

∂

∂t
µ

?
=

∂

∂x

(
D
∂µ

∂x

)
(S68)

Since ∂µ/∂x = 2ax/3, the equation holds for this example.

S2.2.4 The PDE for variance

The definition of the centralized variance

ϕ2 =
1

n

n∑
i=1

(Xi − µ)2 (S69)

can also be written with the notation of Delhez and Deleersnijder (2002) as

ϕ2 =
1

C

∞∫
−∞

ρ(x, t, χ)(χ− µ)2 dχ (S70)

For t = 0,

ϕ2 =
1

C

[
2 · (0− µ)2 + (ax2 − µ)2

]
(S71)

and given µ = ax2/3

ϕ2 =
1

C

[
2

(
ax2

3

)2

+

(
2ax2

3

)2
]

=
2

9
a2x4 (S72)

is obtained. This result will be used in the following test for the skewness but is not worked further out
since the PDE for variance was already validated (sect. S2.1).

S2.2.5 The PDE for skewness

The definition of the centralized skewness

ϕ3 =
1

n

n∑
i=1

(Xi − µ)3 (S73)

can also be written as

ϕ3 =
1

C

∞∫
χ=−∞

ρ(x, t, χ)(χ− µ)3 dχ (S74)
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For t = 0,

ϕ3 =
1

C

(
2 · (0− µ)3 + (ax2 − µ)3

)
(S75)

is obtained. Inserting µ = ax2/3 yields

ϕ3 =
1

C

(
−2 ·

(
ax2

3

)3

+

(
2ax2

3

)3
)

=
2

27
a3x6 (S76)

Applying the product rule allows

∂ϕ3

∂t
=

∂ϕ3

∂ρ

∂ρ

∂t
+

∂ϕ3

∂µ

∂µ

∂t

=
1

C

∞∫
−∞

[
∂ρ(x, t, χ)

∂t
(χ− µ)3 + ρ(x, t, χ)

(
−3(χ− µ)2

) ∂µ
∂t

]
dχ (S77)

to be written. The former part can be calculated as

∂ϕ3

∂ρ

∂ρ

∂t
=

1

C

∞∫
−∞

∂ρ(x, t, χ)

∂t
(χ− µ)3 dχ

=
1

C

∞∫
−∞

[
∂D

∂x
δ′(χ− ax2) · (−2ax)+

Dδ′′(χ− ax2) · (−2ax)2 +Dδ′(χ− ax2) · (−2a)

]
(χ− µ)3 dχ (S78)

Integration by parts gives

∂ϕ3

∂ρ

∂ρ

∂t
= − 1

C

∞∫
−∞

[
∂D

∂x
δ(χ− ax2) · (−2ax)+

Dδ′(χ− ax2) · (−2ax)2 +Dδ(χ− ax2) · (−2a)

]
· 3(χ− µ)2 dχ (S79)

Integrating the terms with δ yields

∂ϕ3

∂ρ

∂ρ

∂t
= − 1

C

∂D

∂x
· (−2ax) · 3(ax2 − µ)2 − 1

C
D · (−2a) · 3(ax2 − µ)2 −

1

C

∞∫
−∞

Dδ′(χ− ax2) · (−2ax)2 · 3(χ− µ)2 dχ (S80)

Integrating by parts again yields

∂ϕ3

∂ρ

∂ρ

∂t
= − 1

C

∂D

∂x
· (−2ax) · 3(ax2 − µ)2 − 1

C
D · (−2a) · 3(ax2 − µ)2 +

1

C

∞∫
−∞

Dδ(χ− ax2) · (−2ax)2 · 6(χ− µ) dχ (S81)

and the δ integral is solved

∂ϕ3

∂ρ

∂ρ

∂t
= − 1

C

∂D

∂x
· (−2ax) · 3(ax2 − µ)2 − 1

C
D · (−2a) · 3(ax2 − µ)2 +

1

C
D · (−2ax)2 · 6(ax2 − µ) (S82)
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Now C = 3 and µ = ax2/3 are inserted

∂ϕ3

∂ρ

∂ρ

∂t
= −1

3

∂D

∂x
· (−2ax) · 3(2

3
ax2)2 − 1

3
D · (−2a) · 3(2

3
ax2)2 +

1

3
D · (−2ax)2 · 6(2

3
ax2)

=
∂D

∂x
· (2ax) · (2

3
ax2)2 −D · (−2a) · (2

3
ax2)2 +D · (−2ax)2 · 2(2

3
ax2)

=
8

9

∂D

∂x
· (ax) · (ax2)2 +

8

9
D · a · (ax2)2 +

16

3
D · (ax)2 · (ax2)

=
8

9
a3x5 ∂D

∂x
+

56

9
a3x4D (S83)

Solving the other part

∂ϕ3

∂µ

∂µ

∂t
=

1

C

∞∫
∞

ρ(x, t, χ)

(
−3(χ− µ)2

∂µ

∂t

)
dχ (S84)

Inserting ρ(t = 0) gives

∂ϕ3

∂µ

∂µ

∂t
=

1

C

[
2
(
−3(0− µ)2

)
+
(
−3(ax2 − µ)2

)] ∂µ
∂t

(S85)

and with C = 3, µ = ax2/3 and ∂µ
∂t = 2ax

3
∂D
∂x + 2a

3 D, one obtains

∂ϕ3

∂µ

∂µ

∂t
=

[
2

(
−(

ax2

3
)2
)
+

(
−(

2ax2

3
)2
)](

2ax

3

∂D

∂x
+

2a

3
D

)
= −2

3
a2x4

(
2ax

3

∂D

∂x
+

2a

3
D

)
= −4

9
a3x5 ∂D

∂x
− 4

9
a3x4D (S86)

So, together the parts give

∂ϕ3

∂t
=

4

9
a3x5 ∂D

∂x
+

52

9
a3x4D (S87)

as the analytical result.
The PDE accounting for the diffusion of the third centralized moment that we want to test reads for

a constant concentration

∂ϕ3

∂t
=

∂

∂x

(
D
∂ϕ3

∂x

)
+ 6D

∂ϕ2

∂x

∂µ

∂x
(S88)

Recalling

µ =
1

3
ax2

ϕ2 =
2

9
a2x4

ϕ3 =
2

27
a3x6

and substituting these expressions into the last equation gives

∂ϕ3

∂t
=

∂

∂x

(
D
4

9
a3x5

)
+ 6D

8

9
a2x3 2

3
ax

=
4

9
a3x5 ∂D

∂x
+

20

9
a3x4D +

32

9
a3x4D

=
4

9
a3x5 ∂D

∂x
+

52

9
a3x4D (S89)

which matches equation S87.
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