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Abstract. Water – Global Assessment and Prognosis (Wa-
terGAP) is a modeling approach for quantifying water re-
sources and water use for all land areas of the Earth that has
served science and society since 1996. In this paper, the re-
finements, new algorithms, and new data of the most recent
model version v2.2e are described, together with a thorough
evaluation of the simulated water use, streamflow, and terres-
trial water storage anomaly against observation data. Water-
GAP v2.2e improves the handling of inland sinks and now
excludes not only large but also small human-made reser-
voirs when simulating naturalized conditions. The reservoir
and non-irrigation water use data were updated. In addition,
the model was calibrated against an updated and extended
data set of streamflow observations at 1509 gauging stations.
The modifications resulted in a small decrease in the esti-
mated global renewable water resources. The model can now
be started using prescribed water storages and other condi-
tions, facilitating data assimilation and near-real-time mon-
itoring and forecast simulations. For specific applications,
the model can consider the output of a glacier model, ap-
proximate the effect of rising CO2 concentrations on evap-
otranspiration, or calculate the water temperature in rivers.
In the paper, the publicly available standard model output
is described, and caveats of the model version are provided
alongside the description of the model setup in the ISIMIP3
framework.

1 Introduction

The quantitative assessment of global water resources and
their use helps to increase our understanding of the fresh-
water cycle and supports decision-making. Global hydro-
logical modeling approaches have been developed since the
1990s, and one of the pioneers in this field is the global
water resources and water use model WaterGAP (Water –
Global Assessment and Prognosis) (Alcamo et al., 2003; Döll
et al., 2003). To continue to answer relevant scientific and
societal questions, such a modeling system needs to be at
the cutting edge in terms of process representation and the
databases used. Moreover, informative descriptions of spe-
cific model versions are required and are increasingly sup-
plied in global hydrological modeling (Burek et al., 2020;
Hanasaki et al., 2018; Stacke and Hagemann, 2021; Clark
et al., 2011; Best et al., 2011; Mathison et al., 2023; Yokohata
et al., 2020), especially when the models are part of model in-
tercomparison exercises. This paper describes the changes to
WaterGAP 2 (from now referred to as WaterGAP) from ver-
sion 2.2d (v2.2d) (Müller Schmied et al., 2021) to the most
recent model version 2.2e (v2.2e) to present the modifica-
tions and extensions rather than a thorough description of the
whole WaterGAP model. Furthermore, it provides a model
evaluation against independent data for different model vari-
ants and explains its application in the Inter-Sectoral Impact
Model Intercomparison Project phase 3 (ISIMIP3) frame-
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work (https://protocol.isimip.org/, last access: 14 July 2023,
ISIMIP, 2023c). While this paper does not repeat the full
model overview provided in Müller Schmied et al. (2021),
the main characteristics of the model system are described
in the paragraphs hereafter, followed by the motivation and
rationale of new features of model version v2.2e.

WaterGAP was developed to quantify global-scale water
resources, as well as water stress, with a focus on direct hu-
man impacts on the natural water cycle through human water
use and artificial reservoirs. The model framework (Fig. 1)
consists of sectoral water use models that are linked in a
submodel (GSWSUSE) to calculate potential net water ab-
stractions from surface waterbodies and from groundwater.
The computed net abstractions are an input for the Water-
GAP Global Hydrology Model that calculates the water stor-
ages and fluxes and routes the streamflow to the basin outlet
(Fig. 1). WaterGAP, as described here, operates with a spatial
resolution of 0.5°× 0.5° and at daily time steps.

A model like WaterGAP is used to answer questions with
numerical experiments, where the model is driven by alterna-
tive inputs, for example, climate data to quantify the impact
of climate change on water resources or is run with differ-
ent setups or algorithms. One extensively performed exper-
iment is to switch off human water use and artificial reser-
voirs to evaluate these direct human impacts on the water cy-
cle (e.g., Döll et al., 2020). For this evaluation, WaterGAP is
run both in its standard mode (“ant”, including direct human
impacts) and in a naturalized mode (“nat”), simulating nat-
uralized water flows and storages that would occur if there
were neither human water use nor artificial reservoirs/reg-
ulated lakes. In model version v2.2d, the naturalized mode
assumes that human water use is zero worldwide; “global”
reservoirs, which are handled with the reservoir algorithm
(storage capacity larger than 0.5 km3), do not exist, and regu-
lated lakes are treated as the original natural lakes. However,
in v2.2d, the more than 5000 small reservoirs with storage
capacities below 0.5 km3 are included in the “local lake” in-
put data (Müller Schmied et al., 2021, their Sect. 4.6) and are
still included, even in naturalized mode, such that evapotran-
spiration and surface waterbody storage is overestimated. To
avoid this misrepresentation of the naturalized condition, the
preparation of a specific local lake input data set is required
for naturalized runs that do not contain the small reservoirs.

The capability of WaterGAP to assess the impact of cli-
mate change on the freshwater system is limited, as is the
case for most hydrological models, by not being able to sim-
ulate the response of vegetation to climate change and an
increased atmospheric CO2 concentration. The simulation
of vegetation responses (instead of assuming no changes in
vegetation that affect evapotranspiration) may result in sub-
stantial differences in estimated climate change impacts, for
example, on groundwater recharge (Reinecke et al., 2021).
However, the simulation of vegetation responses is com-
plex and uncertain, and a simplified approach is required.
Applying the results of Milly and Dunne (2016), who ana-

lyzed future evapotranspiration changes in an ensemble of
global climate models, we developed an alternative method
for calculating potential evapotranspiration (PET) under cli-
mate change applicable to the Priestley–Taylor PET method.
This model variant can be used in an ensemble, together with
the standard model, to approximate the range of uncertainty
in future evapotranspiration and runoff changes.

Glaciers play a crucial role in the global water cycle (Scan-
lon et al., 2023; An et al., 2021) but are represented in very
few global hydrological models (Telteu et al., 2021). Ne-
glecting the dynamics of water storage in glaciers results
in a missing component of the terrestrial water storage and
hinders quantifying the impact of glacier mass loss on wa-
ter resources and sea level rise. We had developed a glacier
component (HYOGA) for a previous version of WaterGAP
(Hirabayashi et al., 2010), which, however, is no longer
state-of-the-art. Hence, to enable an optimal consideration of
glacier water dynamics, it is preferable to include the output
of a dedicated glacier model in a global hydrological model
(Hanus et al., 2024; Wiersma et al., 2022). This approach
has been implemented in WaterGAP v2.2e but not in its stan-
dard version due to the limited temporal extent of the glacier
model output.

An important indicator of water quality is water temper-
ature, especially in a changing climate (Hannah and Gar-
ner, 2015; Van Vliet et al., 2013). Therefore, the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP)
has included river water temperature as a requested variable
in its recent phase 3. Moreover, the new ISIMIP sector water
quality has been formed that has identified water temperature
as one of the essential elements (https://protocol.isimip.org/
#/ISIMIP3a/water_quality, last access: 6 November 2024).
Furthermore, the calculation of water temperature helps to
assess the heat uptake of inland waters (Vanderkelen et al.,
2020). Hence, in WaterGAP v2.2e, a simple algorithm to cal-
culate the water temperatures of rivers and surface waterbod-
ies was introduced.

An important rationale for developing a new model ver-
sion is to update the input data basis to reflect the current state
of the art. To optimally take into account reservoirs in Wa-
terGAP and to be consistent with other global hydrological
models participating in the model intercomparison project
ISIMIP, it has been necessary to update the reservoir and reg-
ulated lake data to GRanD (Lehner et al., 2011) version 1.3
and include some additional reservoirs from other sources. In
terms of non-irrigation water use data, two errors (one error
in downscaling the national level to the grid cell level and one
copy–paste error) appeared in WaterGAP v2.2d when creat-
ing the domestic water use time series, which was subject
to be corrected in v2.2e. Furthermore, input data to tempo-
rally extend the time series for thermal electricity (from 2010
to 2017) and manufacturing water use (from 2010 to 2016)
were available.

Models and their inputs are imperfect, and calibration can
help to reduce the uncertainty in model output (e.g., Döll
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Figure 1. Schematics of the WaterGAP framework and the WaterGAP Global Hydrology Model (both taken from Müller Schmied et al.,
2021) and a summary of data updates, process updates, and new algorithms.

et al., 2016). Hence, WaterGAP has been calibrated against
observed mean annual streamflow in a simple but basin-
specific manner since its first described version (Alcamo
et al., 2003; Döll et al., 2003). With this approach, the bias of
simulated streamflow is strongly reduced. Therefore, the in-
clusion of newly available streamflow data in the calibration
process is beneficial.

The improvement of already implemented algorithms is
another motivation for developing a new model version. Fo-
cused groundwater recharge below the surface waterbodies
in (semi-)arid grid cells was a feature introduced in Water-
GAP v2.2a (Döll et al., 2014). A modification in WaterGAP
v2.2d regarding the handling on grid cells without outflow
of liquid water, i.e., internal sinks, has led to unrealistically
high values of groundwater recharge in these cells that are
difficult to interpret in a water balance approach, especially
when assessing the impact of climate change on groundwa-
ter resources (Reinecke et al., 2021). A good example is the
Okavango Delta in Botswana, which is an endorheic basin
with a surface waterbody. Here, approx. 95 % of the inflow-
ing water is evaporated rather than recharging the ground-
water (Milzow et al., 2009), while the v2.2d model version
computes very large and focused groundwater recharge un-

der the delta. In addition, the modification to handle inland
sinks in v2.2d just like any other grid cell has led to out-
putting a value for streamflow out of the inland sink, which
does not reflect reality. Both issues motivate a modification
of the handling of inland sinks in the model.

Data assimilation, which requires regular updating of the
model states (water storages), was not possible with the stan-
dard version v2.2d, as the simulation could not be stopped at
a certain point in time (e.g., 31 March 2004) and restarted
to continue the computation (for 1 April 2004) with pre-
scribed initial conditions that had been written out at the end
of the previous model run. Therefore, the WaterGAP Global
Hydrology Model was modified to enable a monthly restart
and successfully applied in data assimilation (Gerdener et al.,
2023; Döll et al., 2024). In addition, the restart capability is
a prerequisite to applying WaterGAP in water resource mon-
itoring and ensemble forecasts of water resources. Also, it
reduces model runtimes, in particular in climate change as-
sessments. The participation of the model in the ISIMIP3b
simulation round requires model runs for different time peri-
ods (e.g., the pre-industrial period starting in the year 1601,
the historical time period in the year 1850, and the future
in the year 2015). With v2.2d, each run for the future time
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period would require a transient run with a start in 1601 to
reach full consistency, especially between the time periods,
leading to a high demand for computing resources and run-
time. To perform the multiple-scenario evaluation for the 86
years from 2015–2100, starting in 1601 would lead to a run-
time of 25 h, while the runtime would be only 4 h if the model
could start with prescribed initial conditions in 2015.

To address these scientific demands, WaterGAP was up-
dated to version v2.2e. The objective of this paper is to
clearly describe the modifications and new options imple-
mented in WaterGAP v2.2e and to evaluate the impact of the
modifications on model results. The paper describes

– the removal of small reservoirs from the local lake stor-
age compartment to achieve an improved simulation of
naturalized conditions (Sect. 2.1);

– the updated database for reservoirs and regulated lakes
(Sect. 2.2);

– the updated and bug-fixed non-irrigation water use data
(Sect. 2.3);

– the updated streamflow observation data set used for
model calibration (Sect. 2.4);

– the new handling of inland sinks (Sect. 2.5);

– the integration of an alternative approach for PET to im-
prove climate change impact assessments (Sect. 3.1);

– the integration of outputs from a global glacier model
(Sect. 3.2);

– the implementation of water temperature calculation
(Sect. 3.3);

– the model restart capability (Sect. 3.4).

The remainder of the paper is organized as follows: modi-
fications of algorithms and data that affect standard model
runs are described in Sect. 2. New options for applications in
specific cases are explained in Sect. 3. The model setup and
the climate input data used for this paper are described in
Sect. 4. The effects of the modifications for the standard runs
are shown in Sect. 5 and for the specific options in Sect. 6.
The comparison of model outputs to observations and refer-
ence data follows in Sect. 7. A discussion about the benefits
and limitations of the calibration approach follows in Sect. 8.
The standard model output, as well as caveats, is described
in Sects. 9 and 10, respectively. WaterGAP v2.2e is applied
in the Inter-Sectoral Impact Model Intercomparison Project
phase 3 (ISIMIP3). The specifics of the model runs and de-
viations from the ISIMIP model protocol are described in
Sect. 11. The paper ends with the conclusions and outlook in
Sect. 12. In addition, technical modifications and bug fixes
are listed in Appendix A.

2 Modifications of algorithms and data affecting
standard model results

2.1 Naturalized runs: small reservoirs are no longer
considered in naturalized runs

In WaterGAP v2.2d, small reservoirs (< 0.5 km3 storage ca-
pacity) are simulated as local lakes, whether or not Water-
GAP is run in nat mode. In WaterGAP v2.2e, the small reser-
voirs are removed from local lakes in nat runs, decreasing the
grid-cell-specific area share covered by surface waterbodies
that are simulated with the local lakes algorithm. In standard
(ant) runs, small reservoirs continue to be treated like nat-
ural lakes. After integration of updates and new reservoirs
from the Global Reservoir and Dam Database (GRanD) 1.3
(Lehner et al., 2011) (Sect. 2.2), there are 5722 small reser-
voirs with a maximum storage capacity of less than 0.5 km3

in WaterGAP v2.2e. They cover a total maximum area of
31 630 km2.

2.2 Reservoir and regulated lake data: GRanD 1.3
integration

In WaterGAP, reservoirs with a storage capacity of at least
0.5 km3 are simulated as so-called global reservoirs that
receive inflow from the upstream grid cell. Their dynam-
ics are simulated with a filling and operational scheme,
depending on their main use (irrigation or non-irrigation)
(Müller Schmied et al., 2021). Changes to reservoirs and new
reservoirs from GRanD (Lehner et al., 2011) version 1.3,
together with four additional reservoirs from a preliminary
version of the GeoDAR data set (Wang et al., 2022), were
implemented in WaterGAP v2.2e. Reservoirs with a com-
missioning year until 2020 were selected and mapped to the
river network of WaterGAP DDM30 (Döll and Lehner, 2002;
Schewe and Müller Schmied, 2022). The location of the new
reservoirs was manually co-registered in the drainage net-
work with the help of web-based map information in order to
match the given hydrological situation, particularly whether
a reservoir is located on the main stream or its tributary. The
total number of implemented reservoirs with a storage ca-
pacity of at least 0.5 km3 increased from 1082 in WaterGAP
v2.2d to 1255 in WaterGAP v2.2e, and the number of regu-
lated lakes increased from 85 to 88. The total maximum stor-
age capacity of the global reservoirs sums up to 5672 km3.

Furthermore, parameters (i.e., commissioning year and as-
signed outflow cell) from 12 reservoirs were changed either
due to changes from GRanD 1.1 to 1.3 or for correcting
flawed parameterization. Multiple reservoirs and regulated
lakes may have their outflow cell in the same grid cell. In
such cases, they are simulated as one big reservoir or reg-
ulated lake by adding up their maximum area and storage
capacity and assigning to this new waterbody the type (reser-
voir or regulated lake) and the commissioning year of the
actual reservoir or regulated lake with the largest water stor-
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age capacity. Thus, for example, a regulated lake and a reser-
voir can become one reservoir in WaterGAP. Therefore, Wa-
terGAP v2.2e explicitly simulates only a maximum of 1181
reservoirs and 86 regulated lakes (corresponding data avail-
able from Müller Schmied and Trautmann, 2023). In addi-
tion to these global reservoirs, local reservoirs with a storage
capacity smaller than 0.5 km3 were updated to GRanD ver-
sion 1.3 (Sect. 2.1).

2.3 Water use data: updated non-irrigation water use
data

In WaterGAP, domestic water use is calculated on a national
level and then downscaled to the grid cells according to
the population number per grid cell. Additional information,
such as the ratio of rural to urban population per grid cell and
the share of the population with access to safe water supply,
is considered (Flörke et al., 2013). In the 2.2d version, an
error occurred for a few countries in the downscaling proce-
dure because non-numerical values (i.e., not a number, NaN)
were written in the input time series of the percentage of the
population having access to a safe water supply. This bug was
detected after the calibration of the model variants and fixed
in the runs.

The sectoral water use estimates end in different years. For
the years thereafter, the value of the last data year was copied.
The thermal electricity estimates end in 2017 and manufac-
turing estimates end in 2016, whereas livestock estimates end
already in 2011 (no change as compared to WaterGAP v2.2d,
except that the year 2011 was correctly used for prolonging
the time series instead of the year 2010, as done by accident
in v2.2d) and domestic water use ends in 2010 (no temporal
extension, but the bug fix is applied as described above).

2.3.1 Thermal electricity water use

WaterGAP estimates the amount of cooling water for thermal
electricity production, namely water abstractions and con-
sumptive use, for each power plant individually. The input
data for the location and capacity of thermal power plants
are obtained from the World Electric Power Plants Data
(http://www.platts.com, last access: 6 May 2020, last updated
in 2010, UDI, 2020), along with the relevant literature and
case studies.

A thermoelectric power plant is defined as a power-
generating facility that uses heat to generate energy, which
may be produced by burning fossil fuels, biomass, or nu-
clear energy. Additionally, geothermal power plants and con-
centrated solar power (CSP) plants, as well as other solar-
related power plants that require water for cooling and
cleaning of solar panels, have been incorporated into the
database (Terrapon-Pfaff et al., 2020). Power plants that em-
ploy seawater or brackish water for cooling purposes are ex-
cluded. The time series of data on annual electricity pro-
duction for different fuel types (http://www.eia.gov/cfapps/

ipdbproject/IEDIndex3.cfm?tid=2&pid=2&aid=12, last ac-
cess: 5 November 2024, EIA, 2021), as well as the ther-
mal electricity water use time series, was extended until the
year 2017. The updated thermal electricity water use model
was validated for the year 2015.

2.3.2 Manufacturing water use

The WaterGAP manufacturing water use model calculates
the amount of water abstracted and consumed for produc-
tion and cooling purposes in the manufacturing sector. A de-
tailed model description can be found in Flörke et al. (2013)
and Müller Schmied et al. (2021). The water use time se-
ries was prolonged to 2016, based on the key driving force
manufacturing value added from https://data.worldbank.org/
indicator/, last access: 5 November 2024, Worldbank, 2021).

2.4 New calibration data set

The data set of streamflow calibration stations was up-
dated for WaterGAP v2.2e, now comprising a total of 1509
stations compared to 1319 stations for WaterGAP v2.2d
(Müller Schmied et al., 2021). An update was warranted
as databases of streamflow observations had been updated
or newly established since the last station update roughly
a decade ago, and climate forcings now cover more recent
years, e.g., until 2019 (Cucchi et al., 2020; Lange et al.,
2021). As recent high-quality climate forcings are avail-
able only from 1979 onwards and require a concatenation
to other less reliable climate forcings with potential offsets
(Müller Schmied et al., 2016), the update of the calibration
stations also aimed at increasing the number of streamflow
observations after 1978. A detailed description of the updat-
ing process can be found in Schiebener (2023).

2.4.1 Databases

As in the case of previous WaterGAP versions, the Global
Runoff Data Center (GRDC) is the main resource for
streamflow gauging station data. The GRDC database in-
cludes mostly daily streamflow time series of national data
providers, but not all nationally available streamflow data are
included. During the last few years, additional databases of
streamflow indices have been made available.

The Global Streamflow Indices and Metadata Archive
(GSIM) (Do et al., 2018; Gudmundsson et al., 2018) provides
indices such as monthly streamflow for 30 000 stations from
national daily streamflow data that have been collected, ho-
mogenized, and enriched by metadata information. The start
year for GSIM data is 1958.

The African Database of Hydrometric Indices (ADHI)
(Tramblay et al., 2021) provides indices including monthly
streamflow for 1466 stations over the African continent, to-
gether with metadata. The start (end) year for ADHI data is
1950 (2018). While the GRDC database is continuously up-
dated, this is not the case for GSIM and ADHI.
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2.4.2 Station selection methodology

The criteria for considering a streamflow station to be suit-
able for the calibration of WaterGAP remain unchanged from
WaterGAP v2.2d and include the following (Müller Schmied
et al., 2014):

– an upstream area of at least 9000 km2,

– a time series of at least 4 complete but not necessarily
consecutive calendar years (with a maximum of 2 miss-
ing days per month), and

– an inter-station catchment area of at least 30 000 km2.

The 1319 GRDC stations used for calibrating earlier model
versions were identified in the GRDC metadata catalogue
that was downloaded on 30 July 2021. Including updated
streamflow data for these stations was as straightforward as
including the location on the drainage network and criteria
such as the inter-station area that had already been checked
previously. Only 1 of the 1319 stations was no longer avail-
able in the GRDC database. For 175 stations, a change in the
GRDC ID was considered. In total, 119 additional GRDC
stations that meet the criteria listed above and have a time
series end after 1982 (to allow at least 4 years, starting in
1979) were identified as potential additional stations. In to-
tal, 1437 stations with monthly data were downloaded from
GRDC on 6 August 2021. Out of these, 1424 stations have 4
complete calendar years of data and are included in the new
calibration data set of WaterGAP. The 1565 GSIM and 197
ADHI stations that meet the spatial selection criteria were
initially considered. Out of these, 1367 GSIM stations and
189 ADHI meet the criterion of having 4 complete years of
data and were included in the WaterGAP calibration data set.

The selected stations of all three data sources were plot-
ted on the WaterGAP drainage network in order to (1) find
and eliminate duplicates, which are not necessarily identi-
fied from the station metadata; (2) identify the stations that
meet the inter-station catchment area criteria; and (3) re-map
the station to a grid cell that fits with the drainage network.
Re-mapping of the position focused on accurately relating
the station either to the mainstream of the river or the tribu-
tary. A correcting factor for mismatches of drainage areas be-
tween the values provided by the station data producers and
those calculated from the drainage direction map was not im-
plemented, but both areas can be found in the shapefiles of
Müller Schmied and Schiebener (2022). As only GRDC is
regularly updated, this data source was preferred in the case
of multiple stations with similar time series lengths in close-
by grid cells. The time series of multiple stations in one grid
cell were compared to further eliminate duplicates or to se-
lect the best-suited station. Where it was meaningful, time
series were merged (e.g., for those cases where GSIM pro-
vides more recent years but GRDC years before 1958). Fur-
thermore, each time series was visually inspected in order to

Figure 2. The number of gauging stations and years for calibration
as a function of the year where the calibration starts. Both numbers
decrease with a later start year of calibration, indicating that the
year 1916 is the most recent year to start the calibration without
losing data points according to the station/data selection criteria.
Note that the y axes do not start at zero.

check the plausibility of data and to delete data points in case
of obvious errors.

2.4.3 Resulting calibration data set of streamflow
observation

The final WaterGAP calibration data set with streamflow ob-
servations consists of 1509 JSON files with monthly stream-
flow observations (only for years with values for all calen-
dar months). Data for 1252 gauging stations originated from
GRDC, with 80 from ADHI and 177 from GSIM databases.

In the WaterGAP calibration, 30 complete years of stream-
flow data are ideally used for model calibration. Of the 1509
stations, 949 have more than 30 years of data, which requires
the selection of a suitable start year for calibration. The later
the global calibration start year is, the fewer stations and
number of years are available for calibration (Fig. 2). In the
case of 1979 as the start year for calibration, which would
allow us to use only the most reliable climate forcing, only
1375 out of 1509 gauging stations are available for calibra-
tion. In addition, the number of years that would be available
for calibration is reduced drastically in several parts globally
(Fig. 3). Therefore, we decided to not constrain the calibra-
tion to periods starting in 1979 or later.

The preferred period for calibration was set to 1981–
2010. If observation data are incomplete for this period for
any gauging station, the following is done iteratively until
30 years of data are reached (not necessarily consecutive
years) or until no further years are available for the station:

1. go back to using 1979 as the start year;

2. extend the years after 2010;

3. go back, year by year, starting from 1978, until reaching
1901 as the start year.
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Figure 3. Number of complete years usable for the calibration of model parameters in the calibration basins shown for 1916 and 1979 as
calibration start years. The term “not used” refers to the case where fewer than 4 years of streamflow data are available for the case of starting
the calibration in 1979, such that these basins would not be included in model calibration.

During this counting procedure, the years 1980 and 1979
were accidentally considered twice. This led to the effect that
for several stations, only 28 (for 362 stations) or 29 (for 34
stations) out of 30 possible calibration years are considered
within the calibration procedure. Those missed years are al-
ways before 1978 and at the beginning of the possible cali-
bration time period. An assessment of the difference in the
correct 30-year time period and the erroneous one showed
that for the majority of river basins, the difference in mean
monthly streamflow is< 5 % (Fig. S1). Due to this relatively
small influence, and as this issue was detected after all anal-
yses had been conducted, we decided not to redo the calibra-
tion and all subsequent assessments.

In total, 38 543 full calendar years could be used for cal-
ibrating WaterGAP v2.2e, but due to the error described
above, only 37 785 full calendar years were considered. For
a total of 993 (597 due to the error) out of 1509 stations,
a 30-year period was available. For 336 of these stations,
the 30-year period matches the time span 1981–2010. For
854 (825 due to the error) stations, the calibration years (not
necessarily 30 years) start before 1979, and out of these, 82

stations have all their calibration years before 1979. In con-
trast, the 1319 WaterGAP v2.2d calibration stations sum up
to 31 184 years; hence, the update of the calibration data
set increased the number of years by around 24 % (21 %
due to the error). In terms of the calibration area, the over-
all process increased the calibration area by 2.14× 106 km2,
whereas 0.53× 106 km2 are no longer included in the cal-
ibration area, e.g., due to suspicious data (Fig. 4). This re-
sults in an increase in calibrated drainage area from 53.8 %
in WaterGAP v2.2d to 55.1 % in WaterGAP v2.2e of the
global land area outside Antarctica and Greenland. The aver-
age basin size (excluding any additional upstream basin area)
decreased from 54 000 km2 in v2.2d to 48 300 km2 in v2.2e.
The calibration basins and streamflow time series are pro-
vided in Müller Schmied and Schiebener (2022).

2.5 New handling of inland sinks

Cells that represent inland sinks, i.e., cells without the out-
flow of liquid water, are handled like any other cell in Wa-
terGAP v2.2d. Since WaterGAP v2.2a (Döll et al., 2014),
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Figure 4. Areas considered for calibration in WaterGAP versions v2.2d and v2.2e. Blue colors indicate grid cells that are newly present as
the calibration area in v2.2e due to the update of the data basis, whereas red colors show grid cells that are no longer calibrated in v2.2e in
comparison to v2.2d.

focused groundwater recharge below the surface waterbod-
ies (i.e., lakes and wetlands) is calculated in (semi-)arid grid
cells. In the case of (semi-)arid inland sinks, the focused
recharge can reach very high values, which limits assess-
ment of this variable, e.g., in climate impact studies. Fur-
thermore, it is unrealistic to provide a streamflow value for
an inland sink as there is – other than an ocean outflow cell
– no grid cell that could receive the streamflow generated in
inland sinks.

Hence, inland sinks are handled in v2.2e as follows:

– no focused groundwater recharge below the surface wa-
terbodies;

– surface runoff and groundwater outflow are routed to the
surface waterbodies (no fractional routing; Döll et al.,
2014)

– simulated streamflow of inland sinks is added to actual
evapotranspiration in the model output, and streamflow
is set to zero.

This new handling leads to correctly calculated renewable
water resources in inland sinks, which can become negative,
as all precipitation and cell inflow is assumed to be evapo-
transpired. Diffuse groundwater recharge is computed, and
groundwater abstractions, as well as surface water abstrac-
tions from lakes, are taken into account in modeling inland
sinks. As a consequence of setting streamflow to zero in in-
land sinks, the reservoir algorithm cannot be initialized in
those grid cells, and thus four global reservoirs in total in in-
land sink cells are treated as global lakes in WaterGAP v2.2e.

3 New options for special model applications

3.1 Alternative PET calculation method to
approximate the effect of vegetation response when
estimating the impact of climate change on
evapotranspiration

Potential evapotranspiration on land surfaces (PET) is deter-
mined by a combination of plant transpiration and evapo-
ration from the canopy and the soil. As such, PET is influ-
enced by vegetation characteristics and processes that are af-
fected by human-induced climate change, in particular rising
atmospheric CO2 concentrations. The physiological effect
(with closing stomata decreasing transpiration), the struc-
tural effect (also known as the fertilization effect, which may
increase canopy evaporation and transpiration), and biome
shifts are three types of vegetation responses to rising atmo-
spheric CO2 (Gerten et al., 2014). These effects influence
PET and, if not accounted for, lead to wrong estimates of
the impact of climate change on evapotranspiration and wa-
ter resources.

Typical hydrological models, such as WaterGAP, do not
simulate the plant phenology processes leading to these ef-
fects or the interaction with the atmosphere. This signifi-
cantly constrains the capacity of standard hydrological mod-
els to assess how water resources change under climate
change. Given the intricacy and considerable uncertainty as-
sociated with simulating vegetation responses, Peiris and
Döll (2023) recommended running hydrological models in
two variants, namely one with the PET algorithm used for
conditions where PET is not impacted by vegetation response
to climate change (i.e., the standard PET), and the other in
which this impact is approximated. Accordingly, in Water-
GAP v2.2e, the Priestley–Taylor (PT) method is used in the
standard model runs to calculate PET (Müller Schmied et al.,
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2021), and the Priestley–Taylor modified approach (PT-MA)
is applied as the alternative PET computation method, where
PT-MA considers the vegetation effect when computing the
PET in a very simple and approximate way.

The PT method computes PET as a function of net radia-
tion and temperature, where PET increases with temperature.
However, analyzing evaporation changes in an ensemble of
global climate models; Milly and Dunne (2016) found that
under future climate change, PET change as computed with
the PT method overestimates the increase in future PET, and
the PET change is a function of net radiation change only.
The impact of increasing temperature on PET is approxi-
mately canceled by the impact of changes in other processes
that are taken into account by global climate models (GCMs)
but not by typical hydrological models (Milly and Dunne,
2016; Yang et al., 2019).

The new PET method, PT-MA, which was developed
based on the results of Milly and Dunne (2016), can be
applied for estimating hydrological changes due to climate
change between a reference period and a future period.
A temperature reduction factor Tdiff is calculated in pre-
processing for each land grid cell and year in the future time
period and stands for the difference between the annual mean
temperature of a 20-year period centered around the year of
interest and the mean annual temperature of the reference
period. The model then applies this temperature reduction
factor to adjust the daily temperature values in future sce-
narios, thus removing the long-term temperature trends. As a
result, the model computes future PET by taking into account
changes in net radiation only, while still varying temperatures
at daily to inter-annual scales.

The PT-MA method leads to a roughly similar effect of
future anthropogenic climate change on PET, as computed
by the ensemble of GCMs. Therefore, the PT-MA method is
applicable as an alternative for estimating the change in hy-
drological variables between the reference period and a pe-
riod in the future. Different from the standard WaterGAP, it
does not neglect the impact of vegetation dynamics on actual
evapotranspiration and thus runoff. With decreased evapora-
tion as compared to climate change runs with the standard
WaterGAP with PT, the PT-MA runs lead to less drying or
more wetting than PT runs. Given the very simplified man-
ner of considering the vegetation response to climate change,
we recommend using both the PT and PT-MA model variants
in an ensemble approach for estimating hydrological hazards
of climate change. Peiris and Döll (2023) provide further de-
tails and a verification of this approach.

3.2 Integration of glaciers

WaterGAP v2.2d neither simulates water storage in glaciers
nor water flows related to glacier dynamics. To take into ac-
count the water storage and flow dynamics of glaciers in Wa-
terGAP, we implemented a glacier algorithm in WaterGAP
v2.2e. This algorithm reads input data sets of glacier area and

glacier mass change computed with the global glacier model
of Marzeion et al. (2012) and of total precipitation (rainfall
and snowfall) on glacier area from the atmospheric data set
used to force the glacier model. These input data sets are
used (1) to integrate a glacier area fraction in the grid cells
where glaciers are located; (2) to calculate glacier runoff, i.e.,
the runoff generated from precipitation on glacier area and
glacier mass change; and (3) to include a glacier water stor-
age compartment in the hydrology model. The glacier runoff
is added to the cell’s fast runoff, which partly flows directly
into the river, while the rest flows into the other surface wa-
terbodies. In the standard version of WaterGAP v2.2e, the
glacier algorithm is switched off; i.e., glaciers are not in-
cluded. This is because the algorithm relies on glacier-related
input data sets that are currently only available from Jan-
uary 1948 to December 2016, whereas standard model runs
require input data from 1901 onwards and up-to-date climate
forcing data sets prolongs after the year 2016. WaterGAP
v2.2e with glaciers was validated by comparing simulated
global monthly terrestrial water storage anomalies to obser-
vations from an ensemble of four GRACE spherical har-
monic solutions for the period January 2003 to August 2016.
For more details regarding the glacier algorithm implemen-
tation and validation, we refer the reader to Cáceres et al.
(2020).

3.3 Calculation of river water temperature

The estimation of water temperature of rivers is relevant, e.g.,
for the solubility of gases, the metabolic rate of aquatic flora
and fauna, and the formation of ice. Furthermore, changes
in water temperature have not only local but also down-
stream effects (Olden and Naiman, 2010). Also, the return
flows from thermal power plants increase river water tem-
perature. Due to the importance of water temperature as a
physical water quality indicator, the Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP) included river wa-
ter temperature as a requested variable in its recent project
phase 3. In WaterGAP v2.2e, and inspired by the approaches
of Van Beek et al. (2012) and Wanders et al. (2019), the cal-
culation of river water temperature is implemented. Imple-
mentation details, as well as a validation against observed
river water temperature, can be found in Ackermann (2023).
When comparing simulated river temperatures of WaterGAP
with a regression approach of air temperature (Punzet et al.,
2012), the results are rather similar. Ackermann (2023) ini-
tially compared the results of WaterGAP and the regression
approach with observation data and concluded that the re-
gression approach from air temperature often obtains higher-
performance indicator values. They also showed that, e.g.,
the inclusion of warming due to return flows from thermal
power plants improved model simulations. For assessing if
the implemented approach is useful for impact assessments,
further evaluation is required and will be conducted, e.g., in
the newly formed water quality sector of ISIMIP.
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3.4 Ability to start from prescribed initial conditions

A typical model run of WaterGAP starts with several years of
initialization (e.g., 5 years) to enable storage compartments
to swing in from their initial conditions to more realistic
ones. The stop and restart of the model in a specific month
was a functionality that was not required in earlier versions
of WaterGAP. WaterGAP v2.2e is now able to store all states
(storage compartments), parameters (such as area reduction
factors), and additional information (such as days of the veg-
etation growing period) for a pre-defined month of a specific
year. A model run can then be started from this prescribed
stored initial state.

The ability to start the model from a prescribed initial con-
dition is required, for example, for model runs for near-real-
time monitoring and ensemble forecasts. This feature was
used within the framework of the ISIMIP3b simulations as
different scenarios for the future time period could be started
from a given state of the historical time period, which re-
duced runtimes drastically when compared to a transient run.

Furthermore, this functionality enables the model to run a
certain month; modify, e.g., storage compartments externally
(assimilation of, e.g., GRACE data); and start the next month
in WaterGAP. This offline coupling allows data assimilation
studies, and in addition, WaterGAP is prepared for online
coupling in the PDAF system (Nerger and Hiller, 2013). For
this reason, WaterGAP compiles not only as an executable to
run on a Linux system but also as a library that can be embed-
ded in PDAF. As the writing and reading of physical data are
omitted, this online coupling strongly reduces the runtime of
monthly data assimilation.

4 Climate forcings and model setup

4.1 Climate forcings

WaterGAP was calibrated and run with a total of four climate
forcings, which are mainly from the ISIMIP phase 3a (Frieler
et al., 2024). All the climate forcings are a concatenation of
two data sets – one for the period prior to 1979 and one for
the period starting in 1979 (Table 1). The year 1979 is the
first year of the current ERA5 reanalysis, which is either di-
rectly used or is the basis for a specific bias adjustment to
observation data.

GSWP3 in its version 1.09 (Kim, 2017) is a bias-adjusted
and downscaled version of the Twentieth Century Reanaly-
sis version 2 (20CRv2) (Compo et al., 2011). The ensem-
ble member 1 of the Twentieth Century Reanalysis version 3
(20CRv3) (Slivinski et al., 2019, 2021) was interpolated to
0.5° spatial resolution but not bias-adjusted (Lange et al.,
2022). ERA5 (Hersbach et al., 2020) is the latest version
of the ECMWF Reanalysis. The year 2022 for ERA5 is
added based on the scripts that have been provided by Ste-
fan Lange, with an ERA5 download date of 25 January 2023.

W5E5 v2.0 (Cucchi et al., 2020; Lange et al., 2021) is a bias-
adjusted version of the current version of the European Re-
analysis ERA5 (Hersbach et al., 2020).

The climate forcings are concatenated by applying a bias
adjustment of the data set before 1979 to the data set there-
after using ISIMIP3BASD v2.5.1 (Lange, 2019, 2021). This
reduces discontinuities at the 1978/1979 transition. For de-
tails, see Mengel et al. (2021).

4.2 WaterGAP model variants

The standard model variant, ant, includes human interference
with the hydrological cycle, namely human water use and
reservoir operation ( “histsoc” in ISIMIP3 nomenclature). In
contrast, the model is also run in a nat mode without wa-
ter use, and reservoirs reflect a hydrological system with-
out those direct human impacts (“nowatermgt” in ISIMIP3
nomenclature). All model variants are calibrated with the
corresponding climate forcing. The standard climate forcing
of WaterGAP v2.2e is gwsp3-w5e5. To compare the effect of
model development, we calibrated and ran WaterGAP v2.2d
with the gswp3-w5e5 climate forcing and the calibration data
basis of v2.2e. In total, the outputs of eight WaterGAP v2.2e
variants are available (four climate forcings with ant and nat
setups), as well as the output of two WaterGAP v2.2d vari-
ants (one climate forcing with ant and nat setups calibrated
to the new WaterGAP v2.2e streamflow observations data).

5 Results of standard model modifications

5.1 Effect of removing local reservoirs from
naturalized runs

The impact on the global water balance of no longer assum-
ing that local reservoirs exist in naturalized runs is small (Ta-
ble 2). As fewer waterbodies are considered in v2.2e, actual
evaporation decreases, and streamflow increases by the same
amount. Global streamflow into oceans thus increases by less
than 0.03 %. The change in water storage components is only
minor (not shown).

5.2 New calibrated parameters

The calibration as implemented in the standard version of
WaterGAP focuses on adjusting biases in a rather simple
method. More comprehensive approaches are currently in de-
velopment (Döll et al., 2024; Hasan et al., 2023) and might
be used in future model versions. While the calibration ap-
proach for WaterGAP v2.2e is the same as for WaterGAP
v2.2d, the data set of observed streamflow differs, as de-
scribed in Sect. 2.4. Calibration of WaterGAP v2.2e was
done for all four climate forcings. To explore the impact of
the model version, WaterGAP v2.2d, driven by gswp3-w5e5,
was calibrated using the v2.2e streamflow observation data
set, too. As described in Müller Schmied et al. (2021, their
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Table 1. Overview of the climate forcings used to drive WaterGAP v2.2e (and v2.2d).

No. Name Before 1979 After 1979 Temporal coverage Source and further info

1 gswp3-w5e5 GSWP3 v1.09 W5E5 v2.0 1901–2019 Lange et al. (2022)
2 gswp3-era5 GSWP3 v1.09 ERA5 1901–2022 Provided by Stefan Lange∗

3 20crv3-w5e5 20CRv3 W5E5 v2.0 1901–2019 Lange et al. (2022)
4 20crv3-era5 20CRv3 ERA5 1901–2021 Lange et al. (2022)

∗ Until 2021 and extended to 2022 by the authors of this paper, based on the methodology provided by Stefan Lange.

Table 2. Global water balance components with a model variant of WaterGAP v2.2e, including local reservoirs in local lakes under a
naturalized variant (as in v2.2d; labeled v2.2e_nat with local reservoirs) and in WaterGAP v2.2e, where local reservoirs are removed from
local lakes in a naturalized variant (labeled v2.2e_nat). Water balance components for the time period 1991–2019. All units are in km3 yr−1.

v2.2_nat with local reservoirs v2.2e_nat v2.2e – v2.2e with local reservoirs

Precipitation 111 578.0 111 578.0 0.0
Actual evapotranspiration 70 863.7 70 852.5 −11.3
Streamflow into oceans 40 709.4 40 720.7 11.3
Change in total water storage 4.8 4.8 0.0
Long-term average volume balance error 0.0 0.0 0.0

Sect. 4.9), the calibration follows a four-step scheme with
specific calibration status (CS):

1. CS1 – adjust the basin-wide uniform parameter γ
(Müller Schmied et al., 2021, their Eq. 18) in the range
of [0.1–5.0] to match mean annual observed streamflow
within ±1 %.

2. CS2 – adjust γ as for CS1 but within 10 % uncertainty
range (90 %–110 % of observations).

3. CS3 – as for CS2 but apply the areal correction factor,
CFA (adjusts runoff and, to conserve the mass balance,
actual evapotranspiration as the counterpart of each grid
cell within the range of [0.5–1.5]), to match mean an-
nual observed streamflow with 10 % uncertainty.

4. CS4 – as for CS3 but apply the station correction factor,
CFS (multiplies streamflow in the cell where the gaug-
ing station is located by an unconstrained factor), to
match mean annual observed streamflow with 10 % un-
certainty to avoid error propagation to the downstream
basin.

For each basin, calibration steps 2–4 are only performed if
the previous step was not successful.

The calibration of WaterGAP v2.2e (v2.2d) (driven by the
standard climate forcing gwsp3-w5e5) results in 519 (524)
basins with calibration status CS1, 216 (212) basins with
calibration status CS2, 262 (323) basins with calibration sta-
tus CS3, and 512 (449) basins with calibration status CS4.
While, with 49 %, the percentage of river basins that can
be calibrated without applying correction factors is nearly
the same for both model versions, the modification/update of
reservoir or water use data in v2.2e led to substantially more

stations where not only the areal correction factor CFA but
also the station correction factor CFS is required to match the
simulated long-term annual streamflow with observations.
The 69 stations that moved from CS3 in WaterGAP v2.2d to
CS4 in WaterGAP v2.2e are located all around the globe in
different climate zones, but a lot of them are located in snow-
dominated regions. Of these stations, 64 have a CFS value
of larger than 1, indicating streamflow is underestimated by
WaterGAP v2.2e unless CFS is applied. This difference is
due to a slightly different handling of the calibration routines
in v2.2d and v2.2e. Whereas in v2.2d, the calibration period
uses a spin-up of a 5-year time period prior to the calibra-
tion start year, in v2.2e, the calibration start year is repeated
five times. Hence, different calibration results can occur es-
pecially in the first calibration year, which can finally result
in a different CS.

The spatial distribution of calibration parameters and the
calibration status is shown for WaterGAP v2.2e and the stan-
dard forcing gwsp3-w5e5 in Fig. 5 and for v2.2d in Fig. S2
in the Supplement. For the calibration results for WaterGAP
v2.2e driven by the other three climate forcings, the reader is
referred to Figs. S3–S5.

5.3 Improved handling of inland sinks

The improved handling of inland sinks leads to a reduction in
global streamflow, an increase in actual evapotranspiration,
and a slight decrease in the total water storage change in the
period 2001–2010 (Table 3). This is expected as streamflow
is now assumed to become actual evapotranspiration in in-
land sinks. Hence, between WaterGAP v2.2d and WaterGAP
v2.2e, the assessment of streamflow into oceans in the water
balance component has a different meaning. The improved
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Figure 5. Results of the calibration of WaterGAP v2.2e driven by the gswp3-w5e5 climate forcing, with (a) the calibration status of each of
the 1509 calibration basins, (b) calibration parameter γ , (c) areal correction factor CFA, and (d) station correction factor (CFS). Grey areas
in panel (d) indicate regions with regionalized calibration parameter γ , and for panels (a)–(d), dark green outlines indicate the boundaries of
the calibration basins. For details of the calibration procedure, the reader is referred to Müller Schmied et al. (2021).

handling of inland sinks increases global actual evapotranspi-
ration by 1.1 % and decreases global streamflow into oceans
and inland sinks by 2.0 %. Focused recharge is neglected in
inland sinks which leads to less groundwater storage. The
water balance error is not affected.

5.4 Global water balance components

5.4.1 Major water balance components

The calculation of globally aggregated water balance compo-
nents for WaterGAP v2.2e driven by gswp3-w5e5 is shown
in Table 4. The corresponding tables for the other model
variants are provided in Tables S1–S4. Due to bias adjust-
ment of precipitation, precipitation is larger for the climate
forcings that include W5E5 compared to those that include
ERA5. For all model variants, climate forcings, and time pe-
riods, the streamflow to the oceans (in Table S1 it is stream-
flow to the oceans and inland sinks) is between 39 000 and
40 500 km3 yr−1. As global streamflow does not vary much
as a consequence of calibration, even though the precipitation
varies, actual evapotranspiration differs strongly between the
model variants that are driven by either W5E5 or ERA5 from
70 000 to 80 000 km3 yr−1. Please note that as a consequence
of the new handling of inland sinks (Sect. 2.5), inland sinks
do not contribute to globally aggregated streamflow in Wa-
terGAP v2.2e, and thus the amount is lower than in previous
model versions. However, we indicated the inflow into in-
land sinks in the tables for model version v2.2e, which is the
amount of water that would have been included in row 3 for

model version v2.2d but is now included in row 2. For Ta-
ble S1 (WaterGAP v2.2d), row 4 is included in row 3. This
different handling of inland sinks explains the differences be-
tween streamflow and actual evapotranspiration between ver-
sions v2.2d and v2.2e. For assessments of renewable water
resources, it is recommended to sum up rows 3 and 4 for Wa-
terGAP v2.2e results.

5.4.2 Water storage components

The globally aggregated water storage component changes
are shown in Table 5 for WaterGAP v2.2e driven by gswp3-
w5e5. While the increase in water storage in reservoirs and
regulated lakes during the period 1961–1990, due to dam
construction, more than balances the decrease in groundwa-
ter storage due to human water use, the latter dominated in all
later evaluation periods. While the annual rate of groundwa-
ter loss has steadily increased from the period 1961–2000 to
the period 2001–2019, the annual total water storage loss rate
has steadily increased from the period 1971–2000 onward.
This is also true for the other model variants (Tables S6–S9).
For all three climate forcings, WaterGAP v2.2e computes a
decline in snow water storage since the period 1981–2010.
For other storage compartments, different climate inputs re-
sult in different signs of change without a specific component
that is dominantly sensitive. When comparing the water stor-
age changes in WaterGAP v2.2e (Table 5) and WaterGAP
v2.2d (Table S5), most components are similar, but in Wa-
terGAP v2.2d, the reservoirs and global lakes gain less water
than in WaterGAP v2.2e in the more recent time periods.
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Table 3. Global water balance components with a model version including the improved handling of inland sinks in WaterGAP v2.2e as
compared to previous handling (as in WaterGAP v2.2d). Water balance components for the time period 2001–2010. Please note that the
model version used for this assessment is a pre-v2.2e version and is run with a different climate (a combination of WFD-WFDEI). The
purpose here is only to show the effect of new handling of inland sink cells. The unit of all variables is km3 yr−1.

v2.2e old inland v2.2e standard v2.2e st – v2.2e old

Precipitation 112 438.5 112 438.5 0.0
Actual evapotranspirationa 72 086.8 72 903.8 817.0
Streamflow into oceansb 40 332.4 39 518.6 −813.8
Change in total water storage 19.3 16.0 −3.3
Long-term average volume balance error 0.1 0.1 0.0

a Including (excluding) streamflow in inland sinks for v2.2e (v2.2d); b including (excluding) streamflow in inland sinks for v2.2d
(v2.2e).

Table 4. Global-scale (excluding Antarctica and Greenland) water balance components for different time spans as simulated with WaterGAP
v2.2e with gswp3-w5e5. The unit of all variables is km3 yr−1. Long-term average volume balance error is calculated as the difference in
component 1 and the sum of components 2, 3, and 8.

No. Component 1961–1990 1971–2000 1981–2010 1991–2019 2001–2019

1 Precipitation 110 637 111 279 111 350 111 574 111 655
2 Actual evapotranspirationa 71 325 71 755 71 816 71 998 72 063
3 Streamflow into oceans 39 295 39 530 39 584 39 666 39 697
4 Inflow into inland sinksb 776 794 795 841 846
5 Actual consumptive water usec 904 1049 1195 1307 1369
6 Actual net abstraction from surface water 1036 1186 1338 1448 1501
7 Actual net abstraction from groundwater −132 −137 −143 −141 −132
8 Change in total water storage 17 −6 −49 −91 −105
9 Long-term average volume balance error −0.46 −0.34 −0.20 −0.08 −0.07

a Including actual consumptive water use. b Streamflow that flows into inland sinks; the simulated streamflow of inland sinks is added to actual
evapotranspiration. c Sum of rows 6 and 7.

5.4.3 Water use components

Globally aggregated sectoral potential withdrawal and con-
sumptive water uses, as well as use fractions from ground-
water are shown in Table 6 for WaterGAP v2.2e and gswp3-
w5e5; the corresponding values for the other model variants
are given in Tables S10–S13. Irrigation accounts for two-
thirds of potential water abstractions (WU) and 88 % of po-
tential consumptive use. Groundwater withdrawals are esti-
mated to cover about 22 % of all withdrawals, with the high-
est fraction for the domestic sector, while 35 % of total po-
tential consumptive use is supplied by groundwater, due to
the assumed higher water use efficiency in the case of ir-
rigation with groundwater. The values in Table 6 represent
the human demand for water that cannot be completely sat-
isfied in WaterGAP v2.2e due to a lack of surface water re-
sources. Only 1307 km3 yr−1 of the 1342 km3 yr−1 of poten-
tial consumptive use can be fulfilled in the period 1991–2019
(row 5 in Table 4). The climate forcings including ERA5
have 150 km3 yr−1 less potential withdrawal water use for
irrigation than the forcings with W5E5, which is a result of
more precipitation and thus less irrigation demand. Still, the
potential consumptive use of 1268 km3 yr−1 cannot be ful-

filled, and only 1237 km3 yr−1 is actually consumed (com-
pare Tables S13 and S5). Global sectoral water demand dif-
ferences between WaterGAP v2.2d (Table S9) and v2.2e are
visible only for two updated water use sectors (cooling of
thermal power plants and manufacturing).

6 Application of new model options

6.1 Effect of PET calculation with PT-MA on the
global water balance under climate change

The effect of the modified Priestley–Taylor PET approach
(PT-MA) is tested by running WaterGAP, as driven by two
ISIMIP3b GCMs (GFDL-ESM4 and CanESM5), for the fu-
ture under the emissions scenario RCP8.5 with standard PT
and the newly developed PT-MA approach. Analyzing the
global water balance components for the period of 2071–
2100, actual evapotranspiration is, as expected, lower with
the PT-MA method, and global streamflow is increased by
around the same amount (Table 7). In the case of GFDL-
ESM4 and CanESM5, the PT-MA method leads to an in-
crease in the streamflow into oceans by 2.7 % and 4.0 %,
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Table 5. Globally aggregated (excluding Antarctica and Greenland) water storage component changes during different periods, as simulated
by WaterGAP v2.2e with gswp3-w5e5. All units are in km3 yr−1.

No. Component 1961–1990 1971–2000 1981–2010 1991–2019 2001–2019

1 Canopy 0 0 0.1 0 0
2 Snow 11.4 −9.2 −2.5 −13.7 −0.8
3 Soil 4.9 7.6 9.5 −0.3 −8.8
4 Groundwater −62.0 −68.4 −96.0 −117.7 −144.5
5 Local lakes 0.3 1.1 0.9 0.2 −1.3
6 Local wetlands 0.7 −0.5 4.6 4.4 9.2
7 Global lakes −2.7 −3.5 −2.5 4.3 9.8
8 Global wetlands −3.5 5.0 0.8 0.0 −7.0
9 Reservoirs and regulated lakes 70.8 50.8 36.0 24.9 25.1
10 River 0.4 5.4 −8.1 3.8 4.1
11 Total water storage 20.3 −11.9 −57.2 −94.1 −114.3

Table 6. Globally aggregated (excluding Antarctica and Greenland) sectoral potential withdrawal water use, WU, and consumptive water
use, CU (km3 yr−1), as well as use fractions from groundwater (%) as simulated by GSWSWUSE of WaterGAP v2.2e for the time period
1991–2019.

Water use sector WU Percent of WU CU Percent of CU
from groundwater from groundwater

Irrigation 2541 25 1179 37
Thermal power plants 592 0 18 0
Domestic 352 35 57 36
Manufacturing 298 27 60 25
Livestock 29 0 29 0

Total 3813 22 1342 35

respectively. If hydrological models neglect the effect of the
active vegetation response to the increasing atmospheric CO2
concentrations, it can thus be expected that they may un-
derestimate future water resources (Milly and Dunne, 2016;
Peiris and Döll, 2023). Other water balance components are
affected only marginally, also because the PT-MA method is
not applied in WaterGAP v2.2e when computing irrigation
water use.

6.2 Effect of glaciers on the global water balance

The inclusion of glaciers in a WaterGAP run influences all
global water balance components (Table 8). Precipitation is
higher due to a different precipitation product used in the
original glacier model (see Cáceres et al., 2020), so that
the other components are impacted by the different precip-
itation and the glacier processes themselves. As expected,
total water storage shows much stronger negative trends if
the glacier option is enabled due to ice loss of the melting
glaciers. Global streamflow into oceans increases with en-
abled glacier option due to (1) the additional meltwater from
the glaciers; (2) increased precipitation input; and (3) de-
creased actual evapotranspiration, as this variable is assumed
to be zero on the areas that are covered by glaciers but is
larger than zero when standard land cover takes up the part of

the glacier in the standard run. Other components are affected
only marginally. A comparison of simulated terrestrial wa-
ter storage anomalies (TWSAs) averaged over all land areas
of the globe (except Antarctica and Greenland) to GRACE
TWSA observations showed a good fit regarding seasonality
and trend, while without the glacier options, the simulated
WaterGAP trend is too small (Cáceres et al., 2020).

7 Evaluation of WaterGAP v2.2e

7.1 Model variants used for the evaluation

The evaluation was done using the output of the Water-
GAP runs in the anthropogenic mode, considering human
water use and reservoir operation. The difference between
the model version v2.2d and v2.2e is investigated by running
both variants with the climate forcing gswp3-w5e5. The ef-
fect of the different climate forcings is assessed by compar-
ing WaterGAP v2.2e driven by the gswp3-w5e5 climate forc-
ing to WaterGAP driven by the gswp3-era5 climate forcing.
For the sake of consistency, the evaluation closely follows
Müller Schmied et al. (2021).

Geosci. Model Dev., 17, 8817–8852, 2024 https://doi.org/10.5194/gmd-17-8817-2024



H. Müller Schmied et al.: Global water model WaterGAP v2.2e 8831

Table 7. Globally aggregated (excluding Antarctica and Greenland) water balance components for the period 2071–2100 computed with
standard PET model variant (PT) and the alternative PET model variant (PT-MA) that takes into account – in a very simple manner – the
impact of climate change on vegetation when computing PET. The WaterGAP variants are driven by the bias-adjusted output of the GFDL-
ESM4 and CanESM5 provided by ISIMIP. The columns labeled Diff correspond to PT-MA−PT for the respective GCM. All units are in
km3 yr−1.

GFDLPT GFDLPT-MA Diff CanESM5PT CanESM5PT-MA Diff

Precipitation 108 633 108 633 0 130 617 130 617 0
Actual evapotranspirationa 70 924 69 907 −1017 82 838 80 894 −1944
Streamflow into oceansb 37 850 38 859 1009 47 764 49 689 1925
Change in total water storage −141 −133 8 15 34 18
Long-term average volume balance error 0 0 0 0 0 0

a Including actual consumptive water use; b inland sinks are not considered.

Table 8. Global-scale (excluding Antarctica and Greenland) water balance components for two time spans, as simulated with the standard
model version WaterGAP v2.2e and the version with enabled glacier option. All units are in km3 yr−1. Long-term average volume balance
error is calculated as the difference between component 1 and the sum of components 2, 3, and 7.

1971–2000 2001–2016

No. Component Standard Glacier Glacier – standard Standard Glacier Glacier – standard

1 Precipitation 111 279 111 955 676 111 601 112 254 653
2 Actual evapotranspirationa 71 756 71 642 −114 72 043 71 930 −112
3 Streamflow into oceans and inland sinks 39 529 40 438 909 39 696 40 735 1039
4 Actual consumptive water useb 1049 1057 8 1364 1371 7
5 Actual net abstraction from surface water 1186 1206 20 1492 1510 18
6 Actual net abstraction from groundwater −137 −149 −12 −128 −139 −11
7 Change in total water storage −6 −124 −118 −138 −412 −274
8 Long-term average volume balance error −0.34 −0.34 0.00 −0.09 −0.09 0.00

a Including actual consumptive water use; b sum of rows 5 and 6.

7.2 Independent data sets used for model evaluation

7.2.1 Water abstractions

AQUASTAT is the UN Food and Agriculture Organization’s
global information system on water and agriculture (https:
//www.fao.org/aquastat/en/databases/maindatabase, last ac-
cess: 5 August 2022, FAO, 2022). For individual countries, it
provides water abstractions (withdrawals) for different wa-
ter use sectors. In addition to the six water use variables
used in Müller Schmied et al. (2021), here we used ab-
stractions for the cooling of thermoelectric power plants, as
well as those for the livestock sector. For the evaluation, all
database entries (yearly values) available (https://www.fao.
org/aquastat/en/databases/maindatabase, last access: 5 Au-
gust 2022, FAO, 2022) until (including) 2019 were used.
The evaluation metrics, as described in Müller Schmied et al.
(2021, their Sect. 6.3.1), are calculated using each single data
point of AQUASTAT without any temporal aggregation by
country.

7.2.2 Streamflow

The streamflow data set described in Sect. 2.4 and
Müller Schmied and Schiebener (2022) can be classified as
follows:

– all months available for the station, including months in
incomplete years (ALL);

– months in complete years that went into the calibration
of the model (CAL);

– months that remain from ALL when months for CAL
are removed (VAL).

The number of months per basin and class is shown in Fig. 6.
Those basins (stations) that have fewer then 361 months
in total and consequently for calibration do not have addi-
tional streamflow data for validation. The median number of
months per category is 544, 336, and 207 for ALL, CAL,
and VAL, respectively. For VAL, 240 of the 1509 calibration
basins have fewer than 12 months with observations (out of
which 198 are without any observations). This means that for
around 16 % of the basins, validation is not possible. For this
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Figure 6. Number of available months of streamflow observation
data (ALL) (a), number of complete years for calibration (CAL) (b),
and number of months for validation (VAL) (c).

reason, and also as model calibration only aims at improving
long-term average annual streamflow, we evaluated the sim-
ulated monthly streamflow time series against all available
monthly observations in the following but provide the same
assessments with CAL and VAL in the Supplement.

7.2.3 Terrestrial water storage anomalies

The Gravity Recovery And Climate Experiment (GRACE)
satellite mission was in orbit between 2002 to 2017 to ob-
serve the temporal changes in the Earth’s gravity field and
obtain monthly time series of terrestrial water storage anoma-
lies (TWSAs). Its follow-on mission, GRACE-FO, started in
2018 to continue the measurements. Thus, a data gap of sev-
eral months exists. In addition, due to the aging batteries of
the GRACE mission, no data were collected in specific peri-
ods, leading to further data gaps in the GRACE time series.
Forootan et al. (2020) published a strategy based on indepen-
dent component analyses (ICAs) to combine data from the
Swarm explorer mission and GRACE(-FO) to reconstruct a
gap-free time series. The AAU Geodesy product was recently

extended to include GRACE-FO TWSA data until July 2021.
For the reconstruction, the release of the monthly GRACE L2
product RL06 between April 2002 and September 2016 and
the release RL05 between November 2016 and January 2017
in terms of spherical harmonic coefficients up to degree and
order 96 were downloaded from the Center for Space Re-
search (CSR; http://www2.csr.utexas.edu/grace/, last access:
6 November 2024). GRACE-FO data were also downloaded
from the CSR web page. The combined monthly Swarm
L2 gravity model was downloaded from http://www.asu.cas.
cz/~bezdek/vyzkum/geopotencial/ (last access: 6 Novem-
ber 2024) in terms of the spherical harmonic coefficients up
to degree and order 40 between December 2013 and Decem-
ber 2018. The coefficients of degree one of GRACE(-FO)
are augmented by those derived from Swenson et al. (2008),
whereas the degree two coefficients are replaced by those
derived from satellite laser ranging (SLR) data, following
Cheng et al. (2013). The degree one and two coefficients of
the Swarm fields were also replaced to be consistent with
the treatment of GRACE(-FO) processing. Glacial isostatic
adjustment corrections were applied after implementing the
reconstruction. For details on the data processing and ICA
approach, see Forootan et al. (2020).

In this study, monthly GRACE(-FO) TWSA values are es-
timated on a regular global 0.5° grid. The grid values are
spatially averaged over 148 river basins (TWSA validation
basins). The TWSA validation basins were derived by com-
bining a few of the 1509 streamflow calibration basins such
that the area of each TWSA validation basin is larger than
200 000 km2. A two-step approach was applied to filter the
observations and to compute and reduce leakage errors in the
basin-averaged time series following the approach of Khaki
et al. (2018). In the first step, a 2D-destriping filter was de-
signed for the spectral domain that acknowledges the north–
south striping pattern of the GRACE(-FO) error structure and
aims to retain the high-frequency spatial changes while re-
moving the noise. In the second step, an efficient averag-
ing kernel was designed to spatially average the observations
for the 148 selected river basins and simultaneously estimate
the leakage in and leakage out of the signal. These estimates
are used to correct the smoothed signal of step 1. The mag-
nitude of the leakage error is used to represent the TWSA
uncertainties because this error is dominant in the TWSA
processing steps. We consider the time span between Jan-
uary 2003–December 2019 that is limited by the common
period of GRACE(-FO) data and by the model output from
the different WaterGAP versions.

Note that we refer to the term “terrestrial water storage”
specifically in a context concerning GRACE(-FO). In con-
trast, the term “total water storage” remains in those cases
where the context concerns WaterGAP (e.g., the water bal-
ance assessments).
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7.3 Evaluation metrics

The Nash–Sutcliffe efficiency metric NSE (–) (Nash and Sut-
cliffe, 1970) and the Kling–Gupta efficiency metric KGE (–)
with its components correlation KGEr (–), bias KGEb (–),
and the deviation of variability KGEg (–) (Kling et al., 2012;
Gupta et al., 2009), as well as TWSA-related metrics, are
applied here and were described in Müller Schmied et al.
(2021, their Sect. 6.3). To improve the readability of this pa-
per, the definitions of the evaluation metrics are repeated in
Appendix B.

7.4 Evaluation results

7.4.1 Water abstractions

The evaluation of simulated potential abstractions against re-
ported abstraction values in the AQUASTAT database (https:
//www.fao.org/aquastat/en/databases/maindatabase, last ac-
cess: 5 August 2022, FAO, 2022) shows a reasonable model
quality (Fig. 7). WaterGAP total withdrawal water uses and
also total groundwater and surface withdrawals water use
show a very good fit to the AQUASTAT data, which were
not used as model input. Slightly lesser but still reasonable
performance is shown for the sectors of irrigation, industrial
(manufacturing), domestic, and thermoelectric. WaterGAP
tends to overestimate withdrawal water uses in the industrial
sector (Fig. 7e) and underestimate them in the domestic sec-
tor (Fig. 7f). The update of the thermoelectric and manufac-
turing sectors in WaterGAP v2.2e slightly decreases the fit
to AQUASTAT data (compare Figs. 7 and S8). In particular,
the tendency of the overestimation of withdrawal water uses
in the thermoelectric sector in v2.2d is shifted also towards a
partial underestimation in v2.2e. In addition, values for Wa-
terGAP v2.2e are lower compared to v2.2d. The distribution
of the industrial sector in v2.2e tends to spread more com-
pared to v2.2d.

The performance of the livestock sector with an NSE of
0.4 is relatively low, and overestimations and underestima-
tions are visible (Fig. 7h). However, the total volumes are
mostly below 1 km3 yr−1, and the number of data points from
AQUASTAT is lowest among the other variables. The dif-
ference between the irrigation sector, and the corresponding
total, groundwater, and surface water withdrawal water uses
due to the different climate forcings is rather low in com-
parison to AQUASTAT, as are the differences to WaterGAP
v2.2d (Figs. S6–S9). A slightly lower fit of WaterGAP forced
by ERA5 to AQUASTAT irrigation abstractions is observed
(compare Figs. 7 and S9).

7.4.2 Streamflow

The evaluation of streamflow indicates the overall best re-
sults with WaterGAP v2.2e driven by gwsp3-w5e5 (Fig. 8
and Table 9). There are only very small differences between
the model versions v2.2d and v2.2e under the same climate

forcing. The gswp3-era5 climate forcing leads to a slightly
lower performance with regard to mean bias (KGEb) and
variability (KGEg). The simulations as driven by climate
forcings that use 20crv3 prior to 1979 have much lower per-
formance metrics than those that use gwsp3 (Figs. 8, D1).
This is also visible in the cumulative distribution functions
of KGE, NSE, and the KGE components (Figs. 9, D1, D2,
D3, and D4).

With WaterGAP v2.2e, as driven by gswp3-w5e5, large
areas of North America and Africa result in NSE values be-
low 0.5, which is a similar pattern to that of Müller Schmied
et al. (2021, their Fig. 7) (Fig. 10). Basins in the lowest KGE
class are the same as the basins with NSE performance lower
than 0.5 (Fig. 11a). As intended by the calibration routine,
the KGEb is mostly around the value of 1 (Fig. 11b). Devia-
tions are due to a longer time series for evaluation for several
stations and the model start in 1901 for evaluation instead
of the calibration period (where time spans differ). There
are many regions with close-to-optimal KGE components,
KGEb and KGEr (Fig. 11c), but KGEg deviates strongly from
1, indicating that streamflow variability is not simulated well
(Fig. 11d). In most snow-dominated river basins, WaterGAP
underestimates the variability. Correlations are poor in some
dry and some snow-dominated basins. Performance in gener-
ally lower in highly anthropologically altered basins such as
the outlet of the Nile Basin, where WaterGAP cannot sim-
ulate the seasonality and interannual variability in the up-
stream dam releases and water abstractions well, resulting
in low KGEr and KGEg values (Fig. 11c, d).

Performances according to the Köppen–Geiger climate
zones are shown in Tables 9, D3, D4, D2, and D1. Please note
that the assignment of a basin to the climate zone is based on
the climate forcing used and can thus differ slightly among
the model variants. When assessing the KGE and NSE per-
formance indicators for Köppen–Geiger climate zones, a
similar pattern is visible despite the fact that the distribution
in the classes is differing due to the obviously different mean-
ing of the performance values (Table D1). Highest KGEr val-
ues are generally reached for A and C climates, and espe-
cially here, the difference between the gswp3 and 20crv3 cli-
mate forcing combinations is visible (Table D2). For KGEb,
a tendency to simulate higher mean streamflow compared to
the observation is visible for A and C climates, whereas for
the other climate zones, the number of basins is distributed
rather equally around the 10 % deviation that is introduced by
the calibration routine (Table D3). The variability indicator
KGEg differs largely from the optimum value, especially for
A, B, and D climate zones. For A (D) climates, all models un-
derestimate variability around half (two-thirds) of the basins.
The model variants as driven by ERA5 climate combinations
have a tendency to underestimate variability, especially in C
climates (Table D4).

The assessments above have been done using all monthly
observation data available for the stations, including those
monthly values that have not been used in model calibration.
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Figure 7. Comparison of potential withdrawal water uses from WaterGAP v2.2e and gswp3-w5e5 with AQUASTAT (https://www.fao.org/
aquastat/en/databases/maindatabase, last access: 5 August 2022, FAO, 2022). Each data point represents one yearly value per country for the
time span 1964–2019 if present in the database.

This data set is referred to as “all data” (ALL). The monthly
data that were used (in yearly aggregation) for calibration
are referred to as “calibration data” (CAL). Finally, the dif-
ference in all data and calibration data, i.e., the months that
are not used for calibration, is referred to as “validation data”
(VAL). A slight performance decrease occurs when evaluat-
ing the fit to the simulated streamflow for a validation data
set, mainly due to a reduced KGEb (see the corresponding
Figs. S11–S49 in the Supplement).

7.4.3 TWSA

The comparison of basin-averaged TWSA of WaterGAP
v2.2e forced by gswp3-w5e5 and the reconstructed gap-
free time series of GRACE(-FO) for 148 basins is shown
in Fig. 12. The annual amplitude is underestimated in most
of the African basins and in some Asian basins but is over-
estimated in major parts of North America. The correlation
between WaterGAP v2.2e and GRACE(-FO) is overall rea-
sonable, with the majority of basins experiencing correla-
tions between 0.5–1. However, basins where the amplitude
is considerably under- or overestimated show low correla-
tions. The comparison of TWSA trends shows that Water-
GAP v2.2e generally computes considerably smaller trends
in comparison to GRACE(-FO). This characteristic was also

Table 9. Number of calibration basins in each Köppen–Geiger re-
gion for which the KGE of the monthly streamflow time series is
within three performance classes for five WaterGAP variants. Note
that the assignment of a basin to a climate region can differ among
the climate forcings.

Model variant KGE A B C D E Sum

> 0.7 127 17 163 167 15 489
v2.2d gswp3-w5e5 0.5–0.7 124 37 77 173 12 423

< 0.5 109 72 68 329 19 597

> 0.7 127 17 163 168 15 490
v2.2e gswp3-w5e5 0.5–0.7 125 38 77 175 13 428

< 0.5 108 71 68 326 18 591

> 0.7 78 6 105 170 11 370
v2.2e 20crv3-era5 0.5–0.7 137 35 102 186 9 469

< 0.5 133 76 114 339 8 670

> 0.7 96 8 111 159 15 389
v2.2e 20crv3-w5e5 0.5–0.7 129 37 93 190 5 454

< 0.5 132 83 106 326 19 666

> 0.7 96 7 152 173 13 441
v2.2e gswp3-era5 0.5–0.7 142 38 102 207 8 497

< 0.5 112 70 70 310 9 571
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Figure 8. Efficiency metrics for monthly streamflow of the WaterGAP variants at the 1509 observation stations (all data) with NSE, KGE,
and its components. Outliers (outside 1.5× inter-quartile range) are excluded, but the number of stations that are defined as outliers are
indicated at the x axis.

Figure 9. Cumulative distribution of the KGE efficiency metric for
all monthly streamflow values at the 1509 gauging stations for all
model variants.

observed in the previous model evaluation (Müller Schmied
et al., 2021).

The comparison between WaterGAP v2.2d and v2.2e
shows that only a few basins differ; mainly stronger trends
in (north-)east Asia can be observed for version v2.2e.
The WaterGAP v2.2e versions forced by 20crv3-era5 and
gswp3-era5, respectively, show only marginal differences.
This is expected since both versions are forced by ERA5
during the evaluation period for TWSAs (January 2003–
December 2019). When forcing the model with ERA5,
stronger trends are observed in North America than with
W5E5. The correlations differ in (north-)east Asia and match
better in South America. The annual amplitude fits better in
North America, but the annual amplitude in South America
is better represented using the W5E5 forcing.

7.5 Performance changes due to the updated
calibration data basis

The calibration data basis with observed mean annual
streamflow values of WaterGAP v2.2e has 190 stations more
than WaterGAP v2.2d. In particular, 77 river basins are newly
included in the calibration routine (ID 1). In 6 cases, a new
gauging station has been added downstream (ID 2) and, in
126 cases, upstream (ID 3) of an already existing station. For
21 basins, a station was moved compared to the previous cal-
ibration data basis (ID 4). These sum up to 230 gauging sta-
tions that differ between the calibration data basis of v2.2d
and v2.2e.

To determine the impact of the updated streamflow data
basis, the performance of the simulated streamflow obtained
by calibrating WaterGAP v2.2d against the two different
streamflow data sets (1319 vs. 1509) was compared for the
230 stations. Due to the similar performance between the two
model versions, we do not expect that analysis results with
v2.2e would be similar. The gswp3-w5e5 climate forcing was
applied in both variants.

For all 230 stations, the calibration with the updated ob-
servational data basis, which is used to calibrate the standard
version of WaterGAP v2.2e, led to substantially improved
performance indicators, in particular NSE, KGE, and KGEb,
whereas KGEr and KGEg do not differ notably (Fig. 13).
This improvement is a result of the calibration’s objective
to adjust the bias in mean simulated streamflow to a range of
10 % around the observed value.

https://doi.org/10.5194/gmd-17-8817-2024 Geosci. Model Dev., 17, 8817–8852, 2024



8836 H. Müller Schmied et al.: Global water model WaterGAP v2.2e

Figure 10. NSE efficiency metric for all monthly data of the 1509 river basins in WaterGAP v2.2e as forced by gswp3-w5e5.

Figure 11. KGE efficiency metric and its components for all monthly streamflow values at the 1509 gauging stations for WaterGAP v2.2e as
forced by gswp3-w5e5.

Strong performance improvements are observed for the 77
grid cells with newly added calibration data that are outside
(and also not downstream) of previously calibrated basins
(ID 1), considering the median and the spread (indicated by
the range of the 25th and 75th percentile) (Table 10). Those
grid cells that are already calibrated by a more downstream
station in the case of the old calibration data basis (ID 3)
show less performance gain. In particular, KGEb for the ID 3
station is already close to the optimum value due to being
calibrated to a downstream observation. Here, the bias ad-
justment of the downstream station is effective for upstream
grid cells. In contrast, the improvement is large if stations
are included further downstream of an already existing sta-

tion (ID 2), but the small number of stations implies a careful
interpretation (Table 10).

7.6 Performance comparison between different model
variants

7.6.1 WaterGAP v2.2e vs. WaterGAP v2.2d

The performance of simulated water abstractions is nearly
identical, except for the thermoelectric sector, where Water-
GAP v2.2e, with the updated water use, results in a slightly
worse fit to AQUASTAT data (logarithmic NSE is 0.40 for
v2.2e and 0.52 for v2.2d) (Figs. 7 and S8). With regard to the
streamflow performance, WaterGAP 2.2e performs nearly
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Figure 12. Comparison of basin-averaged monthly TWSA time series of WaterGAP v2.2e as forced by gswp3-w5e5 (a, c, e) and gswp3-
era5 (b, d, f) for 148 basins larger than 200 000 km2, with (a, b) the ratio of amplitude (reddish colors indicate amplitude underestimation by
WaterGAP), (c, d) the correlation coefficient, (e, f) the trend of WaterGAP v2.2e, and (g) the trend of GRACE. All values are based on the
time series from January 2003 to December 2019.

identically to WaterGAP v2.2d with the same climate forcing
and calibration data. This is also visible in the spatial pattern
for streamflow, where differences are rare. The performance
ratio of indicators (for calculation, see the Appendix C) often
shows basins with a slightly different sign next to each other
(Fig. 14) but without a clear spatial pattern of general per-
formance gain or loss. When aggregated to climatic charac-
teristics, such as Köppen–Geiger regions, it can be seen that
WaterGAP v2.2e has slightly more basins in a better KGE
class for cold D and E climate compared to WaterGAP v2.2d
with the same climate forcing (Table 9).

For TWSA, WaterGAP v2.2e performs better than v2.2d,
specifically as the trends (in both directions) of TWSA are
stronger for v2.2e and fit better to the observations but also
correlation coefficients, and the amplitude ratios are im-
proved for v2.2e. The performance ratio of indicators for
TWSA shows a consistent direction of change for the trend
and correlation for most basins (with more bluish colors, in-
dicating more regions with a performance gain with v2.2e),
while the amplitude sometimes shows the opposite signal,
especially for those regions with an improved trend ratio
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Table 10. Model performance for the two calibration variants (1509 vs. 1319 stations) and the ID∗ with the reason for change between the
two variants and the corresponding number of affected stations in parentheses. The performance indicator is provided as median with its 25th
and 75th percentile in parentheses.

ID∗ Variant NSE KGE KGEr KGEb KGEg

1 (77) 1509 0.37 (−0.07 | 0.68) 0.58 (0.19 | 0.73) 0.75 (0.55 | 0.87) 1.00 (0.93 | 1.09) 1.01 (0.78 | 1.19)
1319 −0.31 (−4.89 | 0.40) 0.00 (−0.77 | 0.49) 0.78 (0.57 | 0.87) 1.39 (0.89 | 2.61) 1.00 (0.75 | 1.32)

2 (6) 1509 0.55 (0.19 | 0.83) 0.54 (0.43 | 0.81) 0.75 (0.51 | 0.92) 1.01 (0.94 | 1.05) 0.93 (0.67 | 1.07)
1319 −0.27 (−1.05 | 0.61) 0.08 (−0.44 | 0.69) 0.76 (0.50 | 0.91) 1.69 (1.08 | 2.39) 0.91 (0.81 | 1.03)

3 (126) 1509 0.15 (−0.26 | 0.61) 0.44 (0.03 | 0.69) 0.73 (0.34 | 0.85) 1.02 (0.97 | 1.09) 0.85 (0.59 | 1.31)
1319 −0.03 (−0.97 | 0.44) 0.19 (−0.14 | 0.58) 0.71 (0.35 | 0.85) 1.04 (0.82 | 1.39) 0.86 (0.62 | 1.29)

4 (21) 1509 0.55 (0.15 | 0.69) 0.62 (0.49 | 0.78) 0.77 (0.62 | 0.88) 1.00 (0.94 | 1.09) 0.89 (0.81 | 1.15)
1319 0.18 (−0.34 | 0.60) 0.45 (0.31 | 0.68) 0.80 (0.57 | 0.87) 1.18 (0.98 | 1.45) 0.93 (0.84 | 1.23)

∗ 1 are the new river basins, 2 are the added stations downstream of the already existing stations, 3 are the added stations upstream of the already existing stations, and
4 are the stations that were removed.

Figure 13. Efficiency metrics for monthly streamflow of the 230
gauging stations that differ between the streamflow data basis used
for calibrating WaterGAP v2.2d and the new data basis used for
v2.2e., with NSE, KGE, and its components. All monthly obser-
vations available have been used to compute the metrics. Outliers
(outside 1.5× inter-quartile range) are excluded, but the number of
stations that are defined as outliers is indicated on the x axis.

(Fig. 15). The seasonality of streamflow and TWSA is rather
similar within the 12 selected river basins (Fig. S54).

7.6.2 GSWP3-W5E5 vs. GSWP3-ERA5

The impact of the selected climate forcing starting in 1979
is substantial, except for the water use (where the perfor-
mance of gswp3-era5 regarding irrigation water abstractions
is slightly lower).

The median streamflow performance with gswp3-w5e5 is
slightly higher than with gswp3-era5 (value in parentheses)
with 0.499 (0.490) for NSE, 0.582 (0.578) for KGE, 0.775

(0.774) for KGEr, 1.007 (1.018) for KGEb, and 0.858 (0.813)
for KGEg. In particular, the Köppen climate zone A (equa-
torial climate) shows higher performance with gswp3-w5e5
(Table 9). Model simulations driven by ERA5 combinations
have higher NSE values in northwestern North America but
lower values in China (compare Figs. 10 and S33). More-
over, ERA5 combinations tend to have a lower KGEr in some
parts of North America and large parts of South America and
a generally higher variability compared to the W5E5 combi-
nations (compare Figs. 11 and S41).

The TWSA trend in gswp3-era5 is closer to the observa-
tions in North America and South America, and the ampli-
tude ratio is also improved for North America. For parts of
Europe and Asia, the correlation but also the trend, as driven
by gswp3-w5e5, are closer to GRACE, showing an overall
diverse impact of climate forcing to the TWSA (Fig. 12).
This is also visible in the seasonality, where large differences
occur both for streamflow and for TWSA (Fig. S55). For ex-
ample, the TWSA, as driven by gswp3-era5, matches per-
fectly to observations for the Amazon, but for streamflow,
gswp3-w5e5 fits better.

7.6.3 GSWP3-W5E5 vs. 20CRv3-W5E5

Performance metrics for water abstractions are identical
for both variants (Figs. 7 and S10). The median stream-
flow performance with gswp3-w5e5 is generally higher than
with 20crv3-w5e5 (value in parentheses) with 0.499 (0.378)
for NSE, 0.582 (0.539) for KGE, 0.775 (0.718) for KGEr,
and 1.007 (1.015) for KGEb, except for KGEg with 0.857
(0.864). The higher performance of gswp3-w5e5 is obvious
for all Köppen climate regions, with smaller differences for
D and E climates (Table 9. Differences in seasonality are rel-
atively small as the time series for TWSA and streamflow
starts several years after 1979 and thus use W5E5. The visi-
ble differences are related to the specific calibration parame-
ters that depend also on the years before 1979.
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Figure 14. Resulting performance ratio of indicators of streamflow for the model version v2.2d and v2.2e as driven by gswp3-w5e5 for
overall KGE (a), KGE b (b), KGE r (c), and KGE g (d). Bluish colors indicate that v2.2e is closer to the optimal parameter indicator value
than v2.2d (see also the description in Appendix C). Note that the calibration procedure forces KGE beta values to be close to the optimum
value; hence, the drastic colors here are a result of only small differences to the optimum value.

Figure 15. Resulting performance ratio of indicators of TWSAs for the model version v2.2d and v2.2e as driven by gswp3-w5e5 for the
amplitude ratio (a), correlation ratio (b), and trend ratio (c). Bluish colors indicate that v2.2e is closer to the optimal parameter indicator
value than v2.2d (see also the description in Appendix C).

8 Benefits and limitations of the calibration approach

The calibration of WaterGAP is a simple but effective ap-
proach to adjust biases in simulated streamflow, runoff, and
renewable water resources. As shown for the 230 grid cells

with new streamflow observations used for calibrating Wa-
terGAP v2.2e, calibration leads to an overall reduction in
water resources to be closer to the observations (Table 10).
Previous assessments of WaterGAP determined that the de-
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cision to calibrate or not has the largest effect on water re-
sources on global-scale fluxes and at the spatial runoff pattern
(Müller Schmied et al., 2014). The improved representation
of long-term average water resources is required for evalu-
ating water stress. In addition, this bias adjustment, which
also balances out uncertainties in precipitation, is beneficial
for improving the simulation of, e.g., the dynamics of down-
stream wetlands or reservoirs.

However, the simple approach to modify only one parame-
ter (γ ) and up to two additional correction factors by calibra-
tion against mean annual streamflow has limitations. Reach-
ing the calibration objective by modifying γ alone is pos-
sible only in 519 (524) basins of WaterGAP v2.2e (v2.2d),
which indicates that the uncertainties in the input data model
structure and the many other model parameters might not be
covered well by adjusting only this parameter. In most of
the other basins, runoff is still overestimated with the opti-
mum γ , and the correction factors need to lower the runoff.
Another model parameter, the maximum soil water storage
Smax, has been found to strongly affect runoff generation and
the seasonality and trends of terrestrial water storage anoma-
lies (Tangdamrongsub et al., 2018; Scanlon et al., 2019), with
higher values decreasing runoff and increasing seasonality
and trends. Multi-variable calibration of WaterGAP in in-
dividual basins (Hosseini-Moghari et al., 2020; Döll et al.,
2024) and comparison of model output to spaceborne terres-
trial water storage anomalies indicates that the cell-specific
Smax values used in WaterGAP might be too low. Thus, in-
creased Smax values are expected to help achieve the calibra-
tion objective by adjusting γ alone.

More complex multi-variable calibration approaches,
which use not only observed streamflow but also observa-
tions of other model output variables such as TWSA or snow
cover, allow us to go beyond bias adjustment and adjust
more model parameters. While such ensemble-based cali-
bration approaches have been successfully applied to Water-
GAP for individual basins such as the Mississippi sub-basins
(Döll et al., 2024), they are not yet applicable as a stan-
dard approach for global-scale calibration. Such ensemble-
based calibration approaches are computationally expensive
and also suffer from methodological problems related, for
example, to the large footprint of spaceborne terrestrial water
storage anomalies (> 100000 km2) or trade-offs between the
optimal simulation of the different observed variables (Döll
et al., 2024).

9 Standard model output

Similar to Müller Schmied et al. (2021), we provide standard
output data for WaterGAP v2.2e driven by the four climate
forcings listed in Table 1 and, for comparison, also Water-
GAP v2.2d driven by gswp3-w5e5. In addition to the stan-
dard ant runs that include direct human impacts (water use
and human-made reservoirs, labeled histsoc), we provide, for

all five variants, the model output of nat model runs, where it
is assumed that there is no human water use and no human-
made reservoirs (labeled “nosoc”). The data are stored us-
ing the Network Common Data Form (netCDF) format de-
veloped by UCAR/Unidata (Rew et al., 1989) and are avail-
able from the Goethe University Data Repository (GUDe)
(Müller Schmied et al., 2023a, b, c, d, e, f, g, h, 2024a, b).
For two forcings and the ant runs, daily temporal resolution
for the storage compartments are provided (Müller Schmied
et al., 2024c, d). The netCDF files contain metadata with de-
tailed information regarding characteristics of the data, e.g.,
whether a storage type contains anomaly values or absolute
values, and a legend where applicable.

The available water storages, flows, and water use vari-
ables are listed in Tables E1, E2, and E3, respectively. Ta-
ble E4 includes additional data, such as the cell-specific con-
tinental area as used in WaterGAP v2.2e to convert between
equivalent water heights (e.w.h.) and volumetric units (as-
suming a water density of 1 gcm−3). A spatial view for a
range of model output is available in a web app (https://www.
ageoce.com/en/apps/watergap/, last access: 1 June 2024, At-
tard, 2024).

10 Caveats of WaterGAP v2.2e

This section is a compilation of known issues with the model
output and should give guidance to data users.

– Due to the architecture of WaterGAP, where the out-
put of individual water use models is combined to
net abstractions from groundwater and net abstractions
from surface water in the linking model GWSWUSE
(Müller Schmied et al., 2021, their Sect. 3.3), it is not
possible to compute sectoral actual consumptive wa-
ter use values (and the corresponding withdrawal wa-
ter uses) but only the total actual consumptive water use
(and corresponding withdrawal water use).

– In WaterGAP, the actual total consumptive water use
(variable atotuse) is included in the actual evapotran-
spiration (evap). In cases where surface water abstrac-
tions are satisfied from the neighboring cell due to short-
ages in the original water-demanding cell, the return
flows to groundwater are assigned to the original water-
demanding cell. This can lead to (1) a negative value for
atotuse and (2) even evap.

– In dry areas around large rivers, water is often abstracted
from neighboring cells with big rivers (e.g., the Nile) to
satisfy the water demand in the original demand cell.
The return flows are increasing the groundwater in the
demanding cell, which results in a relative increase in
groundwater storage and thus an increase in groundwa-
ter outflow, which is then visible in the total runoff, qtot,
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and could add up to more than the precipitation (pre-
cip) in the grid cell. Furthermore, the calibration factor,
CFA, can lead to more runoff than precipitation.

– When comparing globally aggregated streamflow from
previous versions with WaterGAP v2.2e, it has to be
considered that due to the new handling of inland sinks
in WaterGAP v2.2e (Sect. 2.5), the endorheic basins
contribute to actual evaporation, and the sink cells have
zero streamflow. When quantifying the renewable water
resources on the global scale, inflow to all inland sinks
has to be added to the water resources of the other cells
(or the streamflow into oceans).

11 WaterGAP v2.2e in ISIMIP3

WaterGAP contributes to the Inter-Sectoral Impact Model In-
tercomparison Project (ISIMIP) in its current project phase 3
and follows the simulation protocol of https://protocol.
isimip.org/ (last access: 14 July 2023) (ISIMIP, 2023c).
The model dashboard is available at https://www.isimip.org/
impactmodels/ (last access: 14 July 2023) (ISIMIP, 2023a)
and an overview of the simulated scenarios at https://www.
isimip.org/outputdata/ (last access: 14 July 2023) (ISIMIP,
2023b). Model output can be accessed at https://www.isimip.
org/outputdata/ (last access: 14 July 2023) (ISIMIP, 2023b).
Mainly due to the architecture of WaterGAP, the following
deviations from the simulation protocol exist:

– The drainage direction map used in WaterGAP does not
completely follow the ISIMIP land–sea mask definition,
which was modified slightly and unintentionally. In par-
ticular, the lat/long 178.75, −49.25 (an island south-
east of Aotearoa / New Zealand) is defined as land, but
the drainage direction map used in WaterGAP locates
this island in a neighboring cell. Thus, this island is not
present, and any model output for the grid cell with lat/-
long 178.75, −49.75 is set to a missing value in all files
prepared for ISIMIP.

– The WaterGAP drainage direction map differs in four
grid cells at Lake Ladoga in the Neva river basin in
Russia from the ISIMIP definition (lat/long coordinates
of 61.25, 31.25; 60.75, 31.25; 60.75, 31.75; and 60.75,
32.25). Those grid cells are not included in WaterGAP,
and the drainage direction flows around this lake, result-
ing in a total number of 67 420 grid cells considered in
WaterGAP v2.2e.

– WaterGAP does not use the land use data as provided
by ISIMIP but a static, satellite-based map of land cover
classes (Müller Schmied et al., 2021, their Appendix C).
WaterGAP considers temporally varying irrigation ar-
eas (Müller Schmied et al., 2021, their Sect. 3.1) but not
those from ISIMIP.

– During the update of the reservoir data (Sect. 2.2), we
found better-suited grid cell locations for several dams
compared to the input data provided by ISIMIP. The
data used within WaterGAP v2.2e are available via
Müller Schmied and Trautmann (2023).

– According to the modeling protocol, the variable qtot
consists of the sum of the surface, qs, and sub-surface,
qsb, runoff and is defined as total runoff. However, and
specifically for WaterGAP, this implies that for qtot (but
not for the net cell runoff ncrun provided in the stan-
dard model output), the horizontal water balance (i.e.,
the water balance of the surface waterbodies) is not con-
sidered. For users who want to assess the differences,
we provide qtot and ncrun as standard model output.

12 Conclusions and outlook

Since the development of the WaterGAP model started in
1996, numerous model versions have been created and ap-
plied in many studies. This paper describes the most recent
model version v2.2e, as well as the model output, with a fo-
cus on the changes from the previous model version v2.2d
described in Müller Schmied et al. (2021). With version
v2.2e, the applicability of WaterGAP for answering scien-
tific questions has been enhanced compared to previous ver-
sions. The performance of v2.2e regarding water use, stream-
flow, and TWSA does not differ much from v2.2d when using
the same climate forcing and the same streamflow observa-
tions for model calibration (thus, the only difference is to the
model structure). The climate forcing gswp3-w5e5 leads to
the highest performance for streamflow, whereas there are
distinct regions for which gswp3-era5 is superior to gswp3-
w5e5, in particular for TWSA trends.

While version v2.2e has been finalized, the scientific and
societal demand for future model development remains. For
example, to improve the still poor simulation of the outflow
and storage dynamics of artificial reservoirs, the reservoir al-
gorithm should be modified and calibrated, benefiting from
the recent availability of remote-sensing-based estimates of
reservoir water storage dynamics. The achieved glacier inte-
gration into WaterGAP (Sect. 3.2), which has led to an im-
proved representation of TWSA (Cáceres et al., 2020), is un-
sustainable in the sense that it depends on updates from the
glacier modeling community. Therefore, model adjustments
and arrangement with the glacier modeling community are
required to achieve a continuing integration of glacier model
output into WaterGAP, which would particularly improve cli-
mate change impact assessments (Hanus et al., 2024). Then,
a future model version of WaterGAP could include a glacier
component in its standard variant.

The WaterGAP v2.2e software, written in C/C++, started
to be developed nearly 30 years ago. Generations of re-
searchers modified, tested, and documented the code, result-
ing in a very complex software that is difficult to understand,
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maintain, and enhance. Currently, the WaterGAP Global
Hydrology Model and GWSWUSE are re-programmed in
Python with a modern software architecture; this research
software will be available as an open-source community soft-
ware, alongside documentation, a user guide, and examples
(https://hydrologyfrankfurt.github.io/ReWaterGAP/, last ac-
cess: 6 September 2024, Nyenah, 2024).

Appendix A: Technical changes

– Output of monthly groundwater recharge below surface
waterbodies is now possible.

– Data arrays are now stored and processed in std::vector
objects.

– Several options to run WaterGAP were removed be-
cause they were not used anymore.

– Bug in the initialization of reservoir water demand in
the respective commissioning years was fixed (routing
routine).

– Bug in the reintroduction of return flows into ground-
water due to delayed satisfaction of NAS was fixed.

– Bug in the reallocation of unsatisfied NAS at global
lakes and reservoirs was fixed.

Appendix B: Evaluation metrics

The following section is to a great extent identical to
Müller Schmied et al. (2021, their Sect. 6.3) but is repeated
here for better readability of this paper.

B1 Nash–Sutcliffe efficiency

The Nash–Sutcliffe efficiency metric NSE (–) (Nash and Sut-
cliffe, 1970) is a traditional metric in hydrological modeling.
It provides an integrated measure of the model performance
with respect to mean values and variability and is calculated
as

NSE= 1−
∑n
i=1(Oi − Si)

2∑n
i=1(Oi −O)

2
, (B1)

where Oi is the observed value (e.g., monthly streamflow),
Si is the simulated value, and O is the mean observed value.
The optimal value of NSE is one. Values below zero indi-
cate that the mean value of the observations is better than the
simulation (Nash and Sutcliffe, 1970). For assessing the per-
formance of low values of water abstraction (Sect. 7.4.1), a
logarithmic NSE was also calculated by applying a logarith-
mic transformation before the calculation of the performance
indicator.

B2 Kling–Gupta efficiency

The Kling–Gupta efficiency metric, KGE (Kling et al., 2012;
Gupta et al., 2009), transparently combines the evaluation of
bias, variability, and timing and is calculated (in its 2012 ver-
sion) as

KGE= 1−
√
(KGEr− 1)2+ (KGEb− 1)2+ (KGEg− 1)2, (B2)

where KGEr is the correlation coefficient between the simu-
lated and observed values (–) and an indicator for the timing,
KGEb is the ratio of mean values (Eq. B3) (–) and an indica-
tor of biases regarding mean values, and KGEg is the ratio of
variability (Eq. B4) (–) and an indicator for the variability in
simulated (S) and observed (O) values.

KGEb =
µS

µO
, (B3)

KGEg =
CVS

CVO
=
σS/µS

σO/µO
, (B4)

where µ is the mean value, σ is the standard deviation, and
CV is the coefficient of variation. The optimal value of KGE
is one.

B3 TWSA-related metrics

For the evaluation of TWSA performance, the following
metrics were used: R2 (coefficient of determination) as the
strength of linear relationship between simulated and ob-
served variables, the amplitude ratio as an indicator for vari-
ability, and the trend of GRACE and WaterGAP data. Am-
plitude and trends were determined by a linear regression for
estimating the most dominant temporal components of the
GRACE time series. The time series of monthly TWSA was
approximated by a constant a, a linear trend b, and an annual
and a semi-annual sinusoidal curve as follows:

y(t)= a+ b · t + c · sin(2 ·π · t)+ d · cos(2 ·π · t)

+ e · sin(4 ·π · t)+ f · cos(4 ·π · t)+ r, (B5)

where r denotes the residuals. The parameters a to f were
estimated via least squares adjustment. The annual amplitude
can be computed by A=

√
(c2+ d2), and thus, the annual

ratio was calculated by AWGHM/AGRACE.

Appendix C: Performance ratio of indicators

In order to find out where the difference as to the optimal
value of a model performance indicator is reduced or in-
creased between the two versions (v2.2e vs. v2.2d) of Wa-
terGAP, the indicator performance ratio (Eq. C1) was used
and defined as

PRIND =
|1.0− INDv2.2e|

|1.0− INDv2.2d|
, (C1)
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where PRIND is the performance ratio of the given indicator
IND [–]. IND is the indicator value (KGE and its components
for streamflow, with the amplitude ratio for TWSA and the
ratio of the model divided by GRACE for the TWSA trend)
for the particular model version [–]. The smaller the result-
ing PRIND, the better v2.2e will be compared to v2.2d. For
PRIND values < 1.0, v2.2e performs better than v2.2d, and
vice versa. The closer PRIND is to zero, the better v2.2e will
perform against v2.2d.

Appendix D: Additional figures and tables

Figure D1. Cumulative distribution of the NSE efficiency metric
for all streamflow values at the 1509 gauging stations for all model
variants.

Figure D2. Cumulative distribution of the KGE r for all streamflow
values at the 1509 gauging stations for all model variants.

Figure D3. Cumulative distribution of the KGE b for all streamflow
values at the 1509 gauging stations for all model variants.

Figure D4. Cumulative distribution of the KGE g for all streamflow
values at the 1509 gauging stations for all model variants.

Table D1. Model performance and the NSE efficiency indicator and
number of basins per Köppen–Geiger region in the particular per-
formance class for the different WaterGAP variants.

Model variant NSE A B C D E Sum

> 0.7 87 13 112 109 14 335
v2.2d gswp3-w5e5 0.5–0.7 114 25 83 183 6 411

< 0.5 159 88 113 377 26 763

> 0.7 88 13 112 111 13 337
v2.2e gswp3-w5e5 0.5–0.7 113 25 81 191 7 417

< 0.5 159 88 115 367 26 755

< 0.7 51 3 47 146 6 253
v2.2e 20crv3-era5 0.5–0.7 91 19 79 151 4 344

< 0.5 206 95 195 398 18 912

> 0.7 56 3 50 123 16 248
v2.2e 20crv3-w5e5 0.5–0.7 92 18 66 159 3 338

< 0.5 209 107 194 393 20 923

> 0.7 77 6 103 127 7 320
v2.2e gswp3-era5 0.5–0.7 113 21 99 176 6 415

< 0.5 160 88 122 387 17 774
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Table D2. Model performance and the KGEr efficiency indicator
and number of basins per Köppen–Geiger region in the particular
performance class for the different WaterGAP variants.

Model variant KGEr A B C D E Sum

> 0.8 210 31 186 231 18 676
v2.2d gswp3-w5e5 0.5–0.8 120 53 99 258 17 547

< 0.5 30 42 23 180 11 286

> 0.8 210 31 185 233 19 678
v2.2e gswp3-w5e5 0.5–0.8 121 54 101 256 15 547

< 0.5 29 41 22 180 12 284

> 0.8 123 11 111 262 11 518
v2.2e 20crv3-era5 0.5–0.8 182 57 156 246 13 654

< 0.5 43 49 54 187 4 337

> 0.8 141 12 116 228 20 517
v2.2e 20crv3-w5e5 0.5–0.8 171 56 148 246 8 629

< 0.5 45 60 46 201 11 363

> 0.8 181 18 180 257 14 650
v2.2e gswp3-era5 0.5–0.8 137 58 121 268 11 595

< 0.5 32 39 23 165 5 264

Table D3. Model performance and the KGEb efficiency indicator
and number of basins per Köppen–Geiger region in the particular
performance class for the different WaterGAP variants.

Model variant KGEb A B C D E Sum

> 1.5 0 4 0 1 0 5
1.1–1.5 104 32 59 80 1 276

v2.2d gswp3-w5e5 0.9–1.1 241 60 218 484 29 1032
0.5–0.9 14 29 28 104 16 191
< 0.5 1 1 3 0 0 5

> 1.5 1 4 0 1 0 6
1.1–1.5 96 33 56 89 2 276

v2.2e gswp3-w5e5 0.9–1.1 249 58 222 484 28 1041
0.5–0.9 13 30 27 95 16 181
< 0.5 1 1 3 0 0 5

> 1.5 0 4 4 5 0 13
1.1–1.5 76 25 97 99 8 305

v2.2e 20crv3-era5 0.9–1.1 246 53 190 540 20 1049
0.5–0.9 26 30 28 50 0 134
< 0.5 0 5 2 1 0 8

> 1.5 0 4 5 4 0 13
1.1–1.5 86 35 88 96 3 308

v2.2e 20crv3-w5e5 0.9–1.1 251 63 184 481 24 1003
0.5–0.9 20 25 30 94 12 181
< 0.5 0 1 3 0 0 4

> 1.5 0 4 0 0 0 4
1.1–1.5 94 19 68 93 10 284

v2.2e gswp3-era5 0.9–1.1 232 61 224 540 18 1075
0.5–0.9 23 26 30 56 2 137
< 0.5 1 5 2 1 0 9

Table D4. Model performance and the KGEg efficiency indicator
and number of basins per Köppen–Geiger region in the particular
performance class for the different WaterGAP variants.

Model variant KGEg A B C D E Sum

> 1.5 56 19 32 30 3 140
1.1–1.5 68 21 69 57 8 223

v2.2d gswp3-w5e5 0.9–1.1 68 18 110 109 9 314
0.5–0.9 150 54 89 317 14 624
< 0.5 18 14 8 156 12 208

> 1.5 54 19 32 30 3 138
1.1–1.5 70 23 70 57 8 228

v2.2e gswp3-w5e5 0.9–1.1 67 17 110 107 8 309
0.5–0.9 152 52 87 316 15 622
< 0.5 17 15 9 159 12 212

> 1.5 63 23 22 29 3 141
1.1–1.5 40 12 67 79 9 207

v2.2e 20crv3-era5 0.9–1.1 61 15 91 111 11 289
0.5–0.9 165 57 127 294 3 646
< 0.5 19 10 13 182 2 226

> 1.5 65 23 33 32 2 155
1.1–1.5 70 23 75 54 8 230

v2.2e 20crv3-w5e5 0.9–1.1 61 24 106 100 10 301
0.5–0.9 147 47 88 328 8 618
< 0.5 14 11 8 161 11 205

> 1.5 50 18 28 26 3 125
1.1–1.5 42 10 70 77 7 206

v2.2e gswp3-era5 0.9–1.1 50 10 89 121 12 282
0.5–0.9 182 61 123 288 5 659
< 0.5 26 16 14 178 3 237
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Appendix E: Standard model outputs

Table E1. Standard WaterGAP output variables. (1) Water storage. Units are in kgm−2 (mme.w.h.). Each water storage, except for reser-
voirstor, is also available in a naturalized variant, as indicated by the suffix, nat, in the file name. The temporal resolution is monthly, except
for two climate forcings that are additionally available in a daily resolution.

Storage type GUDe variable file Symbol in Müller Schmied et al. (2021)

Total water storagea,b tws Stws
Canopy water storage canopystor Sc
Snow water storage swe Ssn
Soil water storage soilmoist Ss
Groundwater storageb groundwstor Sg
Local lake storageb loclakestor Sll
Global lake storageb glolakestor Slg
Local wetland storage locwetlandstor Swl
Global wetland storage glowetlandstor Swg
Reservoir storage reservoirstor Sres
River storage riverstor Sr

a Sum of all compartments below. b Relative water storage; only anomalies with respect to a reference period can be
evaluated.

Table E2. Standard WaterGAP output variables. (2) Flows. Units are in kgm−2 s−1 (mme.w.h. s−1), except for m3 s−1 for dis and K for
triver. The temporal resolution is monthly.

Flow type GUDe variable file Symbol in Müller Schmied et al. (2021)

Monthly precipitation precmon P

Fast surface and fast subsurface runoffa qs Rs; R3 in corrigendum
Diffuse groundwater recharge qrdif Rg
Groundwater recharge from surface waterbodies qrswb Rgl,res,w

Total groundwater rechargeb qr Rgtot
Runoff from landc ql Rl in corrigendum
Groundwater discharged qg Qg
Total runoff from lande qtot sum of Qg and Rs
Actual evapotranspiration f evap Ea
Potential evapotranspiration potevap Ep
Net cell runoff ncrun Rnc
Streamflowg dis Qr,out
River water temperature triver NA

NA: not available. a Fraction of total runoff from land that does not recharge the groundwater; b sum of qrdif and qrswb; c sum of qs and qrdif;
d groundwater runoff; e sum of ql and qg; f sum of soil evapotranspiration, sublimation, evaporation from canopy, evaporation from waterbodies, and
actual consumptive water use; g river discharge.
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Table E3. Standard WaterGAP output variables. (3) Water use. Units are in kgm−2 s−1 (mme.w.h. s−1). The temporal resolution is monthly.

Flow type GUDe variable Symbol in
file Müller Schmied et al. (2021)

Potential consumptive water use for domestic sector pdomuse
Potential withdrawal water use for domestic sector pdomww
Potential consumptive water use for thermoelectric sector pelecuse
Potential withdrawal water use for thermoelectric sector pelecww
Potential consumptive water use for irrigation sector pirruse
Potential withdrawal water use for irrigation sector pirrww
Potential withdrawal water use for irrigation sector from groundwater resources pirrwwgw
Potential consumptive water use for livestock sectora plivuse
Potential consumptive water use for manufacturing sector pmanuse
Potential consumptive water use for manufacturing sector from groundwater resources pmanusegw
Potential withdrawal water use for manufacturing sector pmanww
Potential withdrawal water use for manufacturing sector from groundwater resources pmanwwgw
Potential net abstraction from surface water pnas
Potential net abstraction from groundwater pnag
Potential consumptive water use from groundwater pgwuse
Potential withdrawal water use from groundwater pgwww
Potential consumptive water useb ptotuse
Potential withdrawal water usec ptotww
Actual net abstraction from surface water anas NAs
Actual net abstraction from groundwater anag NAg
Actual consumptive water used atotuse WCa

a Equals withdrawal water use; b sum of pnas and pnag; c sum of pdomww, pelecww, pirrww, plivuse, and pmanww; d sum of anas and anag.

Table E4. Standard WaterGAP output variables. (4) Additional files provided for a better understanding of the model outputs.

Storage type GUDe variable file Symbol in Müller Schmied et al. (2021)

Calibration status of the basin calstatus CS
Area correction factor from calibration cfa CFA
Station correction factor from calibration cfs CFS
Gamma factor from calibration gamma γ

Continental area of the grid cell continentalarea
Flow direction in D8 schema flowdirection
Outflow cells to oceans and inland sinks outflowcells
Rooting depth of the grid cell rootdepth
Maximum soil water capacity of the soil compartment smax
Commissioning year of the reservoirs startyear
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Code and data availability. The code of WaterGAP v2.2e
is open-source under the GNU Lesser General Pub-
lic License version 3 at Müller Schmied et al. (2023i)
(https://doi.org/10.5281/zenodo.10026943). The model output
data availability is described in Sect. 9. The streamflow data for
the evaluation are available at Müller Schmied and Schiebener
(2022) (https://doi.org/10.5281/ZENODO.7255968), and the
GRACE(-FO) data are available at Forootan et al. (2020). For latest
papers published based on WaterGAP 2, we refer the reader to
http://www.watergap.de (last access: 20 September 2023, Döll,
2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-8817-2024-supplement.
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Towards a more reliable historical reanalysis: Improvements for
version 3 of the Twentieth Century Reanalysis system, Q. J. Roy.
Meteor. Soc., 145, 2876–2908, https://doi.org/10.1002/qj.3598,
2019.

Slivinski, L. C., Compo, G. P., Sardeshmukh, P. D., Whitaker,
J. S., McColl, C., Allan, R. J., Brohan, P., Yin, X., Smith,
C. A., Spencer, L. J., Vose, R. S., Rohrer, M., Conroy, R. P.,
Schuster, D. C., Kennedy, J. J., Ashcroft, L., Brönnimann, S.,
Brunet, M., Camuffo, D., Cornes, R., Cram, T. A., Domínguez-
Castro, F., Freeman, J. E., Gergis, J., Hawkins, E., Jones, P. D.,
Kubota, H., Lee, T. C., Lorrey, A. M., Luterbacher, J., Mock,
C. J., Przybylak, R. K., Pudmenzky, C., Slonosky, V. C., Tinz,
B., Trewin, B., Wang, X. L., Wilkinson, C., Wood, K., and
Wyszyński, P.: An Evaluation of the Performance of the Twen-
tieth Century Reanalysis Version 3, J. Climate, 34, 1417–1438,
https://doi.org/10.1175/JCLI-D-20-0505.1, 2021.

Stacke, T. and Hagemann, S.: HydroPy (v1.0): a new global hy-
drology model written in Python, Geosci. Model Dev., 14, 7795–
7816, https://doi.org/10.5194/gmd-14-7795-2021, 2021.

Swenson, S., Chambers, D., and Wahr, J.: Estimating geo-
center variations from a combination of GRACE and

ocean model output, J. Geophys. Res.-Sol. Ea., 113, B8,
https://doi.org/10.1029/2007JB005338, 2008.

Tangdamrongsub, N., Han, S.-C., Tian, S., Müller Schmied, H., Su-
tanudjaja, E. H., Ran, J., and Feng, W.: Evaluation of Ground-
water Storage Variations Estimated from GRACE Data As-
similation and State-of-the-Art Land Surface Models in Aus-
tralia and the North China Plain, Remote Sens., 10, 483,
https://doi.org/10.3390/rs10030483, checked, 2018.

Telteu, C.-E., Müller Schmied, H., Thiery, W., Leng, G., Burek,
P., Liu, X., Boulange, J. E. S., Andersen, L. S., Grillakis, M.,
Gosling, S. N., Satoh, Y., Rakovec, O., Stacke, T., Chang, J.,
Wanders, N., Shah, H. L., Trautmann, T., Mao, G., Hanasaki, N.,
Koutroulis, A., Pokhrel, Y., Samaniego, L., Wada, Y., Mishra, V.,
Liu, J., Döll, P., Zhao, F., Gädeke, A., Rabin, S. S., and Herz,
F.: Understanding each other’s models: an introduction and a
standard representation of 16 global water models to support
intercomparison, improvement, and communication, Geosci.
Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-
3843-2021, 2021.

Terrapon-Pfaff, J., Ortiz, W., Viebahn, P., Kynast, E., and
Flörke, M.: Water Demand Scenarios for Electricity Gener-
ation at the Global and Regional Levels, Water, 12, 2482,
https://doi.org/10.3390/w12092482, 2020.

Tramblay, Y., Rouché, N., Paturel, J.-E., Mahé, G., Boyer, J.-F.,
Amoussou, E., Bodian, A., Dacosta, H., Dakhlaoui, H., Dezetter,
A., Hughes, D., Hanich, L., Peugeot, C., Tshimanga, R., and
Lachassagne, P.: ADHI: the African Database of Hydromet-
ric Indices (1950–2018), Earth Syst. Sci. Data, 13, 1547–1560,
https://doi.org/10.5194/essd-13-1547-2021, 2021.

UDI: World Electric Power Plants Database, http://www.platts.com
(last access: 6 May 2020), 2020.

Van Beek, L. P. H., Eikelboom, T., Van Vliet, M. T. H., and
Bierkens, M. F. P.: A physically based model of global fresh-
water surface temperature, Water Resour. Res., 48, W09530,
https://doi.org/10.1029/2012WR011819, 2012.

Vanderkelen, I., Van Lipzig, N. P. M., Lawrence, D. M., Drop-
pers, B., Golub, M., Gosling, S. N., Janssen, A. B. G., Marcé,
R., Schmied, H. M., Perroud, M., Pierson, D., Pokhrel, Y.,
Satoh, Y., Schewe, J., Seneviratne, S. I., Stepanenko, V. M.,
Tan, Z., Woolway, R. I., and Thiery, W.: Global Heat Uptake
by Inland Waters, Geophys. Res. Lett., 47, e2020GL087867,
https://doi.org/10.1029/2020GL087867, 2020.

Van Vliet, M. T., Franssen, W. H., Yearsley, J. R., Lud-
wig, F., Haddeland, I., Lettenmaier, D. P., and Kabat,
P.: Global river discharge and water temperature under
climate change, Global Environ. Change, 23, 450–464,
https://doi.org/10.1016/j.gloenvcha.2012.11.002, 2013.

Wanders, N., Van Vliet, M. T. H., Wada, Y., Bierkens, M.
F. P., and Van Beek, L. P. H.: High-resolution global wa-
ter temperature modeling, Water Resour. Res., 55, 2760–2778,
https://doi.org/10.1029/2018WR023250, 2019.

Wang, J., Walter, B. A., Yao, F., Song, C., Ding, M., Maroof,
A. S., Zhu, J., Fan, C., McAlister, J. M., Sikder, S., Sheng,
Y., Allen, G. H., Crétaux, J.-F., and Wada, Y.: GeoDAR: geo-
referenced global dams and reservoirs dataset for bridging at-
tributes and geolocations, Earth Syst. Sci. Data, 14, 1869–1899,
https://doi.org/10.5194/essd-14-1869-2022, 2022.

Wiersma, P., Aerts, J., Zekollari, H., Hrachowitz, M., Drost, N.,
Huss, M., Sutanudjaja, E. H., and Hut, R.: Coupling a global

https://doi.org/10.5194/gmd-17-8817-2024 Geosci. Model Dev., 17, 8817–8852, 2024

https://doi.org/10.5194/hess-25-787-2021
https://doi.org/10.5065/D6H70CW6
https://doi.org/10.1029/2018GL081836
https://doi.org/10.1038/s43017-022-00378-6
https://doi.org/10.48364/ISIMIP.865475
https://doi.org/10.1002/qj.3598
https://doi.org/10.1175/JCLI-D-20-0505.1
https://doi.org/10.5194/gmd-14-7795-2021
https://doi.org/10.1029/2007JB005338
https://doi.org/10.3390/rs10030483
https://doi.org/10.5194/gmd-14-3843-2021
https://doi.org/10.5194/gmd-14-3843-2021
https://doi.org/10.3390/w12092482
https://doi.org/10.5194/essd-13-1547-2021
http://www.platts.com
https://doi.org/10.1029/2012WR011819
https://doi.org/10.1029/2020GL087867
https://doi.org/10.1016/j.gloenvcha.2012.11.002
https://doi.org/10.1029/2018WR023250
https://doi.org/10.5194/essd-14-1869-2022


8852 H. Müller Schmied et al.: Global water model WaterGAP v2.2e

glacier model to a global hydrological model prevents underes-
timation of glacier runoff, Hydrol. Earth Syst. Sci., 26, 5971–
5986, https://doi.org/10.5194/hess-26-5971-2022, 2022.

Worldbank: Manufacturing value added, https://data.worldbank.
org/indicator/ (last access: 5 November 2024), 2021.

Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., and Dono-
hue, R. J.: Hydrologic implications of vegetation response to el-
evated CO2 in climate projections, Nat. Clim. Change, 9, 44–48,
https://doi.org/10.1038/s41558-018-0361-0, 2019.

Yokohata, T., Kinoshita, T., Sakurai, G., Pokhrel, Y., Ito, A., Okada,
M., Satoh, Y., Kato, E., Nitta, T., Fujimori, S., Felfelani, F.,
Masaki, Y., Iizumi, T., Nishimori, M., Hanasaki, N., Takahashi,
K., Yamagata, Y., and Emori, S.: MIROC-INTEG-LAND ver-
sion 1: a global biogeochemical land surface model with human
water management, crop growth, and land-use change, Geosci.
Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-
4713-2020, 2020.

Geosci. Model Dev., 17, 8817–8852, 2024 https://doi.org/10.5194/gmd-17-8817-2024

https://doi.org/10.5194/hess-26-5971-2022
https://data.worldbank.org/indicator/
https://data.worldbank.org/indicator/
https://doi.org/10.1038/s41558-018-0361-0
https://doi.org/10.5194/gmd-13-4713-2020
https://doi.org/10.5194/gmd-13-4713-2020

	Abstract
	Introduction
	Modifications of algorithms and data affecting standard model results
	Naturalized runs: small reservoirs are no longer considered in naturalized runs
	Reservoir and regulated lake data: GRanD 1.3 integration
	Water use data: updated non-irrigation water use data
	Thermal electricity water use
	Manufacturing water use

	New calibration data set
	Databases
	Station selection methodology
	Resulting calibration data set of streamflow observation

	New handling of inland sinks

	New options for special model applications
	Alternative PET calculation method to approximate the effect of vegetation response when estimating the impact of climate change on evapotranspiration
	Integration of glaciers
	Calculation of river water temperature
	Ability to start from prescribed initial conditions

	Climate forcings and model setup
	Climate forcings
	WaterGAP model variants

	Results of standard model modifications
	Effect of removing local reservoirs from naturalized runs
	New calibrated parameters
	Improved handling of inland sinks
	Global water balance components
	Major water balance components
	Water storage components
	Water use components


	Application of new model options
	Effect of PET calculation with PT-MA on the global water balance under climate change
	Effect of glaciers on the global water balance

	Evaluation of WaterGAP v2.2e
	Model variants used for the evaluation 
	Independent data sets used for model evaluation
	Water abstractions
	Streamflow
	Terrestrial water storage anomalies

	Evaluation metrics
	Evaluation results
	Water abstractions
	Streamflow
	TWSA

	Performance changes due to the updated calibration data basis
	Performance comparison between different model variants
	WaterGAP v2.2e vs. WaterGAP v2.2d
	GSWP3-W5E5 vs. GSWP3-ERA5
	GSWP3-W5E5 vs. 20CRv3-W5E5


	Benefits and limitations of the calibration approach
	Standard model output
	Caveats of WaterGAP v2.2e
	WaterGAP v2.2e in ISIMIP3
	Conclusions and outlook
	Appendix A: Technical changes
	Appendix B: Evaluation metrics
	Appendix B1: Nash–Sutcliffe efficiency
	Appendix B2: Kling–Gupta efficiency
	Appendix B3: TWSA-related metrics

	Appendix C: Performance ratio of indicators
	Appendix D: Additional figures and tables
	Appendix E: Standard model outputs
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

