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Abstract. In this paper we describe a general procedure for
calculating synthetic sensor radiances from variable output
from a global atmospheric forecast model. In order to take
proper account of the discrepancies between model resolu-
tion and sensor footprint, the algorithm takes explicit account
of the model subgrid variability, in particular its description
of the probability density function of total water (vapor and
cloud condensate.) The simulated sensor radiances are then
substituted into an operational remote sensing algorithm pro-
cessing chain to produce a variety of remote sensing products
that would normally be produced from actual sensor output.
This output can then be used for a wide variety of purposes
such as model parameter verification, remote sensing algo-
rithm validation, testing of new retrieval methods and fu-
ture sensor studies. We show a specific implementation using
the GEOS-5 model, the MODIS instrument and the MODIS
Adaptive Processing System (MODAPS) Data Collection 5.1
operational remote sensing cloud algorithm processing chain
(including the cloud mask, cloud top properties and cloud
optical and microphysical properties products). We focus on
clouds because they are very important to model develop-
ment and improvement.

1 Introduction

Accurate knowledge of cloud cover and cloud properties is
important in model studies that involve earth’s radiative bud-
get, climate prediction and numerical weather prediction.
High thin clouds are observed to have a warming effect on the
atmosphere because of their low albedo and low temperature.

Low clouds have a net cooling effect due to their high albedo
and relatively small temperature contrast with the surface.
(Lee et al., 2009) Clouds and their interactions with aerosols
are significant sources of uncertainty in climate prediction
studies (IPCC, 2007). In addition, clouds continue to be the
main source of climate feedback uncertainty and hence cli-
mate sensitivity (e.g., Bony et al., 2006).

The Goddard Earth Observing System Version 5 (GEOS-
5) earth system model is maintained by the Global Mod-
eling and Assimilation Office (GMAO) at NASA Goddard
Space Flight Center (GSFC). GEOS-5 contains components
for atmospheric circulation and composition (including at-
mospheric data assimilation), ocean circulation and bio-
geochemistry, and land surface processes. Components and
individual parameterizations within components are cou-
pled under the Earth System Modeling Framework (ESMF,
Hill et al., 2004). In addition to traditional meteorologi-
cal parameters (winds, temperatures, etc.; Rienecker et al.,
2008), GEOS-5 includes modules representing the atmo-
spheric composition, most notably aerosols (Colarco et al.,
2010) and tropospheric/stratospheric chemical constituents
(Pawson et al., 2008), and the impact of these constituents
on the radiative processes of the atmosphere. GEOS-5 has
a mature atmospheric data assimilation system that builds
upon the Gridpoint Statistical Interpolation (GSI) algorithm
jointly developed with NCEP (Wu et al., 2002; Derber et al.,
2003; Rienecker et al., 2008). The GSI solver was originally
developed at NCEP as a unified 3D-Var analysis system for
supporting global and regional models. GSI includes all the
in situ and remotely sensed data used for operational weather
prediction at NCEP. GEOS-5 also includes assimilation of
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aerosol optical depth (AOD) observations from the MOD-
erate resolution Imaging Spectroradiometer (MODIS) im-
ager on the NASA Earth Observing System (EOS) Terra and
Aqua spacecraft; an algorithm for assimilating cloud prop-
erty information from measurements in the visible and in-
frared portions of the spectrum is currently under develop-
ment (Norris and da Silva, 2013). While the GEOS-5 meteo-
rological assimilation includes a wide variety of spaceborne
sensor data, traditionally samples containing clouds are care-
fully screened out. The near real-time GEOS-5 data assim-
ilation and forecasting system runs at a nominal horizontal
resolution of 25 km with 72 vertical layers (Rienecker et al.,
2008; Molod et al., 2012).

The MODIS instrument (Barnes et al., 1998) is a passive
imager, producing a wide variety of remotely sensed data
products for land, ocean and atmosphere disciplines from 36
spectral channels. Data Collection 5.1 processing includes
algorithms for retrieving cloud cover amount (Ackerman et
al., 2006; Frey et al., 2008), cloud top properties such as
cloud top pressure and temperature (Menzel et al., 2008) and
cloud optical and microphysical properties such as cloud op-
tical thickness, cloud effective radius and cloud water path
(Platnick et al., 2003; Wind et al., 2010; Zhang and Platnick,
2011; King et al., 2013).

In this paper we present a technique that brings together
remote sensing methods and model-generated fields. We use
MODIS geolocation data to sample GEOS-5 fields as if the
MODIS instrument were flying over the model fields instead
of the earth’s surface. Once the sampling is complete, we
generate synthetic sensor radiance data for the MODIS foot-
print. We then replace the contents of the 1 km, 500 m and
250 m resolution MODIS Level-1B (Xiong et al., 2006) radi-
ance files with these simulated radiances and insert the re-
sulting alternate data stream into the start of the MODIS
Adaptive Processing System (MODAPS) operational algo-
rithm processing chain for the atmosphere discipline cloud
products mentioned above (product designation MOD06 and
MYD06 for Terra and Aqua MODIS, respectively). The data
stream is fully transparent to the system so that pixel-level
(Level-2) retrievals can be aggregated through the same grid-
ded (Level-3) 1◦ × 1◦ code (Hubanks et al., 2008; King et
al., 2003, 2013) used in MODAPS production (MOD08 and
MYD08 for Terra and Aqua, respectively). There are many
potential uses for the resulting Level-2 and Level-3 data.
Simulated Level-2 granules and Level-3 aggregations can
both be compared to the respective archived MODIS data as
a means of model validation and study of model biases that
could exist. The simulated retrievals can also be compared
with GEOS-5 source fields directly to study some aspects
of retrieval algorithm behavior and sensitivities since all re-
trievals are performed with known (prescribed)truth.

The synthetic sensor data framework has been developed
with instrument flexibility in mind, so that by simple sub-
stitution of spectral response functions and data reader, the
MODIS instrument can be replaced by other spaceborne or

airborne sensors, currently in operation or part of a future
concept, and a different sensor data stream can be produced.
Thus, identical products from different sensors or different
retrieval algorithms for the same sensor can be compared and
analyzed in a controlled environment, which can provide in-
sight and lead to improvements in remote sensing algorithms.

This flexibility extends to model data as well. Any cli-
mate or weather prediction model fields can be used as
long as a means of ingesting the necessary parameters is
provided. Thus synthetic retrievals based on multiple mod-
els can be compared and analyzed using the same sensor
interface in a controlled environment, leading to a consis-
tent diagnostic toolset. Furthermore, this detailed simula-
tion capability can function as a test bed for very fast sim-
ulators such as the Cloud Feedback Model Intercomparison
Project (CFMIP) Observation Simulator Package (COSP)
(Bodas-Salcedo et al., 2011) or the hyperspectral simulator
of Feldman et al. (2011).

There have been a number of previous studies of high-
resolution simulation of cloud fields and cloud-affected ra-
diances from weather/climate models. We highlight some
key papers here (Otkin et al., 2007; Bugliaro et al., 2011;
Jonkheid et al., 2012), and discuss their differences with our
approach.

The recent paper by Jonkheid et al. (2012) is discussed first
because it contains a very useful figure (their Fig. 1) classi-
fying the various types of comparisons that can be made be-
tween different cloud property data sets. According to this
classification system, their paper is “type III”. Namely, it
generates synthetic 5 km scale SEVIRI pixels by subcolumn
generation from a 25 km resolution Numerical Weather Pre-
diction (NWP) source model, and compares the cloud prop-
erty retrievals based on the simulated radiances against the
source model cloud properties. This is what we refer to here
as a “synthetic retrieval validation”. Using this approach,
they produce a very helpful and thorough analysis of EU-
METSAT’s Climate Monitoring Science Application Facil-
ity (CM SAF)’s cloud physical properties (CPPs) retrievals
of cloud water path (CWP). There are at least two main dif-
ferences between their study and our current MODIS study
(apart from the instrument): (a) our predominant focus in this
first paper is to describe our simulator and to discuss sev-
eral anecdotal examples of model validation (“type IV”), al-
though we do intend to use our simulator for type III com-
parisons in future work. In type IV, cloud property retrievals
from real satellite observations are compared with simulated
retrievals of the same properties based on simulated radi-
ances from an NWP forecast or analysis valid at the time
of the observations. Our type IV comparisons largely elimi-
nate retrieval issues by applying the exact same MODIS re-
trieval algorithm to both the observed and simulated radi-
ances; (b) Jonkheid et al. (2012) use a rather simplified for-
ward model (at most two cloud layers, one ice and one liq-
uid, in fixed altitude bands) based on cloud fields generated
by the “generalized cloud overlap” generator of Räisänen et
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al. (2004), together with a look-up table (LUT) approach to
SEVIRI radiance generation. They do this for good reason,
namely, to have a fast, reasonably accurate simulation tool
that can be applied efficiently to the large spatial and fre-
quent temporal coverage of SEVIRI. By contrast, our tool
is computationally expensive because it applies a complex
subcolumn generation approach and very detailed radiance
computations to simulated 1 km MODIS pixels. As such, it
is currently most suited to detailed comparison work on case
study MODIS granules.

Note that in our type IV comparisons, the attribution of
the retrieval space differences back to the model is not nec-
essarily straightforward, and must consider not only model
physics and analysis errors but also the realism of the forward
model scheme. Nevertheless, based on our previous experi-
ence, we do prefer the apples-to-apples retrieval-space com-
parisons of type IV over type I comparisons of real MODIS
retrieval products against GEOS-5 model fields, which are
not apples-to-apples comparisons. Invariably, the definition
of quantities such as cloud optical thickness (COT), cloud
top pressure (CTP), or effective radius (re) is not the same
for MODIS retrievals and the model. MODIS-retrieved CTP,
for example, is a complex product that involves concepts of
how far into the cloud the instrument can see in the infrared.
This is a particularly acute problem for thin high cirrus over-
lying lower thicker cloud, in which case MODIS typically
retrieves some intermediate CTP. The GEOS-5 model has
discrete model layers, each with a known cloud fraction and
optical thickness. Various different model-based concepts of
CTP can be formulated, such as the pressure at which the
top-down cumulative COT reaches some threshold, as in the
COSP MODIS simulator of Bodas-Salcedo et al. (2011). Ul-
timately, the best model-based CTP definition for compar-
ison with MODIS-retrieved CTP will be one that emulates
the latter as closely as possible. Similarly, MODIS-retrieved
re is biased towards the top of a cloud layer, and to make
a fair comparison of this quantity with the model, we must
understandhow close to the top of the cloud. Even a com-
paratively more directly retrievable quantity such as COT
has retrieval issues such as detection threshold on the low
end and saturation issues (physically or storage based) on
the high end. These retrieval issues must be taken into ac-
count to make a fair comparison with model COT, typically
by applying the same threshold and saturation limits to the
model COT prior to comparison with the MODIS retrievals.
Ultimately, the point we are making is that type I compar-
isons are not apples-to-apples, and to make them more so
typically involves applying some form of transformation to
the model fields to make them more suitable for comparison
with the satellite retrievals. This is the whole motivation for
the COSP simulator suite. And since such transformations
are essentially moving the comparison towards type IV, it is
better, in our estimation, to use a full type IV retrieval-space
comparison directly, as we do in this paper.

Returning to previous literature, an earlier paper by Otkin
et al. (2007) discusses synthetic validation of hyperspectral
retrieval algorithms for the now shelved Geosynchronous
Imaging Fourier Transform Spectrometer. Otkin et al. (2007)
use high-resolution local area mesoscale models to generate
temperature, moisture, and other required quantity profiles
directly at the spatial resolution (∼ 2–4 km) of the intended
GIFTS fields of view. Similar to our approach, the radia-
tive observables are then forward modeled from these pro-
files and the GIFTS retrieval algorithms applied. But there
are several important differences: (a) Otkin et al. (2007) also
focus on type III synthetic retrieval validation, by comparing
the retrieved temperature and moisture profiles against the
source mesoscale profiles, whereas our primary focus here is
type IV model validation, by comparing NWP model simu-
lated retrievals against actual in-flight retrievals for MODIS;
(b) Otkin et al. (2007) study local regions simulated by
mesoscale models and so are able to use direct pixel reso-
lution forecasts. Our goal is to provide a MODIS simula-
tion tool to a global NWP model, with a grid column res-
olution of around 0.25 degrees, and therefore direct high-
resolution pixel simulation at 1 km is not computationally
feasible. Rather we use a statistical method to generate an
ensemble of pixel-like subcolumns, having realistic subgrid
column variability statistics with which to drive a statistical
pixel-scale simulation; (c) Otkin et al. (2007) use a simpli-
fied single-cloud layer, single cloud-phase forward model.
Our forward model also treats mixed-phase and multi-layer
clouds.

Bugliaro et al. (2011) discuss validation of SEVIRI re-
trieval algorithms in a manner similar to that of Jonkheid et
al. (2012), but using statistical downscaling, via a spectral ex-
trapolation method, from a 7 km resolution central European
NWP forecast. We will discuss spectral extrapolation meth-
ods later in the context of the Venema et al. (2010) down-
scaling method. The Bugliaro et al. (2012) method is similar,
essentially using ak−5/3 power law to extrapolate the power
spectrum of liquid water content from resolved 30 km scales
down to scale of 2.33 km, comparable to the SEVIRI pixel
scale while removing negative condensate amounts and us-
ing a partly randomized small-scale spectral phase to treat
vertical correlations between layers.

Finally, we also note the development of the ECSIM sim-
ulator framework for the European Space Agency’s Earth-
CARE mission (Voors et al., 2007; Donovan et al., 2008).
ECSIM is a flexible and comprehensive end-to-end simulator
package for the active and passive instruments of the upcom-
ing EarthCARE satellite. It is our understanding from Dono-
van et al. (2008) that the simulator can be driven from cloud
resolving model output, much like in Otkin et al. (2007), but
that it is the responsibility of the user to generate input cloud
fields externally if the simulator is to be driven from a lower
resolution NWP model.

The outline of the rest of the paper is as follows: in Sect. 2
we describe the model–sensor interface using the GEOS-
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5 model and MODIS imager. Section 3 shows an example
of simulation and retrieval of cloud properties on a sample
Level-2 data granule. In Sect. 4 we elaborate on future direc-
tions for the software suite.

This paper is the first part in a series that will combine
the software suite described in detail here with a variety of
research applications.

2 Radiance simulations at scales smaller than the
model’s grid spacing

We start the process by selecting an area and time period of
study. It can be as small as a few-pixel subsection of a sin-
gle MODIS granule or as large as an entire year of MODIS
data. The study size is only limited by availability of comput-
ing resources. As far as model itself is concerned, there is no
need for actual MODIS data to be present, but we specifically
want the actual MODIS radiances to be available, so that re-
trievals from simulated and actual radiances can be compared
directly. Similarities and differences in those retrievals can be
analyzed and results applied on a variety of levels in order to
improve both the model and the sensor retrieval algorithm.

For simplicity’s sake in all subsequent references and il-
lustrations, the study area will be taken to be a standard
5 min MODIS data granule (approximate 2000 km in the
along track direction by 2300 km). Once the granule is cho-
sen, we proceed to choose model output files that bound the
granule time. For example, for the granule at 02:00 UTC, we
would select model output at 00:00 and 03:00 UTC. We use
a MODIS standard geolocation file (MOD03 product) to de-
fine the spatial locations to sample the model fields. Solar
and view angle information contained in the same MODIS
geolocation file is also used in the simulation. For the exam-
ples shown in this paper, we used the GEOS model v.5.7.2
output. A list of specific GEOS-5 fields and products used in
this suite is given in Table 1.

2.1 Surface albedo determination

In order to save on computational time, we pre-determine
surface albedo for the area of study. The surface albedo data
come from a variety of sources. Over ice-free ocean, MODIS
geometry and model wind speed are used in a Cox–Munk
ocean surface bidirectional reflectance distribution function
model (Cox and Munk, 1954) to produce cloud-free ocean
surface reflectance. This model reflectance is calculated for
four cardinal wind directions and then averaged into a look-
up table (LUT), which is a function of wavelength, wind
speed, solar and sensor zenith angles and relative azimuth
angle. We do the calculation at three wind speeds of 3, 7
and 15 m s−1. The LUT has 33 solar zenith values, 28 view
zenith values and 37 relative azimuth values. We linearly
interpolate as needed to obtain surface spectral albedo in the
selected 15 MODIS channels that have a shortwave reflective

Table 1.GEOS v.5.7.2 fields and products used in simulations.

Field code Description

U10M U component of wind speed at 10 m altitude
V10M V component of wind speed at 10 m altitude
FRSEAICE Sea ice fraction
FRSNO Snow fraction
PS Surface pressure
T2M Temperature at 2 m altitude
SLP Mean sea-level pressure
QV2M Specific humidity at 2 m altitude
O3 Ozone concentration profile
T Temperature profile
DELP Level pressure differential profile
RH Relative humidity profile
CLOUD Radiative cloud fraction profile
QLLS Large-scale cloud liquid water mixing ratio
QLAN Anvil cloud liquid water mixing ratio
QILS Large-scale cloud ice mixing ratio
QIAN Anvil cloud ice mixing ratio

component. The MODIS channels used in the simulation and
their central wavelengths are listed in Table 2. The ocean re-
flectance LUT contains data for channels 1–22 and 26 from
the table. For the IR (infrared) channels that have no reflec-
tive component (27–36), a constant value of 0.015 is used.
This value is based on the ocean surface emissivity value
suggested by the MODIS cloud top properties algorithm.

Over land several methods are utilized to model the radi-
ances for all MODIS channels. We use the MODIS land sur-
face spectral albedo gap-filled data set (Moody et al., 2005,
2008) that has been updated for MODIS data Collection 6
and is derived from both Aqua and Terra data. In addition
to providing 16-day time period averages every 8 days, the
gap-filled albedo files are generated for each year separately
(instead of aggregating all years together as was done previ-
ously). Further, spatial resolution has been improved to 1 km.
These files are derived from the Collection 5 MCD42B prod-
uct (Schaaf et al., 2011). This MODIS land surface albedo
product is used directly for channels 1–7 and interpolated
linearly to cover other MODIS spectral channels that fall
within the 0.47–2.14 µm wavelength range. For wavelengths
that are longer than 2.14 µm, we use the surface emissivity
data set used in MODIS clear-sky profile retrievals (Seemann
et al., 2008). For wavelengths shorter than 0.47 µm, we use a
seasonally averaged surface albedo database utilized by the
MODIS deep-blue algorithm (Hsu et al., 2004) to obtain the
albedo for the 0.41 µm channel and then interpolate for the
0.44 µm channel.

Over snow and sea ice we use the MODIS multiyear aver-
age snow/ice albedo data set (Moody et al., 2007). The look-
up table is determined by the MODIS pixel latitude, the Inter-
national Geosphere–Biosphere Programme (IGBP) ecosys-
tem type and snow/ice fractions from GEOS-5 FRSNO and
FRSEAICE model fields.
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Table 2.MODIS channels used in simulations.

Channel Central
number wavelength (µm)

1 0.65
2 0.86
3 0.47
4 0.55
5 1.24
6 1.63
7 2.13
8 0.41
9 0.44

17 0.91
18 0.94
19 0.94
20 3.7
22 3.9
26 1.38
27 6.2
28 7.3
29 8.5
31 11.0
32 12.0
33 13.2
34 13.4
35 13.8
36 14.2

The resulting surface albedo values are written out to file
for each study area so that they can be referenced later for dif-
ferent simulation scenarios involving the same area and time.
A good example of such varying scenarios would be repeated
experiments with or without the presence of aerosols.

2.2 Water vapor and other gaseous absorbers

After the surface albedo calculations are complete, we pro-
ceed to ingest the profiles of temperature, relative humidity,
ozone concentration and atmospheric pressure. These pro-
files are downsampled to 27 atmospheric levels, as listed
in Table 3, from the GEOS-5 native 72 vertical levels and
sent to an atmospheric transmittance module that uses the
correlated-k method (Kratz, 1995) to calculate weights and
optical thicknesses for each atmospheric layer due to wa-
ter vapor and other gaseous absorbers. We are not strictly
limited to using the correlated-k method however. Any tech-
nique that would produce a profile of optical thickness based
on specified atmospheric water vapor and ozone profiles and
trace gas amounts will suffice. In cases where the surface
is encountered at an altitude higher than 0 km, the profile
is trimmed accordingly and the surface level is inserted as
the last level to be used. We perform the vertical down-
sampling in order to save on the computational cost of the
synthetic sensor radiance simulation step, with the bulk of

Table 3.Vertical levels used in simulation

Level Level
number altitude (km)

1 80
2 60
3 50
4 45
5 40
6 35
7 30
8 25
9 20

10 18
11 16
12 15
13 14
14 13
15 12
16 11
17 10
18 9
19 8
20 7
21 6
22 5
23 4
24 3
25 2
26 1
27 0

downsampling occurring above the tropopause. We preserve
finer vertical resolution in the troposphere. We find this to
be permissible as radiance data stored in a MODIS L1B file
have an accuracy to only the fifth decimal place, and the un-
certainty due to varying the number of vertical levels in the
upper atmosphere is less than this data storage accuracy. In
our particular setup for MODIS for the channel set of inter-
est, we found deviations in sixth decimal place and less when
we decreased the number of levels from 72 to 27. That of
course may not hold true for all sensors or studies that a user
may attempt, and this setup would need to be re-evaluated as
needed. The simulator however is not limited to operating on
a specific number of levels.

2.3 Generating cloud subcolumns

Sampling of model cloud-related fields to the MODIS pixel
scale is not straightforward because cloud properties typi-
cally vary on scales not adequately resolved by the opera-
tional 0.25◦ GEOS-5 resolution. To sample cloud fields, 1 km
MODIS pixels for each GEOS-5 grid column are collected,
and the same number of pixel-like subcolumns is generated
using a statistical model of subgrid column moisture variabil-
ity. The general approach of Norris et al. (2008) is followed,
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namely using a parameterized probability density function
(PDF) of total water content for each model layer and a Gaus-
sian copula to correlate these PDFs in the vertical.

In this application, we use the skewed triangle PDF, which
allows a simple inclusion of moisture variability skewness,
a ubiquitous feature of atmospheric boundary layers. This
PDF has a simple scalene form characterized by three pa-
rameters: a lower and upper bound and a mode. Under some
circumstances, these three parameters can be directly diag-
nosed from thelayer meantotal water and condensate con-
tents,qt andqc, and cloud fractionf , but in many cases some
adjustments are necessary tof , and possiblyqc, to achieve
consistency. The details of this calculation are beyond the
scope of this paper and are described fully in Norris and
da Silva (2013). Approximations must also be made in the
case of clear or overcast layers, when the triangle is under-
determined.

For the Gaussian copula we use a correlation matrix with
a fixed vertical decorrelation scale of 100 hPa, further modi-
fied by a multiplicative Riishojgaard (1998) flow-dependent
correlation in total water that permits sharper decorrelation
across inversion features. Further details are given in Norris
and da Silva (2013). Once the correlation matrix is speci-
fied, the Gaussian copula correlated ranks of each of the grid
column’s layers are easily generated (Norris et al., 2008)
and then inverted with the cumulative distribution function
(CDF) of each layer’s skewed triangle distribution. The net
result is an ensemble of subcolumns of total moisture con-
tent that sample the specified layer PDFs and have the spec-
ified vertical correlations and accompanying cloud and con-
densate overlap properties. The transformation of total mois-
ture content to vapor, liquid water and ice contents assumes
the vapor is capped at the GEOS-5 saturation vapor content
and that the excess moisture is condensate, split between the
phases using an ice fraction linear in temperature over the
−35 to 0◦C range. It is these subcolumn condensates, com-
bined with GEOS-5 diagnostic effective radii (a fixed profile
across subcolumns based on each grid column’s temperature
and pressure profiles), that are used to evaluate subcolumn
(or “pixel”) liquid water and ice optical thicknesses for each
layer. These are input to the MODIS radiance simulator code.

Note that the subcolumns generated in this way are hor-
izontally independent (the independent column approxima-
tion, or ICA), but are subsequently “clumped”, or rearranged,
to give horizontal spatial coherence, by using a horizon-
tal Gaussian copula applied to condensed water path. This
clumping acts to give the generated clouds a reasonable hor-
izontal structure, such that the cloudy pixels in a grid col-
umn are actually grouped into reasonably looking clouds,
rather than being randomly distributed. This is important be-
cause the MODIS cloud optical and microphysical property
retrieval algorithm has some spatial variance tests for po-
tentially partially cloudy pixels, removing cloud edges by
the so-called “clear-sky restoral” (Zhang and Platnick, 2011;
Pincus et al., 2012). If clumping is not used, then individual

pixels generated by ICA stand an exceptionally high chance
of being eliminated by the clear sky restoral unless a model
grid box has a nearly 100 % cloud fraction.

The clumping algorithm works by applying another Gaus-
sian copula, this time in the horizontal. Copula functions are
explained in Norris et al. (2008), and references therein. Ba-
sically, anN copula is a joint cumulative distribution func-
tion (CDF) in the ranks of a system ofN random variables,
where, by rank, we mean the cumulative probability, between
zero and one, of a variable within its marginal distribution.
Thus if the valuev of a random variableVn has a rank of
0.2, it means that 20 % of random samples ofVn from the
system will fall at or belowv. From this definition, it is clear
that each margin of theN copula is a uniform distribution
on [0,1]. What the copula does is to correlate theseN ranks
in a prescribed way (see Norris et al., 2008; Norris and da
Silva, 2013), such that, for example, certain variables have
a large correlation in their tail properties, and others do not.
Furthermore, the Gaussian copula that we use here is easy
to sample from, allowing us to generateN tuple ranks with
a prescribed correlation structure easily, but such that each
variable’s rank is individually uniformly distributed on [0,1].
With this background, the clumping algorithm works as fol-
lows: a correlation matrixC is generated between all pixels
in a grid column based on the horizontal distance between
the actual pixels in the MODIS granule and assuming a nom-
inal 5 km decorrelation length. If there areN pixels,C is an
N × N matrix. This matrix is used by a Gaussian copula to
generate anN tuple of correlated ranks, each on [0,1] and
each being associated with one of the pixels. Now, as dis-
cussed above, each one of theseN ranks has a uniform prob-
ability density on [0,1], and yet the ranks are correlated by
the copula, such that the ranks of nearby pixels are strongly
correlated, while the ranks of distant pixels are uncorrelated.
Next, by applying each rank to the column condensed water
path (CWP) distribution of its associated pixel, we can pro-
duce a horizontally correlated CWP field. The CDF of each
pixel’s CWP can be adequately approximated by the empir-
ical CDF of the CWP of allN simulated pixels within the
grid column, since we are assuming a homogeneous statis-
tical process within the grid column (i.e., that the ensemble
correlation structure and marginal statistics of CWP are ho-
mogeneous on the grid column scale, even if CWP itself is
not). In this case, the remainder of the algorithm is simple:
by multiplying each rank byN and rounding up non-integers,
a new “rank” on{1,2, . . . ,N} is obtained, which is subse-
quently used to sample (i.e., index, or effectively, to re-order)
a list of theN ICA-simulatedpixels that has previously been
sorted by CWP. Because horizontally nearby pixels are more
correlated byC, they will have a higher chance of having
similar ranks, and therefore similar values of CWP. In this
way the pixels are grouped together horizontally into coher-
ent clouds. (Note that this clumping acts on subcolumns as
a whole, and independent of the preexisting vertical corre-
lations in the ICA subcolumns, so the clumping will work
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better for single cloud layers. For multilayer clouds, the layer
that dominates the CWP will dominate the clumping.) Fi-
nally, note that this clumping method preserves the simulated
grid column cloud fraction. For example, if 20 % of the sim-
ulated ICA subcolumns are clear (have zero CWP), then be-
cause each pixel’s generated rank is uniform on [0,1], each
pixel with have a 20 % chance of being assigned a zero CWP.

There are alternative approaches to NWP subcolumn gen-
eration. Venema et al. (2010) describe an elegant method for
down-scaling coarse-resolution cloud fields (such as NWP
models produce) to finer horizontal scales suitable as pixel
“subcolumns” for input to 1-D or 3-D radiation calculations.
Their method carefully extrapolates the spectrum of variance
in the resolved cloud field down to pixel scales using vari-
ous extrapolation assumptions. Venema et al. (2010) do ac-
knowledge, however, that the accuracy of their downscaling
approach depends on the quality achieved by the spectral ex-
trapolation algorithm being used, and ultimately on what as-
sumptions are made regarding the statistical properties of the
subresolved scale variance.

We have some reservations about the idea of extrapolat-
ing from NWP resolved scales down to pixel scale, particu-
larly because the scales just above the resolution cutoff can
be very much affected by numerical diffusion and by the na-
ture of the subgrid cloud and turbulence parameterizations
used by the model. Partly for this reason, but also because
of the context we describe below, we choose a somewhat
simpler approach: of specifying parametrically the nature of
the subgrid column variability, both horizontally and verti-
cally, as described above and in detail within Norris and da
Silva (2013). Our main reason for this approach is the context
of GMAO’s ongoing modeling and cloud data assimilation
plans. The subcolumn statistical model described, while not
currently operational in GEOS-5, is planned for implemen-
tation as part of an improved cloud parameterization system,
and it is also the statistical model being used by our newly
developed cloud data assimilation system. As such, it is nat-
ural that we should base our new MODIS simulation tool on
this model.

As described above, this subgrid column statistical model
includes a simple skewed triangle PDF of total moisture
in each grid box, and a modern vertical correlation model,
based on ideas advanced by “generalized cloud overlap”
(Räisänen et al., 2004; Pincus et al., 2005; Oreopoulos and
Norris, 2011) and Gaussian copula overlap (Norris et al.,
2008; Norris and da Silva, 2013). Both this vertical corre-
lation model and the simple three parameter intra-layer to-
tal water PDF not only have the potential for being diag-
nosed or prognosticated by our NWP model on physical
grounds (cloud microphysics, boundary layer scaling argu-
ments, etc.), but are also ideal for us in the context of the
assimilation of high-resolution cloud data from MODIS and
other instruments, which contain significant information con-
tent on sub-NWP-scale variability. We do not assume that the
particularly subgrid-scale model used in this paper is ideal, or

our final destination, but we believe it is a reasonable starting
point that is heavily tied to future plans of expansion within
GEOS-5.

The clumping algorithm is the only new element of our
cloud generation algorithm beyond what is fully described
in Norris and da Silva (2013). The clumping algorithm sim-
ply re-samples the horizontal position of the ICA-generated
grid-column subcolumns or “pixels” to introduce some idea
of spatial coherence. This makes negligible difference to
the ICA-calculated radiative properties of the subcolumn en-
semble, since the subcolumns are not changed in any way,
only resampled. So, like the downscaled fields of Venema et
al. (2010), our un-clumped ICA-generated subcolumns are
still able to give vastly improved mean ID radiative proper-
ties for a subcolumn, by averaging over the non-linear radia-
tive calculations on the subcolumn level. Clumping would
make a difference if we had been using a 3-D radiation cal-
culation, but this is currently not even close to being possi-
ble, because of computational expenses, for the applications
we have in mind for our simulation tool. Rather, we do the
above “clumping” both for a more realistic visual appear-
ance of the simulated pixels and also because spatial coher-
ence does impact the “clear sky-restoral” within the MODIS
optical property retrieval, which affectively weeds out cloud
edge pixels. The simple Gaussian copula-based horizontal
clumping algorithm we describe has a parametric horizontal
decorrelation length scale for condensed water path (CWP),
which is currently set at 5 km, but which again can be easily
brought within the parameter estimation capabilities of new
the cloud data assimilation system, based on the MODIS-
observed CWP decorrelation scale.

In summary, the main difference between and the spectral
extrapolation downscaling approach of Venema et al. (2010)
and of Bugliaro et al. (2011) (discussed in the Sect. 1) and
our approach here is one of extrapolating NWP variability to
smaller scales versus externally anchoring the subgrid col-
umn statistical behavior parametrically. Ultimately the accu-
racy of our method will depend on the quality of our subgrid
column statistical model, and of our choice of its parameters.
We anticipate that the quality of this model, and the estima-
tion of its parameters from assimilated high-resolution satel-
lite cloud data will lead to continuously improving accuracy.
Similar comments also apply to the Venema et al. (2010)
downscaling method, which is also constrained in accuracy
by its extrapolation assumptions, and will presumably be im-
proved over time. Thereis one other difference that we ac-
knowledge as a potential problem with our approach, namely
that it is grid-column-based and does not deal with discon-
tinuities between grid columns as the extrapolation method
does. Our argument is that the error reduction in model ra-
diative properties achieved by subcolumn radiative averag-
ing dominates over other smaller reductions due to grid-
column edge effects or 3-D radiative effects, especially for
grid columns of 5 km and larger scale (see comments by
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Jonkheid et al., 2012). Our target NWP resolution is 25 km,
as used in this paper.

The sophisticated subgrid-column cloud generator de-
scribed above and used in this paper is only one of many
possible such generators. A less complicated example, very
much akin to the internal GEOS-5 treatment of cloud over-
lap, would be the following “homogeneous cloud, maximum-
random overlap” generator: divide the atmosphere into pres-
sure bands (e.g., low, middle and high bands) with interfaces
at 700 and 400 hPa. Say we again wish to generateN sub-
columns,n = 1, . . . ,N , for the grid column. Then for each
pressure band, generate a set ofN uniform random num-
bers{rn} on [0,1], and for each model layerk falling within
the band, assign cloudiness to layerk of subcolumnn if
rn < fk, wherefk is that layer’s cloud fraction. The fact that
thesameset{rn} is used for each layerk in the band enforces
maximum cloud overlapwithin the band. But choosing in-
dependent sets of{rn} for each pressure band enforces ran-
dom overlapbetweenthe bands. Finally, every subcolumn
that is cloudy at layerk shares the same homogeneous in-
cloud condensate contentsq(i,j)k

fk
, whereq(i,l)k are the layer

mean condensate contents (i = ice, l = liquid water). (Note
that this simple generator, as with the more sophisticated
generator we use, produces subcolumns ofcondensate. The
specification of optical thicknesses from condensate contents
proceeds on the subcolumn level for both generators. We em-
phasize this because the reader should be aware of the traps
associated with the alternative strategy of using diagnostic
layer COT directly from global climate model (GCM) (e.g.,
GEOS-5) output files. When using diagnostic layer COT di-
rectly, one must know whether they are in-cloud or “layer
mean” and, if in-cloud, for what cloud fraction. One can-
not simply interpret the column consequences of model layer
cloud diagnostics without a knowledge of the model’s cloud
overlap.)

Any type IV model validation studies made by comparing
real and simulated retrievals can be compromised by a poor
forward model (including subcolumn cloud generation and
radiative transfer). The more realistic the forward model, the
more useful is the model validation, because the real obser-
vations use a “perfect forward model”. In this paper we have
used the sophisticated forward model described (skewed tri-
angle PDFs, copula overlap, copula clumping), rather than
the simpler “homogeneous cloud, maximum-random over-
lap” generator used in the GEOS-5 internal radiation calcu-
lations, because we believe the former is a more realistic for-
ward model based on previous studies (Norris et al., 2008;
da Silva and Norris, 2013). We have also used the sophis-
ticated DISORT radiation code for satellite radiances rather
than trying to adapt the simpler internal GCM radiation codes
of GEOS-5 for this purpose. Both these decisions are appro-
priate – we should use the best forward model possible in
order to make the best attribution of differences in retrieval
space back to errors in the vapor and condensate distributions

within the model forecast/analysis. Ultimately, in future stud-
ies, we must compare model validations made using differ-
ent forward models in order to gauge the influence of the
forward model on the conclusions. But, for now, we simply
note that finding a better forward model than the GEOS-5
internal model is a good reason to replace the GEOS-5 in-
ternal model. Indeed, the improved forward model we have
described is already part of the new GEOS-5 cloud data as-
similation system and will also be implemented in GEOS-5
within the near future.

2.4 Radiative transfer calculation

Now that we have collected all the necessary information
about atmosphere and cloud layers, we begin the simulation
process. The radiative transfer calculations were performed
using the discrete ordinate radiative transfer (DISORT) code
(Stamnes et al., 1988) with liquid water cloud phase func-
tion results from Mie calculations based on gamma distribu-
tion water droplet size distributions with an effective vari-
ance of 0.1 and bulk ice cloud phase models developed by
Baum et al. (2005), both consistent with MOD06. Generally
a large number of streams is required to model the forward
peak of the phase function and multiple scattering compo-
nents accurately. The forward peak however can be further
truncated, and use of the delta-fit method of Hu et al. (2000)
can be considered sufficiently accurate, as described by Ding
et al. (2009), for calculations where there is no stored accu-
racy limit such as the multilayer cloud simulations that use
this exact simulation method in Wind et al. (2010). We have
applied the delta-fit method and truncation to phase functions
before use in the simulator. We have experimented with a dif-
ferent number of computational streams in order to balance
speed and desired accuracy. We found that only 16 streams
were required to achieve the needed precision. Initial calcula-
tions were done with 32 streams; however, the execution time
was rather prohibitive. We settled on 16 streams as a balance
between execution time and precision as the difference in re-
sulting simulated sensor radiance between 32 and 16 stream
simulations was less than 0.5 %. The simulator itself how-
ever is not limited as to how many streams the user can spec-
ify. The simulator is only limited by available computational
resources for particular application. As we pre-calculate the
surface spectral albedos, we can save further time by call-
ing DISORT in Lambertian mode with predetermined val-
ues. When we encounter cloud subcolumns over the ocean,
however, we must adjust the computed Cox–Munk surface
albedo to compensate for the diffuse illumination that the
presence of the cloud creates. A good value for the diffuse
illumination albedo of a water surface is 0.05 (Platnick et al.,
2003). We then linearly fit surface albedo as a function of
cloud optical thickness, with full diffuse illumination at a to-
tal column cloud optical thickness of 3 and full Cox–Munk
surface albedo at total column cloud optical thickness of 0.

Geosci. Model Dev., 6, 2049–2062, 2013 www.geosci-model-dev.net/6/2049/2013/



G. Wind et al.: MCRS and applications – Part 1 2057

Fig. 1.Synthetic sensor radiance simulation together with an actual
MODIS granule that was used as study area. Aqua MODIS granule
2012 day 228 at 12:00 UTC. GEOS-5 temporal fit between 12:00
and 18:00 UTC, 15 August 2012. RGB (0.67 µm, 0.55 µm, 0.47 µm).

3 Example retrievals

In this section we discuss two example results of radiance
simulations and subsequent cloud property retrievals. We
performed the simulation on the NASA Center for Climate
Simulations (NCCS) Discover system using 12 Intel West-
mere nodes with 12 cores each. The memory footprint of the
software suite is very small, around 80 Mb peak usage, but
the process is quite CPU-heavy. A full-resolution 1 km simu-
lation using a full MODIS granule as a study area took about
three and a half hours of wall clock time to complete. Fig-
ure 1 shows the resulting true-color RGB image of sample
MODIS granule 2012 day 228 (15 August) at 12:00 UTC to-
gether with the true-color image of the actual MODIS gran-
ule before its channel data were replaced. Panel a shows the
actual data acquired by Aqua MODIS, and panel b shows the
simulation result. GEOS-5 does not assimilate cloudy radi-
ances, and so there should be little expectation of a granule-
level feature match. However, in this case the model does re-
markably well with cloud placement. Bands of cloud over
southern France are present and located properly, as are
clouds over the northern Balkans and southern Asia Minor.
The orographic clouds over Italy and Greece are also present,
as are scattered clouds over the Sahara desert. There are some
rather important differences between the model and the ac-
tual data, however, when it comes to cloud properties.

Figure 2 shows the results of running the Data Collec-
tion 5.1 operational retrieval chain on the resulting L1B file
from model fields. Panel a shows the cloud thermodynamic
phase, panel b the cloud top pressure, panel c the cloud opti-
cal thickness and panel d the cloud effective radius retrieved
with the VNSWIR (visible, near- or shortwave infrared) and
2.1 µm channel combination. Figure 3 shows the actual Aqua
MODIS retrieval for that same granule using identical panel
arrangement.

The cloud field over the central Mediterranean is given im-
proper vertical location by the model. The actual cloud field
is retrieved as liquid water and is low cloud, with cloud top

Fig. 2. Example cloud retrieval for simulated granule covered by
Aqua MODIS 2012 day 288 12:00 UTC.(a) is cloud thermody-
namic phase,(b) cloud top pressure,(c) cloud optical thickness and
(d) cloud effective radius from the 0.86–2.1 µm band combination.

pressures of 800–900 mb. The model generates a thin cir-
rus cloud in that location with cloud top pressure of about
100 mb and of course ice thermodynamic phase. We know
that this discrepancy is not related to any issue in retrieval
method because we are able to examine model fields coming
into simulation directly. Incoming model profiles in that area
do not contain any cloud in lower troposphere and concen-
trate all cloud layers in the upper troposphere instead. This
has serious implications for outgoing radiation. The cloud
field over Romania has a consistent phase, but the model in-
dicates the cloud to be positioned somewhat higher in altitude
than the observation and also significantly optically thicker
than what is observed. The same is true for the cloud field
over NW Turkey.

Figure 4 shows a cloud top pressure/cloud optical thick-
ness joint histogram for the actual granule in panel a and
simulated one in panel b. While in this comparison we are
not necessarily looking for quantitative evaluation of model
parameters, some things do tend to jump out. The actual
MODIS granule has mostly low clouds that are moderately
thick. The simulated granule on the other hand lacks low
clouds almost entirely and instead produces thicker clouds
at high altitude. The RGB images look very similar in this
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Fig. 3. Actual cloud retrieval for Aqua MODIS 2012 day 228 at
12:00 UTC.(a) is cloud thermodynamic phase,(b) cloud top pres-
sure,(c) cloud optical thickness and(d) cloud effective radius from
the 0.86–2.1 µm band combination.

Fig. 4. Joint histograms of cloud optical thickness vs. cloud top
pressure for actual(a) and model-based(b) cloud fields covered
by Aqua MODIS 2012 day 228 at 12:00 UTC.

case, so the model is performing well on geographical cloud
placement, but fails rather badly when it comes to proper
cloud placement in altitude. This kind of disconnect can have
some significant implications for earth radiative budget cal-
culations. It is one of our future goals to determine just how
frequently such disconnects occur on the global scale.

Fig. 5.Synthetic sensor radiance simulation together with an actual
MODIS granule that was used as study area. Terra MODIS granule
2013 day 151 at 11:15 UTC. GEOS-5 temporal fit between 06:00
and 12:00 UTC, 31 May 2013. RGB (0.67 µm, 0.55 µm, 0.47 µm),
SWIR(0.86 µm, 1.6 µm, 2.1 µm).

Figures 5 through 8 show another simulation example,
this time from Terra MODIS 2013 day 151 (31 May 2013)
at 11:15 UTC. This granule shows a large convective sys-
tem over the coast of Liberia and Sierra Leone in western
Africa. Figure 5 shows a true-color RGB image for sim-
ulated and actual MODIS granule together with the short-
wave infrared (SWIR) composite that allows the user to esti-
mate cloud thermodynamic phase visually. Ice clouds appear
red in such an image. We cannot show a SWIR composite
for Aqua MODIS because of detector issues with the Aqua
MODIS 1.6 µm channel that is needed to create the image.
Figure 6 shows retrieval results for the simulated granule,
and Fig. 7 shows the actual Terra MODIS granule retrievals.
Figure 8 shows the joint histograms of cloud top pressure
and cloud optical thickness. In this case there is actually rea-
sonable agreement between sensor measurement and model
cloud field representation both geographically and vertically.
The model could have benefitted from producing somewhat
more mid-level clouds, but overall the large convective sys-
tem that dominates the scene is represented reasonably well,
as are the broken clouds around it. The large cloud-free void
in retrievals performed on simulated data is due to MODIS
operational cloud mask (MOD35) having difficulties. The
operational cloud mask uses much more restrictive thresh-
olds in the sun glint region, and as this simulation is per-
formed without aerosols, resulting radiances may not fit well
with the cloud mask sun glint thresholds. Data Collection 5
operational MODIS cloud mask however is known to have
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Fig. 6. Example cloud retrieval for simulated granule covered by
Terra MODIS 2013 day 151 11:15 UTC.(a) is cloud thermody-
namic phase,(b) cloud top pressure,(c) cloud optical thickness and
(d) cloud effective radius from the 0.86–2.1 µm band combination.

some retrieval issues in sun glint geometry, and so this par-
ticular behavior does not come as a complete surprise. This
retrieval may improve when Data Collection 6 algorithms be-
come available, and we would absolutely repeat this simula-
tion with updated cloud mask product code. If the issue per-
sists, then this particular case might be useful as cloud detec-
tion diagnostics since the source model data tell us explicitly
that the cloud field is indeed present.

The MODIS cloud top pressure retrieval is quite sensitive
to ancillary atmospheric profile information (Menzel et al.,
2008), and some of differences found in retrievals could be a
result of different representations of the atmospheric profile
by GEOS-5 and the NCEP Mesoscale Meteorological Model
(MM5)-derived model profiles used during the MODIS re-
trieval.

Situations in which cloud optical thickness retrievals show
significant differences tend to be more indicative of signifi-
cant differences in cloud structure. Unlike cloud top pressure,
cloud optical thickness retrievals have very little dependence
on atmospheric profile information as there is very little at-
mospheric absorption in the 0.65 and 0.86 µm channels used
to retrieve this quantity.

Fig. 7. Actual cloud retrieval for Terra MODIS 2013 day 151 at
11:15 UTC.(a) is cloud thermodynamic phase,(b) cloud top pres-
sure,(c) cloud optical thickness and(d) cloud effective radius from
the 0.86–2.1 µm band combination.

Fig. 8. Joint histograms of cloud optical thickness vs. cloud top
pressure for actual(a) and model-based(b) cloud fields covered
by Terra MODIS 2013 day 151 at 11:15 UTC.

Cloud effective radius retrievals from the 2.1 µm channel
depend somewhat on the atmospheric profile, but differences
in that retrieval are also mainly due to differences in cloud
microphysics present in the model and in the actual atmo-
sphere. Retrieved cloud effective radius appears to be some-
what smaller overall for GEOS-5 data than for MODIS. Even
though the clumped-ICA cloud formation method allows us
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to model some of the scene inhomogeneity normally encoun-
tered in actual MODIS data, the present implementation of
the simulator does not admit subpixel-based effective radius
artifacts such as ones appearing in MODIS (Zhang and Plat-
nick, 2011). Also, GEOS-5 uses a simple diagnostic prescrip-
tion of cloud effective radius that is loosely based on large-
scale observations of aerosol concentrations and their physi-
cal connection to cloud droplet size, and with the details be-
ing adapted based on consistency with surface radiation bud-
get estimates of shortwave cloud forcing. It is therefore not
surprising that, in our preliminary results, there appears to be
generally somewhat less variability in retrieved cloud effec-
tive radius from GEOS-5 than from real MODIS data.

4 Conclusions and future directions

We have developed a flexible software suite that allows us
to interface model fields to operational satellite remote sens-
ing retrieval algorithms. We have presented an example of its
operation using the GEOS-5 model and MODIS instrument.
We have demonstrated the power of this software in locating
and quantifying problems with GEOS-5 cloud optical prop-
erties and cloud vertical distributions within the specific ge-
ographic and synoptic contexts observed in MODIS cloud
granules.

In subsequent papers we will show a number of applica-
tions of this software. Our current plans include performing a
number of large-scale simulation experiments using GEOS-
5 nature run model data with resolutions as high as 7 km.
We would like to examine impact of aerosols on cloud re-
trievals by performing simulations with and without model
aerosol fields. Once operational cloud and aerosol retrieval
algorithms are applied to such data, we may be able to quan-
tify some aerosol effects on clouds and maybe even find some
ways to retrieve aerosols above clouds.

We would also like to examine in detail the performance of
COSP, the Cloud Feedback Model Intercomparison Project
(CFMIP) Observation Simulator Package, which provides a
means of simulating retrieved cloud properties from a variety
of instruments, including MODIS, from model fields. The
COSP package typically uses approximate, so-called “fast”
simulators of cloud properties, whereas we are directly sim-
ulating radiances and performing the retrievals using actual
operational retrieval codes. We thus have the ability to test
the quality of the COSP fast simulators

We also intend to apply this software suite to other remote
sensing instruments, such as SEVIRI (Spinning Enhanced
Visible Infrared Radiometer Imager) on board the Meteosat
Second Generation geostationary satellite series. SEVIRI has
a sufficient number of channels that MODIS-style cloud re-
trieval algorithms can be applied. SEVIRI acquires data in
15 min intervals at 3 km nadir resolution, thus giving fine
temporal and spatial resolution for diurnal sampling. Apply-
ing the simulated sensor radiance package to SEVIRI would

allow us potentially to examine model cloud dynamics at a
temporal resolution not offered by polar orbiting satellites.

We are confident that there are many other applications
for this software that will be found in the future besides ones
outlined above and that it will become a valuable tool for
both the remote sensing and modeling communities.

The simulator code is available to users free of charge by
contacting the authors and becoming a registered user of this
software package so that any updates can be issued directly.
There may be additional, wider distribution means in the fu-
ture if the software shows signs of growing popularity.
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