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Abstract. This work presents the development of a two-
moment cloud microphysics scheme within version 5 of
the NASA Goddard Earth Observing System (GEOS-5).
The scheme includes the implementation of a comprehen-
sive stratiform microphysics module, a new cloud coverage
scheme that allows ice supersaturation, and a new micro-
physics module embedded within the moist convection pa-
rameterization of GEOS-5. Comprehensive physically based
descriptions of ice nucleation, including homogeneous and
heterogeneous freezing, and liquid droplet activation are im-
plemented to describe the formation of cloud particles in
stratiform clouds and convective cumulus. The effect of pre-
existing ice crystals on the formation of cirrus clouds is also
accounted for. A new parameterization of the subgrid-scale
vertical velocity distribution accounting for turbulence and
gravity wave motion is also implemented. The new micro-
physics significantly improves the representation of liquid
water and ice in GEOS-5. Evaluation of the model against
satellite retrievals and in situ observations shows agreement
of the simulated droplet and ice crystal effective radius, the
ice mass mixing ratio and number concentration, and the rel-
ative humidity with respect to ice. When using the new mi-
crophysics, the fraction of condensate that remains as liq-
uid follows a sigmoidal dependency with temperature, which

is in agreement with observations and which fundamentally
differs from the linear increase assumed in most models.
The performance of the new microphysics in reproducing
the observed total cloud fraction, longwave and shortwave
cloud forcing, and total precipitation is similar to the oper-
ational version of GEOS-5 and in agreement with satellite
retrievals. The new microphysics tends to underestimate the
coverage of persistent low-level stratocumulus. Sensitivity
studies showed that the simulated cloud properties are ro-
bust to moderate variation in cloud microphysical parame-
ters. Significant sensitivity remains to variation in the disper-
sion of the ice crystal size distribution and the critical size
for ice autoconversion. Despite these issues, the implemen-
tation of the new microphysics leads to a considerably im-
proved and more realistic representation of cloud processes
in GEOS-5, and allows the linkage of cloud properties to
aerosol emissions.

1 Introduction

Cloud microphysical schemes in global circulation mod-
els (GCMs) have evolved from directly prescribing cloud
properties (i.e., particle size and number, cloud amount and
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concentration of condensate) (e.g.,Manabe et al., 1965) to
explicit representation of the microphysics involving the for-
mation, evolution, and removal of cloud droplets and ice
crystals (e.g.,Gettelman et al., 2010; Lohmann, 2008; Sud
et al., 2013; Quaas et al., 2009). The development of sophis-
ticated cloud schemes allows a more realistic description of
the variability and interdependence of cloud properties, and
will likely improve model predictions of climate (Lohmann
and Feichter, 2005). However, their increased complexity
has also brought about new challenges in the description of
small-scale dynamics, cloud particle nucleation and growth,
and the generation of precipitation. Most models rely on sim-
plified representations of such processes.

Current GCMs typically use either single- (e.g.,Del Genio
et al., 1996; Bacmeister et al., 1999) or two-moment cloud
microphysics schemes (e.g.,Gettelman et al., 2010; Sud
et al., 2013; Lohmann et al., 2008). More detailed schemes
have also been developed; however, their computational costs
make them unsuitable for climate studies (Khain et al.,
2000). The advantage of two- and higher-moment schemes
is that the characteristics of the cloud particle size distribu-
tion are explicitly calculated and allowed to interact with ra-
diation and influence the evolution of cloud properties. Some
schemes also allow for supersaturation with respect to the
ice phase, required to model ice nucleation explicitly (e.g.,
Gettelman et al., 2010; Wang and Penner, 2010). When cou-
pled to an appropriate aerosol activation parameterization,
multi-moment microphysics schemes are capable of mod-
eling the modification of cloud properties by aerosol emis-
sions, a key component of anthropogenic climate change
(IPCC, 2007; Lohmann and Feichter, 2005; Kaufman and
Koren, 2006).

Mounting evidence suggests that aerosols, both natural
and anthropogenic, play a key role in many atmospheric pro-
cesses. For example, the presence of ice in clouds at tem-
peratures above 235 K depends on the presence of water-
insoluble ice nuclei (IN) (Pruppacher and Klett, 1997).
IN in turn act as precipitation-forming agents in convec-
tive systems and mixed-phase clouds (Ramanathan et al.,
2001; Rosenfeld and Woodley, 2000). Although IN orig-
inate mostly from natural sources (i.e., dust and biogenic
material), anthropogenic emissions can modify the natural
IN concentration. The effect of aerosols on clouds has also
been associated with planetary radiative perturbations from
the modification of clouds by anthropogenic aerosol emis-
sions (Twomey, 1977, 1991; Lohmann and Feichter, 2005).
Emissions of cloud condensation nuclei (CCN) may also
lead to the modification of the precipitation onset in convec-
tive cumulus, decreasing the average size of cloud droplets
(Rosenfeld et al., 2008). Recent studies suggest that the in-
terplay between CNN and IN plays a significant role in
the maintenance of Arctic clouds (Morrison et al., 2012;
Lance et al., 2011). Accurate representation of these effects
in atmospheric models is critical for reliable climate predic-
tion, yet difficult due to their complexity and gaps in the

understanding of CCN and IN activation and the interactions
between clouds and radiation (Stevens and Feingold, 2009).

A recent simulation of the non-hydrostatic implementation
of the NASA Goddard Earth Observing System at 14 km spa-
tial resolution demonstrated that as the spatial resolution in-
creases, the parameterized convective transport of moisture
plays a weaker role in the generation of cloud condensate. At
high resolution, the simulated cloud properties are controlled
by the cloud microphysics (Putman and Suarez, 2011). For
typical GCM resolutions (∼ 2◦), the parameterization of con-
vective precipitation strongly impacts the simulation of the
hydrological cycle and the distribution of cloud tracers in the
atmosphere (e.g.,Arakawa, 2004). Most GCMs use single-
moment schemes to describe the microphysics of convective
systems; two-moment microphysical schemes have also been
developed for convective clouds, mostly based on ideas orig-
inally developed for stratiform clouds (e.g.,Lohmann, 2008;
Song and Zhang, 2011; Sud et al., 2013).

The NASA Goddard Earth Observing System, version 5
(GEOS-5) is a system of models integrated using the Earth
System Modeling Framework (ESMF) (Rienecker et al.,
2008). The operational version of GEOS-5 is regularly used
for decadal predictions of climate, field campaign support,
satellite data assimilation, weather forecasts and basic re-
search (Rienecker et al., 2008, 2011; Molod, 2012). GEOS-
5 uses a single-moment cloud microphysics scheme to pa-
rameterize condensation, sublimation, evaporation, autocon-
version and sedimentation of liquid and ice (Bacmeister
et al., 2006). This single-moment approach captures the main
climatic features related to the formation of stratocumulus
decks and tropical storms (Reale et al., 2009; Putman and
Suarez, 2011), but prevents the explicit linkage of aerosol
emissions to cloud properties and omits subgrid variability
in cloud properties. In this work, we develop a new micro-
physical package for GEOS-5 that addresses these issues.
The new microphysics scheme presented here explicitly pre-
dicts the mass and number of cloud ice and liquid, and links
the number concentration of ice crystals and cloud droplets
to aerosol through the processes of cloud droplet activation
and ice crystal nucleation.

2 Model description

2.1 Operational GEOS-5

The cloud scheme in the operational version of GEOS-5 con-
siders a single phase of condensate; however, the removal
and evaporation of cloud water from detrained convection
and in situ condensation are treated separately. The fraction
of condensate existing as ice is assumed to increase linearly
between 273 and 235 K. Processes of autoconversion, evap-
oration/sublimation and accretion of cloud water and ice are
treated explicitly (Bacmeister et al., 2006). Moist convection
is parameterized using the relaxed Arakawa–Schubert (RAS)

Geosci. Model Dev., 7, 1733–1766, 2014 www.geosci-model-dev.net/7/1733/2014/



D. Barahona et al.: Cloud microphysics in GEOS-5 1735

scheme (Moorthi and Suarez, 1992). Generation and evapo-
ration of convective, anvil and stratiform precipitation are pa-
rameterized according toBacmeister et al.(2006). Longwave
radiative interactions with cloud water, water vapor, carbon
dioxide, ozone, N2O and methane are treated followingChou
and Suarez(1994). TheChou et al.(1992) scheme is used to
describe shortwave absorption by water vapor, ozone, carbon
dioxide, oxygen, cloud water, and aerosols and scattering by
cloud particles and aerosols. Cloud particle effective size is
prescribed and tuned to adjust the radiative balance at the top
of the atmosphere. The current version of GEOS-5 also ac-
counts for the radiative effect of precipitating rain and snow
according toMolod et al. (2012). Aerosol transport is cal-
culated interactively using the Goddard Chemistry, Aerosol,
Radiation, and Transport model, GOCART (Colarco et al.,
2010), a global aerosol transport model that considers dust,
sea salt, black and organic carbon, and sulfate aerosols. Scav-
enging of aerosol mass is based on a convective mass flux
approach; however, it is not explicitly linked to droplet and
ice crystal nucleation (Colarco et al., 2010).

The calculation of large-scale condensation and cloud cov-
erage in GEOS-5 follows a total-water probability distribu-
tion function (PDF) approach (Smith, 1990; Rienecker et al.,
2008; Molod, 2012). The total-water PDF is assumed to fol-
low a uniform distribution characterized by the critical rel-
ative humidity, based on the formulation ofSlingo (1987).
Anvil cloud fraction is parameterized followingTiedtke
(1993).

2.2 New cloud variables

The cloud microphysical scheme in GEOS-5 was augmented
to consider the evolution of the mass and number of ice crys-
tals and cloud droplets. Four new prognostic variables were
added to GEOS-5:ql , qi , nl and ni , representing the grid-
average mass and number mixing ratio of liquid and ice, re-
spectively. The evolution of a given tracer,η, is described by

∂η

∂t
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∂η
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)
adv
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(
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where the terms on the right-hand side of Eq. (1) represent
the tendency inη due to advective and turbulent transport and
large-scale and convective cloud processes, respectively. Ad-
vective transport and turbulent transport in GEOS-5 are de-

scribed inRienecker et al.(2008).
(

∂η
∂t

)
ls

refers to the change

in η from non-convective cloud processes (i.e., anvil and stra-

tus clouds), whereas
(

∂η
∂t

)
cv

describes the change inη from

processes occurring within convective cumulus.

2.3 Microphysics of stratiform and anvil clouds

In GEOS-5, clouds are classified as stratiform (cirrus, anvils
and stratocumulus) and convective. Stratiform clouds are

formed by in situ condensation and anvil detrainment. The
stratiform scheme ofMorrison and Gettelman(2008, here-
after MG08) was incorporated into GEOS-5 as part of
the new cloud scheme. Since MG08 allows for ice super-
saturation, and accounts for activation of aerosols based
on a subgrid vertical velocity, other aspects of the cloud
scheme were updated. The calculation of cloud fraction and
large-scale condensation was modified to account for super-
saturation with respect to ice and microphysical process-
ing (Sect.2.3.1). The new scheme uses the CCN activa-
tion and ice nucleation parameterizations ofFountoukis and
Nenes(2005) andBarahona and Nenes(2009b), respectively
(Sects.2.3.2and2.3.3). A parameterization of subgrid ver-
tical velocity, wsub, was also developed (Sect.2.3.4), and
MG08 was modified to account for the effect of preexist-
ing ice crystals on cirrus formation (Sect.2.3.5). A new mi-
crophysical scheme for convective clouds that explicitly con-
siders CCN and IN activation was implemented (Sect.2.4).
These modifications represent a complete overhaul of the
cloud microphysics of GEOS-5.

The MG08 scheme includes prognostic equations for the
mass and number mixing ratio of cloud ice and liquid, and
diagnostically predicts the vertical profiles of rain and snow.

The detailed mass and number balances leading to
(

∂nl
∂t

)
ls

,(
∂ql
∂t

)
ls

,
(

∂qi
∂t

)
ls

and
(

∂ni
∂t

)
ls

are presented inMorrison and

Gettelman(2008). The MG08 scheme is used to describe the
microphysics of convective detrainment and stratiform con-
densate.

The size distribution of cloud droplets, rain, ice and snow
is assumed to follow a gamma distribution; i.e.,

ny(D) = N0,yD
µy
y e−λ0,yDy , (2)

where the subscript y is used to represent a hydrometeor
species, andN0,y and λ0,y are the intercept and slope pa-
rameters ofny(D), calculated as inMorrison and Gettelman
(2008) (cf. Eq. 3).Dy andµy are the sphere-equivalent di-
ameter and the size dispersion of the y species, respectively.
A Marshall–Palmer distribution (Marshall and Palmer, 1948)
is assumed for rain and snow; i.e.,µy = 0.

The version of MG08 implemented in GEOS-5 follows
closely the description ofGettelman et al.(2010), with some
modifications as follows. MG08 also uses an exponential ap-
proximation of the size distribution of ice crystals; i.e.,µi =

0. Theoretical considerations however suggest thatni(Di) in
recently formed clouds is better represented by log-normal
and gamma functions in which the concentration of ice crys-
tals decreases steeply for very small sizes (Barahona and
Nenes, 2008). Since this behavior cannot be reproduced us-
ing an exponential distribution, settingµi = 0 may lead to
underestimation ofλ0,i and overestimation of crystal size.
This assumption is relaxed in GEOS-5, andµi is calculated
as a function ofT following the correlation ofHeymsfield
et al. (2002), obtained from extensive measurements in cir-
rus clouds. FollowingHeymsfield et al.(2002), it is assumed
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that 0.5 < µi < 2.5. The critical size for ice autoconversion
was set toDcs = 400 µm. The sensitivity of cloud ice water
to µi andDcs is analyzed in Sect.4.

The droplet autoconversion parameterization in MG08
(Khairoutdinov and Kogan, 2000) was replaced by the for-
mulation of Liu et al. (2006). The latter was preferred be-
cause of its greater flexibility in representing the effect of
cloud droplet dispersion on the autoconversion rate. The liq-
uid water content exponent in Liu’s parameterization was set
to 2.0 (Liu et al., 2006). FollowingLiu et al.(2008), the cloud
droplet size dispersion,µl , was parameterized in terms of the
grid-scale mean droplet mass.

Other modifications to MG08 include the calculation of
the nucleated droplet number and ice crystal concentration
and the parameterization of the subgrid-scale vertical ve-
locity (Sects.2.3.2 to 2.3.4). Partitioning of total conden-
sate accounts for the Bergeron–Findeisen process following
Morrison and Gettelman(2008) andGettelman et al.(2010).
Ice and liquid cloud fraction are however not discriminated,
and the total cloud fraction is calculated using the probability
distribution function (PDF) of total water (Sect.2.3.1).

2.3.1 Stratiform condensation and cloud fraction

Cloud fraction,fc, plays a crucial role in cloud and radiative
processes, and is intimately tied to the in-cloud number and
mass mixing ratios. In GEOS-5 it is calculated using a total-
water PDF scheme; i.e.,

fc = (1− fcn)

∞∫
Scritq

∗

Pq(q)dq + fcn, (3)

wherePq(q) is the normalized total-water PDF in the non-
convective part of the grid cell, andfcn is the convective
detrainment mass fraction.Pq(q) is assumed uniform with
width equal to1q (AppendixA); q∗ is the weighted satura-
tion mixing ratio between liquid and ice, given by

q∗
= (1− fice)q

∗

l + ficeq
∗

i , (4)

wherefice is the mass fraction of ice in the total condensate,
andq∗

l andq∗

i are the saturation specific humidities for liquid
and ice, respectively. The total condensate is given by

qc = (1− fcn)

∞∫
Scritq

∗

(q − Scritq
∗)Pq(q)dq + qc,det, (5)

whereqc,det is the contribution of convective detrainment to
the total condensate. The termScrit in Eqs. (3) and (5) is
termed the critical saturation ratio.Scrit controls the mini-
mum level of supersaturation required for cloud formation
within a model grid cell. Equation (3) implies that regions
within the grid cell for whichqt > q∗Scrit are covered with
cloud (AppendixA). The total water in the non-convective

part of the grid,qt, is calculated assuming water saturation
for the convective detrainment. Note that Eqs. (3) to (5) are
coupled through the energy balance (not shown), and must
be solved simultaneously.

In the operational version of GEOS-5, it is assumed that
Scrit = 1 for all conditions. In this work, the same assump-
tion is used for mixed-phase and liquid clouds. However,
for ice clouds, linkingScrit to ice nucleation processes in-
creases the minimum relative humidity required for cloud
formation, allowing for supersaturation with respect to ice.
Scrit is thus controlled by the subgrid-scale dynamics and the
aerosol properties. In cirrus clouds,Scrit is calculated by the
ice nucleation parameterization (Sect.2.3.3, Eq.13).

To make an initial estimate offc, the width ofPq(q) is pre-
scribed and parameterized in terms of a critical relative hu-
midity (Molod et al., 2012). This is fully diagnostic, since the
width does not depend on state variables. However, the con-
vective contribution tofc is fully prognostic and depends on
the detrained mass flux parameterized using a Tiedke-style
approach (Tiedke, 1993). Using this assumption, an initial
estimate offc is calculated in the form (Eq.A2)

fc = (1− fcn)
qmx − Scritq

∗

1q
+ fcn, (6)

whereqmx = qt + 0.51q and1q are the upper limit and the
width of Pq(q), respectively. Similarly, for total condensate
(Eq.A3),

qc = (1− fcn)
1

2
αL

(qmx − Scritq
∗)2

1q
+ qc,det, (7)

whereαL =

(
1+

L
cp

∂q∗

∂T

)−1
accounts for changes inq∗ due

to latent heating during condensation. Equation (6) may lead
to a reduction infc if qt < Scritq

∗, even ifqt > q∗ (i.e., the
grid cell is on average supersaturated), which may lead to
inconsistency between ice crystal growth and total conden-
sate. This is resolved by assuming a proportional increase in
fc with water vapor deposition onto preexisting ice crystals.
Cirrus clouds thus persist in supersaturated grid cells (how-
ever, is not created) even ifqt < Scritq

∗.
Evaporation, water vapor deposition and condensation,

and sedimentation processes can modifyfc. Microphysical
processes can also alterqt andPq(q) via the formation of pre-
cipitation. Fully prognostic schemes parameterize these ef-
fects by assuming some proportionality between changes in
fc and microphysical rates (e.g.,Del Genio et al., 1996; Sud
and Walker, 1999; Tompkins, 2002; Kärcher and Burkhardt,
2008). Here, an alternative approach, maintaining the form
of the PDF, is proposed as follows. Assuming that the total-
water PDF (i.e., anvil and stratiform) after microphysical
processing follows a uniform distribution, an equation simi-
lar to Eq. (7), but without an explicit contribution from de-
trainment, can be written for the total condensate (Eq.A5).
Since total water,q ′

t , and total condensate,q ′
c, are known af-

ter the microphysics, then a new width,1q ′, consistent with
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the new state of the system, can be calculated, as detailed
in AppendixA. Using1q ′ in Eq. (3), a new cloud fraction
corrected for microphysical processing can be written in the
form (Eq.A8)

f ′
c =

(
1+

√
1−

q ′
t − Scritq∗

q ′
c

)−1

. (8)

In practice, an initial estimate offc (Eq.6) is used to calcu-
lateqc andqt at the beginning of the time step. Then assum-
ing that microphysical processes proceed at a constant cloud
fraction,q ′

c andq ′
t are calculated and introduced into Eq. (8)

to calculatef ′
c. This procedure has the limitation that micro-

physical processes are calculated using an initial estimate of
fc instead of its final value; however ensures consistency be-
tweenf ′

c andq ′
c at the end of the time step.

2.3.2 Cloud droplet activation

CCN activation into cloud droplets is parameterized follow-
ing the approach ofFountoukis and Nenes(2005) (hereafter
FN05). FN05 give an analytical solution of the equations of
an ascending cloudy parcel using the method of population
splitting (Nenes and Seinfeld, 2003). Sulfates, hydrophilic
organics and sea salt are considered CCN active species.
Aerosol number concentrations were derived from the pre-
dicted mass mixing ratio for each species using size distri-
butions obtained from the literature (Table1). Sulfate and
organics are considered internally mixed, and five separate
bins are used to describe dust. Aerosol composition is pa-
rameterized in terms of the hygroscopicity parameter (Petters
and Kreidenweis, 2007): κ was set to 0.65, 0.2 and 1.28 for
sulfate, hydrophilic organics, and sea salt, respectively. The
water uptake coefficient was set to 1.0 (Raatikainen et al.,
2013). In this work, the adiabatic version of the FN05 pa-
rameterization is employed. However, FN05 can readily be
extended to include dust activation (Kumar et al., 2009b),
entrainment (Barahona and Nenes, 2007), and giant CCN
(Barahona et al., 2010b). The contribution of CCN activa-
tion in stratiform clouds to the droplet number concentration
is given by

(
dNl

dt

)
ls,act

=
max(Nl,act− Nl , 0)

1t
, (9)

whereNl and Nl,act are the in-cloud preexisting and acti-
vated droplet number concentrations, respectively.Nl,act is
calculated atw̄+

sub= w̄ + 0.8σw (Peng et al., 2005; Foun-
toukis and Nenes, 2005), w̄ andσw being the mean and stan-
dard deviation of the subgrid distribution of vertical velocity
(Sect.2.3.4), andw̄+

sub the vertical velocity averaged over the
positive side of the distribution. This approximation is valid
for w̄ � σw, and may introduce up to 20 % non-systematic
discrepancy inNl,act when compared to the direct solution of
the integral in Eq. (14) (Morales and Nenes, 2010); however,
it is justified for its computational efficiency.

2.3.3 Ice nucleation

The ice nucleation parameterization implemented in GEOS-
5 was developed byBarahona and Nenes(2008, 2009a,
b) (hereafter BN09), and is summarized inBarahona et al.
(2010a). The parameterization of BN09 is derived from the
analytical solution of the governing equations of an ascend-
ing cloud parcel, and considers the dependency of the ice
crystal concentration on cloud formation conditions, subgrid-
scale dynamics, and aerosol properties. At cirrus levels (T <

235 K), both homogeneous and heterogeneous ice nucleation
and their competition are considered; i.e.,

Ns
i,nuc = [Nhom+ Nhet]Si,max , (10)

whereNs
i,nuc is the ice crystal concentration nucleated in a

single parcel ascent,Nhom andNhet the ice crystal concen-
trations produced by homogeneous and heterogeneous ice
nucleation, respectively, andSi,max the maximum saturation
ratio reached within the cloudy parcel. In BN09,Si,max is ex-
plicitly calculated, accounting for the competition between
water vapor deposition onto ice crystals and supersaturation
generation by expansion cooling.Si,max (henceNs

i,nuc) thus
depends on dynamics, temperature and the concentration
of ice nuclei; i.e.,Si,max = Si,max(wsub,T ,Nhet) (Barahona
and Nenes, 2009b). Since homogeneous freezing quickly
depletes supersaturation,Si,max is limited, so thatSi,max ≤

Shom, Shom being the saturation threshold for homogeneous
freezing (Ren and Mackenzie, 2005; Koop et al., 2000). For
T > 235 K andSi,max < Shom, only heterogeneous ice nucle-
ation takes place.

Nhom is determined by the homogeneous ice nucleation
rate of sulfate solution droplets, parameterized in terms of
the water activity followingKoop et al. (2000). Hetero-
geneous ice nucleation is described through a generalized
ice nucleation spectrum,Nhet =Nhet(Si,T ,m1...n), so that
Nhet =Nhet(Si,max), with Si being the saturation ratio with
respect to ice, andm1...n the moments of the aerosol num-
ber distribution.Nhet depends on the aerosol composition,
and in principle can have any functional form (Barahona and
Nenes, 2009b). The usage ofNhet(Si,T ,m1...n) also obviates
the need for prescribing fixed nucleation thresholds, which
may carry uncertainty (Barahona, 2012). In this work,Nhet
is described using the formulation ofPhillips et al.(2013)
(hereafter Ph13), considering immersion and deposition ice
nucleation on dust, black carbon, and soluble organics. In
simplified form, the Ph13 spectrum can be written as

Nhet = (11)

1

2

∑
x

Nxerfc

 ln
(

Dg,x
0.1µm

)
√

2σg,x

{1− exp[−ϕx(Si,T , s̄p,x)]
}
,

whereNx, Dg,x, σg,x, ands̄p,x are the total number concen-
tration, the geometric mean diameter, the geometric size dis-
persion, and the mean particle surface area of the x aerosol
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Table 1. Log-normal size distribution parameters used in this study (Lance et al., 2004). Dg (µm) andσg are the geometric mean diameter
and dispersion, respectively.8i is the particle number fraction in modei. The “polluted” size distribution parameters for sulfate and organics
are used when the total aerosol mass exceeds 5.0 µg m−3.

Aerosol species Dg σg 8i

Dust1 1.46 2.0 1.0
Dust2 2.8 2.0 1.0
Dust3 4.8 2.0 1.0
Dust4 9.0 2.0 1.0
Dust5 16.0 2.0 1.0
Black carbon 0.024 2.20 1.0
Seal salt [0.02,0.092,0.58] [1.47,2.0,2.0] [0.56,0.43,7.6× 10−3

]

Sulfate and organics
Clean [0.016,0.067,0.93] [1.6,2.1,2.2] [0.55,0.44,4.1× 10−2

]

Polluted [0.014,0.054,0.86] [1.8,2.16,2.21] [0.77,0.23,3.6× 10−3
]

species, respectively, andϕx(Si,T , s̄p,x) is the number of ac-
tive nucleation sites per particle (Phillips et al., 2013, 2008).
The summation in Eq. (11) is carried out over five log-
normal modes for dust, and single log-normal modes for
black carbon and organics (Table1). Primary biological par-
ticles are not predicted by GEOS-5 and are not considered
in this work. However, on a global scale, their effect on ice
cloud formation may be small (Hoose et al., 2010). Since
dust and soot aerosol are typically irregular aggregates rather
than spherical particles,̄sp,x was obtained from the mean
sphere-equivalent particle volume, assuming a bulk surface
area density of 10 m2 g−1 for dust (Murray et al., 2011) and
50 m2 g−1 for soot (Popovitcheva et al., 2008).

The BN09 parameterization also allows the calculation of
Scrit for cirrus (Eq.6, Sect.2.3.1). According to BN09, the
ice saturation ratio at which most IN freeze in a polydisperse
aerosol population,Shet, is given by (Barahona and Nenes,
2009b)

Shet = max

[
1+ Si,max−Nhet

(
∂Nhet

∂Si

)−1

,1

]
. (12)

If no IN are present, thenShet approaches the saturation
threshold for homogeneous freezing,Shom (Barahona and
Nenes, 2009b). Shet andShom represent the minimum satu-
ration ratio required for cloud formation by heterogeneous
and homogeneous freezing, respectively. They thus have the
same meaning as the critical saturation ratio of Eq. (6). Scrit
is then calculated as

Scrit = fhetShet+ (1− fhet)Shom, (13)

wherefhet = Nhet/(Nhom+Nhet) is the fraction of ice crystals
produced by heterogeneous ice nucleation.

The grid cell averaged nucleated ice crystal concentration,
Ni,nuc, is calculated by weightingNs

i,nuc over the distribution

of updrafts within each grid cell (Sect.2.3.4):

Ni,nuc =

wmax∫
0

Ns
i,nuc(wsub)φ(w̄,σ 2

w)dwsub

wmax∫
0

φ(w̄,σ 2
w)dwsub

, (14)

whereφ(w̄,σ 2
w) is the normal distribution andwmax = w̄ +

4σw (Sect.2.3.4). The latter is used as an upper limit to the
integral to avoid numerical instability. Note that, for ice nu-
cleation, using the approximationNi,nuc ≈ Ni,nuc

∣∣
w̄+

sub
may

introduce a much larger bias than for cloud droplet activation
(Sect.2.3.2). This is because the competition between ho-
mogeneous and heterogeneous nucleation introduces strong
nonlinearity in Ni,nuc (Barahona and Nenes, 2009a). The
characteristic value ofwsub for Ni,nuc therefore generally dif-
fers from the average vertical velocity. PDF averaging is also
applied forScrit andSi,max.

The contribution of ice nucleation in cirrus to the ice crys-
tal number concentration is given by(

dNi

dt

)
cirrus,nuc

= (15)

max[Ni,nucPq(qt > Scritq
∗

i ) − Ni , 0]

1t
.

The factorPq(qt > Scritq
∗

i ) accounts for the probability of
finding an air mass leading to cloud formation within the grid
cell. This term was proposed byBarahona and Nenes(2011)
to account for the effect of prior nucleation events on current
cloud formation.

For the mixed-phase regime (T > 235 K), Eq. (11) is ap-
plied directly by assuming saturation with respect to liquid
water, to find the contribution of deposition and condensa-
tion heterogeneous nucleation toNi . In this regime, cloud
droplet freezing by immersion and contact ice nucleation
contribute to the ice crystal population. These are explicitly
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treated as follows. The tendency inNi from immersion freez-
ing of cloud droplets is parameterized in the form(

dNi

dt

)
imm

=

∑
x

Nxs̄p,xγc
dns,x

dT
exp(−s̄p,xns,x), (16)

where γc = −w̄sub
dT
dz

is the average cooling rate
(Sect. 2.3.4). Nx and ns,x are the number concentration
and the active site surface density for species x, respectively.
The latter is calculated according toNiemand et al.(2012)
for dust andMurray et al.(2012) for black carbon.

Contact ice nucleation is parameterized as the product
of the collection flux of aerosol particles by the cloud
droplets and the ice nucleation efficiency in contact mode.
Young(1974) suggested that phoretic effects and Brownian
motion are responsible for collection scavenging of ice nu-
clei. Baker(1991) however showed that Brownian motion is
the dominant factor, although phoretic effects may be signifi-
cant in deep convective clouds (Phillips et al., 2007). Consid-
ering only Brownian collection, the contribution of contact
ice nucleation to the ice crystal formation tendency is written
in the form(

dNi

dt

)
cont

= (17)

∑
x

(
dNx

dt

)
Brw

{
1− exp[−s̄p,xns,x(Tcont)]

}
,

where
(

dNx
dt

)
Brw

is the Brownian collection flux of the

x aerosol species (Young, 1974). Consistent with laboratory
studies (e.g.,Fornea et al., 2009; Ladino et al., 2011), the
active site density in the contact mode is assumed to be the
same as for immersion freezing shifted towards a higher tem-
perature; i.e.,Tcont ≈ T − 3 K.

The in-cloud contribution of ice nucleation in mixed-phase
clouds to the ice crystal number concentration tendency is
given by(

dNi

dt

)
mixed,nuc

= (18)

min

[(
dNi

dt

)
cont

+

(
dNi

dt

)
imm

+

(
dNi

dt

)
dep

,
Nd

1t

]
,

where the subscripts cont, imm, and dep refer to contact, im-
mersion, and deposition/condensation ice nucleation, respec-
tively. The termNd

1t
is used to limit the nucleated ice crystal

concentration to the existing concentration of cloud droplets.

2.3.4 Subgrid-scale dynamics

Besides information on the aerosol composition and size, pa-
rameterization of cloud droplet and ice crystal formation re-
quires knowledge of the vertical velocity,wsub, on the spatial
scale of individual parcels (typically under 100 m), which is

not resolved by GEOS-5.wsub depends on radiative cooling
(Morrison et al., 2005), turbulence (Golaz et al., 2010), grav-
ity wave dynamics (e.g.,Barahona and Nenes, 2011; Kärcher
and Ström, 2003; Jensen et al., 2010; Joos et al., 2008) and
local convection. To account for these dependencies, we em-
ploy a semi-empirical formulation as follows.

In situ measurements (e.g.,Peng et al., 2005; Bacmeister
et al., 1999; Conant et al., 2004) suggest thatwsub is approx-
imately normally distributed. The mean vertical velocity of
the distribution is written as (Morrison et al., 2005)

w̄ = wls −
cp

g

(
∂T

∂t

)
rad

, (19)

wherewls is the grid-scale vertical velocity,cp is the heat
capacity of air,g is the acceleration of gravity, and

(
∂T
∂t

)
rad is

the diabatic heating due to radiative transfer. Variance inwsub
for stratiform clouds results from subgrid-scale eddy motion,
σ 2

w,turb, and gravity wave dynamics,σ 2
w,gw; i.e.,

σ 2
w = σ 2

w,turb+ σ 2
w,gw. (20)

A first-order closure is used to diagnoseσ 2
w,turb (Morrison

and Gettelman, 2008):

σ 2
w,turb =

KT

lm
, (21)

whereKT is the mixing coefficient for heat (Louis et al.,
1983) andlm is the mixing length. MG08 prescribed a fixed
lm = 300 m. To account for the spatial variation oflm, the
formulation ofBlackadar(1962) is used instead; i.e.,

lm =
kz

1+
kz
λm

, (22)

wherek is the von Kármán constant,z is the altitude andλm
is the value oflm in the free troposphere (Blackadar, 1962).
The latter is estimated as 10% of the boundary layer height
from the previous time step (Molod, 2012). This approach
also takes into account the vertical variation oflm within
the planetary boundary layer (PBL). The minimum value of
σ 2

w,turb is set to 0.01 m2 s−2 within the PBL.
Small-scale gravity waves strongly affect the formation

of cirrus and mixed-phase clouds (e.g.,Haag and Kärcher,
2004; Jensen et al., 2010; Joos et al., 2008; Barahona and
Nenes, 2011; Dean et al., 2007). In situ measurements sug-
gest that the dynamics of the upper troposphere are charac-
terized by the random superposition of gravity waves from
different sources (e.g.,Jensen and Pfister, 2004; Bacmeister
et al., 1999; Sato, 1990; Herzog and Vial, 2001). Random
wave superposition results in a Gaussian distribution of ver-
tical velocities (e.g.,Bacmeister et al., 1999; Barahona and
Nenes, 2011). Using this, a semi-empirical parameterization
for σ 2

w,gw is derived in the form (Eq.B5)

σ 2
w,gw = 0.0169min

[
4πU |τ0|

ρaLcN
,

(
2πU2

NLc

)2]
, (23)
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whereτ0 is the surface stress (Lindzen, 1981), U the horizon-
tal wind,ρa the air density,N the Brunt–Väisälä frequency,
andLc the wavelength of the highest-frequency waves in the
spectrum, also referred to as the characteristic cirrus scale
(here assumed to be 100 m). Equation (23) is obtained by
relating|τ0| to the equivalent perturbation height at the sur-
face. This is scaled to obtain the maximum wave amplitude at
each vertical level (Joos et al., 2008; McFarlane, 1987) and
then used to computeσ 2

w,gw (Barahona and Nenes, 2011).
This approach parameterizes orographically generated grav-
ity waves. In practice, both the background and the oro-
graphic surface stress are used in Eq. (23) to avoid underesti-
mation ofσ 2

w,gw in marine regions. The second term in brack-
ets on the right-hand side of Eq. (23) limits σw,gw to account
for wave saturation and breaking (Eq.B3). The derivation
of Eq. (23) is detailed in AppendixB. Only activation pro-
cesses are modified by subgrid vertical velocity variability;
i.e.,φ(w̄,σ 2

w) is assumed to be uncorrelated with the subgrid
distribution of condensate.

2.3.5 Preexisting ice crystals

Ice nucleation can be inhibited by water vapor deposition
onto preexisting ice crystals (i.e., ice crystals present in the
grid cell from previous nucleation events). Their impact on
cirrus properties may be significant at low temperatures,
where ice crystals are small and have low sedimentation rates
(Barahona and Nenes, 2011). The effect of preexisting crys-
tals on ice nucleation can be parameterized by reducing the
vertical velocity for ice nucleation in cirrus by a factor de-
pendent on the preexisting ice crystal concentration and size
(Eq.C5); i.e.,

wsub,pre = (24)

wsubmax

(
1−

Ni,preπβcρiAi(Shom− 1)

2λ0,i,preαwsubShom
, 0

)
,

where Ni,pre is the preexisting ice crystal concentration,
λ0,i,pre is the slope of the size distribution of preexisting ice
crystals,c is a shape factor (here assumed to be equal to 1),
ρi is the bulk density of ice, andAi , α andβ are temperature-
dependent parameters (AppendixD). wsub,pre represents a
corrected vertical velocity accounting for the effect of pre-
existing ice crystals limiting expansion cooling. Water vapor
deposition onto preexisting crystals acts against the increase
in ice supersaturation from expansion cooling. Thus, by en-
hancing water vapor deposition within cloudy parcels, preex-
isting ice crystals tend to decreaseSi,max (Eq.10), leading to
a reduction inNi,nuc. To account for this,Si,max is calculated
usingwsub,pre instead ofwsub; i.e., Si,max = Si,max(wsub,pre,
T , Nhet). A similar approach was proposed byKärcher et al.
(2006), who used a numerical integration technique instead
of the analytical approach presented here. The derivation of
Eq. (24) is detailed in AppendixC. The effect of preexisting
ice crystals on cirrus properties is analyzed in Sect.4.

2.4 Microphysics of convective cumulus

While all the main features of RAS are preserved in the new
scheme, the removal of condensate is reformulated to ac-
count for the effect of IN and CCN emissions on the genera-
tion of convective precipitation. RAS calculates the convec-
tive cloud condensate and mass flux at each model level by
averaging over an ensemble of ascending parcels, each one
lifted from the top of the PBL (Molod et al., 2012; Rienecker
et al., 2008). Each ascending parcel is characterized by its
detrainment level and entrainment rate (Moorthi and Suarez,
1992), and saturation adjustment is used to find the amount of
condensate present in each parcel. In the current RAS imple-
mentation in GEOS-5, a single parcel detrains at each model
level, so that the tendency of the tracerη due to cloud con-
vective processes is given by(

∂η

∂t

)
cv

= Dη − gW
∂η

∂p
, (25)

whereD is the detrainment rate andW the convective mass
flux. In the operational GEOS-5, a prescribed fraction of con-
densate is assumed to precipitate from each parcel before
reaching the cloud top. The remaining condensate is then
linearly partitioned between ice and liquid as a function of
T and detrained at the neutral buoyancy level.

Each convective parcel is assumed to develop indepen-
dently, and the detrained condensate from different parcels is
weighted by the convective mass flux. The subscript “cp” in
the following equations refers to processes occurring within
each parcel. A detailed description of the GEOS-5 convective
scheme is presented elsewhere (Moorthi and Suarez, 1992;
Rienecker et al., 2008). The balance of a tracer,η, within a
convective parcel is written as

1

W

d(ηW)

dt
=

(
dη

dt

)
cp

+ λwcp(η
′
− η), (26)

where
(

dη
dt

)
cp

is the rate of change inη from microphysical

processes occurring within convective parcels,wcp is the par-
cel vertical velocity,λ is the per-length entrainment rate, and
η′ is the value ofη in the cloud-free environment. Detrain-
ment of condensate is assumed to occur only at the cloud
top.

The rate of change inη from microphysical processes oc-
curring within a convective cloud parcel is given by(

dη

dt

)
cp

=

(
dη

dt

)
source

+

(
dη

dt

)
precip

+

(
dη

dt

)
freezing

, (27)

where the subscript “source” refers to nucleation, con-
densation and deposition processes, “precip” to precipita-
tion, and “freezing” to phase transformation. Equation (26)
is integrated for each parcel from cloud base to cloud
top, at which all remaining condensate detrains into the
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anvil; i.e.,
[

1
W

d(ηW)
dt

]
cloud top

= Dη. The initial condition for

Eq. (26) depends on the tracer. At cloud base, the concentra-
tion of ice crystals and the ice mass mixing ratio are assumed
to be zero, whereas the activation of cloud droplets at cloud
base is explicitly considered (Sect.2.4.2).

Solution of Eq. (26) requires knowledge of the vertical ve-
locity within each parcel,wcp, which is also necessary for
driving the droplet activation and ice nucleation parameter-
izations. This is calculated by solving (Frank and Cohen,
1987)

1

2

dw2
cp

dz
=

g

1+ γ

Tv − T ′
v

T ′
v

− λw2
cp− gqcn, (28)

whereγ = 0.5 (Sud and Walker, 1999), Tv andT ′
v are the

virtual temperature of the cloud and the environment, re-
spectively, andqcn is the mixing ratio of total condensate in
the convective parcel. The first term on the right-hand side
of Eq. (28) represents the increase in the convective par-
cel’s kinetic energy by buoyancy, whereas the second and
third terms account for the entrainment of stagnant air into
the parcel and the drag from the weight of the condensate,
respectively. Equation (28) is forward-integrated from the
level below cloud base to cloud top usingwcp,in = 0.8 m s−1

as an initial condition (Guo et al., 2008; Gregory, 2001);
the vertical profilewcp is not very sensitive to this assump-
tion (Sud and Walker, 1999). Note thatwcp,in differs from
the vertical velocity used for cloud droplet activation. The
latter depends on the local buoyancy; i.e.,wcp,cloudbase=

wcp,in +
dwcp
dz

1zbase, where1zbase is the model layer thick-
ness at the cloud base.

2.4.1 Partitioning of convective condensate

Total condensate is partitioned between liquid and ice as fol-
lows. Nucleated ice crystals are assumed to grow by accre-
tion of water vapor in an environment saturated with respect
to liquid water. That is, the coexistence of liquid water favors
a high concentration of water vapor available for deposition
onto the ice crystals, and the ice and liquid phases remain in
quasi-equilibrium within the convective parcel. Hydrometeor
species are assumed to follow a gamma distribution (Eq.2).
The growth rate of ice crystals within convective cumulus is
given by (Pruppacher and Klett, 1997; Korolev and Mazin,
2003)(

dqi

dt

)
dep

= min

[
ni,cpπcρiAi(Si,wsat− 1)

2λ0,i,cp
,

dqcn

dt

]
, (29)

where
(

dqcn
dt

)
is the rate of generation of total condensate

calculated by the convective parameterization,c is a shape
factor (assumed equal to 1),ρi the bulk density of ice,Ai is a
temperature-dependent growth factor (AppendixD), ni,cp is
the ice crystal concentration within the convective parcel,λ0,i
is the slope parameter of the ice size distribution within the

convective parcel, andSi,wsat is the value ofSi at saturation
with respect to liquid water. Using Eq. (29), and sinceqcn =

ql + qi , the source term for liquid water within convective
cumulus is given by(

dql

dt

)
cond

=

(
dqcn

dt

)
−

(
dqi

dt

)
dep

, (30)

where
(

dql
dt

)
cond

is the rate of generation of liquid water

within convective parcels.

2.4.2 Droplet activation and ice crystal nucleation in
convective cumulus

Explicit activation of CCN into cloud droplets is only con-
sidered at cloud base and used as an initial condition to
Eq. (26) (Sect.2.4). Entrained aerosols (sulfate, sea salt, and
organics) above cloud base are assumed to activate instan-
taneously as they enter the cloud parcel. Dust and soot IN
lead to the heterogeneous freezing of cloud droplets in the
immersion and contact modes, described using Eqs. (16) and
(17). Since soot and dust particles would likely adsorb water
within convective parcels (Wiacek et al., 2010; Kumar et al.,
2009a), ice nucleation in the deposition mode within convec-
tive cumulus is not considered. Cloud droplets freeze homo-
geneously at 235 K. Frozen droplets rapidly quench supersat-
uration within convective cumulus. The homogeneous nucle-
ation of deliquesced sulfate, which requires high supersatu-
ration (Si ∼ 145–170 %,Koop et al., 2000), is thus not likely
to occur within convective parcels. Homogeneous freezing of
interstitial aerosol is therefore not considered within convec-
tive cumulus.

2.4.3 Generation of convective precipitation

Precipitation is generated within each convective parcel and
assumed to reach the surface during each time step. The re-
maining condensate is then detrained into anvil clouds fol-
lowing Eq. (25). Ice water in convective cumulus is likely
to exist as graupel, snow and ice crystals with different size
distributions and falling velocities, affecting the formation of
precipitation. FollowingDel Genio et al.(2005), a simplified
treatment is proposed, where total ice is partitioned between
ice and snow (assumed as a single species) and graupel. The
two species are differentiated by their terminal velocity. This
partitioning is prescribed as a function of temperature and
used to calculate the formation of ice precipitation within
convective clouds. For ice crystal growth and detrainment a
single ice species is assumed.

Droplet-to-rain autoconversion is calculated according to
Liu et al. (2006), and all autoconverted water is assumed to
be lost as surface precipitation within one time step. The size
dispersion of the droplet population,µl , follows the formu-
lation ofLiu et al.(2008). Evaporation of convective precipi-
tation is parameterized according toBacmeister et al.(1999).
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Total ice water within convective parcels is assumed to
partition between ice/snow (taken as a a single species) and
graupel, and differentiated by their terminal velocity (Ta-
ble2). The fraction of total ice existing as graupel is approx-
imated by (Del Genio et al., 2005)

fgr = 0.25{3.0+ exp[0.1min(T − 273,0)]}. (31)

The particle sizes of ice/snow and graupel are assumed to
follow an exponential distribution (µg = µi/s = 0.0) (McFar-
quhar and Heymsfield, 1997). The number precipitation rate
of ice/snow within convective parcels is given by the number
flux across the critical size for the ice/snow species,Dc,i/s
(Seinfeld and Pandis, 1998),(

dni/s

dt

)
precip,cp

= (32)

ni/sAi(Si,wsat− 1)

D2
c,i/s

[1− exp(−λ0,i/sDc,i/s)],

whereni/s = (1− fgr)ni,cp is the number concentration of
ice/snow particles, andλ0,i/s is the slope parameter of the
ice/snow size distribution. The mass precipitation rate of
ice/snow is calculated as(

dqi/s

dt

)
precip,cp

=
qi/sξi/s

ni/s

(
dni/s

dt

)
precip,cp

, (33)

whereqi/s = (1− fgr)qi,cp is the mixing ratio of ice/snow
within the convective parcel, andξi/s =

1
6[(λ0,i/sDc,i/s)

3
+

3(λ0,i/sDc,i/s)
2
+ 6λ0,i/sDc,i/s+ 6] is the ratio of the vol-

ume to number fraction aboveDc,i/s in the size distribution
of ice/snow. The termξi/s is introduced to account for the
preferential precipitation of the largest particles of the pop-
ulation, which tends to enhance the mass over the number
precipitation rate. The critical size for precipitation,Dc,i/s,
is calculated by equating the hydrometeor terminal velocity,
wterm, to wcp (Table2).

Equations (32) and (33) assume that ice and snow grow
mainly by diffusion within the convective parcel. The same
assumption cannot be applied to graupel since it also grows
by collection of cloud droplets. The precipitation rate of
graupel is therefore calculated by removing the fraction of
the size distribution above the graupel critical size,Dc,g, at
each model level (Ferrier, 1994)(

dngr

dt

)
precip,cp

=
ngrexp(−λ0,gDc,g)

1tL
, (34)

where ngr = fgrni,cp is the graupel number mixing ratio,
λ0,g the slope parameter of the graupel size distribution and
1tL = 1zw̄−1

cv is the time spent by the parcel in a given
model layer. Similarly forqgr,(

dqgr

dt

)
precip,cp

= (35)

qgr exp(−λ0,gDc,g)[(λ0,gDc,g)
3
+ 3(λ0,gDc,g)

2
+ 6λ0,gDc,g + 6]

61tL
,

whereqgr = fgrqi,cp is the graupel mass mixing ratio.
The total mass precipitation rate for ice within convective

parcels is given by(
dqi

dt

)
precip,cp

=

(
dqi/s

dt

)
precip,cp

+

(
dqgr

dt

)
precip,cp

. (36)

Similarly for the ice crystal number concentration,(
dni

dt

)
precip,cp

=

(
dni/s

dt

)
precip,cp

+

(
dngr

dt

)
precip,cp

. (37)

Equations (36) and (37) are used into Eq. (27), which then
is used to solve Eqs. (25) and (26). Since graupel is not ex-
plictly detrained, only the total ice (ice/snow plus graupel) is
used in Eq. (27).

3 Model evaluation

Model evaluation is carried out by comparing cloud prop-
erties against satellite retrievals and in situ observations.
Satellite data sets included level 3 products from the NASA
MODIS (http://modis.gsfc.nasa.gov/) combined TERRA and
AQUA data product (Platnick et al., 2003), and the Interna-
tional Satellite Cloud Climatology Project (ISCCP) (Rossow
and Schiffer, 1999) and CloudSat (Li et al., 2012, 2014)
projects. Level 3 MODIS monthly output for the years 2003–
2009 was used. CloudSat data spanned over the years 2007–
2008 and a climatology for the years 1983–2008 was used
for ISCCP data (Rossow and Schiffer, 1999). When possi-
ble, the Cloud Feedback Model Intercomparison Project Ob-
servation Simulator Package, COSP (Bodas-Salcedo et al.,
2011), was used to compare model output against satellite re-
trievals. COSP uses the model output to simulate the retrieval
of satellite platforms, minimizing in this way errors from the
sampling of the model output when comparing against satel-
lite observations.

Global cloud radiative properties were obtained from the
Clouds and Earth’s Radiant Energy System (CERES) Energy
Balanced and Filled (EBAF) level 4 data product (Loeb et al.,
2009) and the NASA Earth Radiation Budget Experiment
(ERBE; Barkstrom, 1984). Total precipitation was obtained
from the Global Precipitation Climatology Project (GPCP)
data set (Huffman et al., 1997) and the CPC merged analy-
sis of precipitation (CMAP) (Xie and Arkin, 1997). CERES,
GPCP and CMAP data were available over the entire pe-
riod of simulation. A climatology spanning the years 1985–
2003 was used for the ERBE data. Runs were performed
for a period of 10 years starting on 1 January 2001, with
a spin-up time of one year using a c48 cubed sphere grid
(about∼ 2◦ spatial resolution) and 72 vertical levels. Sensi-
tivity studies (Sect.4) were performed by running the model
for two years at the same resolution. Test runs showed that
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Table 2.Parameters of the terminal velocity relationwterm= aDb
y (1000/p)0.4 (SI units) for convective ice species.

Species a b Reference

Ice 2exp[4× 10−4(T − 273.0)] 0.244− 4.9× 10−3(T − 273.0) Heymsfield et al.(2007)
Graupel 19.3 0.37 Locatelli and Hobbs(1974)

two years were enough to elucidate the first-order effect of
variation in microphysical parameters on cloud properties.
All simulations were forced with observed sea surface tem-
peratures (Reynolds et al., 2002). Initial conditions were ob-
tained from the Modern-Era Retrospective Analysis for Re-
search and Applications (MERRA;Rienecker et al., 2011).
The aerosol concentration was calculated interactively using
the GOCART model (Colarco et al., 2010), with emissions as
described inDiehl et al.(2012). Results obtained with the op-
erational version of GEOS-5 and using the new microphysics
are referred to as the CTL and NEW runs, respectively.

3.1 Cloud fraction

The parameterization of cloud fraction in GEOS-5 was mod-
ified to account for the effect of microphysical processing on
Pq(q) (Sect.2.3.1) and allow supersaturation with respect
to the ice phase. Figure1 shows the effect of these modifi-
cations on the low (CLDLO), middle (CLDMD), and high
(CLDHI) cloud fraction in GEOS-5. In general the CTL and
NEW simulations present similar distributions of cloud frac-
tion. However, in NEW,fc tends to be higher and in bet-
ter agreement with ISCCP retrievals. The new cloud fraction
scheme resulted in higher CLDLO in the remote Atlantic and
Pacific oceans and reduced the cloud bias over South Amer-
ica and Asia. CLDLO associated with the low-level stratocu-
mulus decks on the western coasts of North and South Amer-
ica and South Africa is still underpredicted in the NEW simu-
lation. This feature is common in climate models (Kay et al.,
2012); in GEOS-5 it is likely caused by the absence of an ex-
plicit shallow cumulus parameterization. The overprediction
of CLDLO at the high latitudes of the NH in CTL is also sig-
nificantly reduced in the NEW simulation. Overall, the global
mean bias in CLDLO is significantly lower in NEW (−3 %)
than in CTL (−5 %).

The global mean bias in CLDMD is also lower in
NEW (−9 %) than in CTL (−15 %). The overestimation
of CLDMD at the low and middle latitudes of the South-
ern Hemisphere (SH) and the Northern Hemisphere (NH)
in CTL is largely removed in NEW, which results from a
more realistic distribution of ice water content in NEW than
in CTL (Sect.3.6). The underestimation in CLDMD at the
middle latitudes (∼ 30◦) of NH is also smaller in NEW
than in CTL, particularly over land. However, NEW tends
to increase the overestimation in CLDMD at the high lati-
tudes of the SH. Similarly, although the CTL and the NEW
simulations present similar distributions of high-level clouds

Figure 1. Annual mean differences in low- (CLDLO), middle-
(CLDMD) and high- (CLDHI) level cloud fraction between GEOS-
5 and ISCCP (Rossow and Schiffer, 1999) for the CTL and NEW
runs using the COSP simulator.

(CLDHI), in general CLDHI tends to be overestimated at the
marine high latitudes and underestimated over the continents.
The NEW simulation also tends to underpredict CLDHI over
the Tropical Warm Pool. The global mean bias in CLDHI is
about 1 and 4 % in the CTL and NEW run respectively. Bi-
ases in CLDHI and CLDMD at the high latitudes (above 60◦)
of the SH and the NH tend to be more pronounced in NEW
than in CTL. Although the source of these biases is not clear,
they may be related to a low value ofq∗ (Eq. 4) in mixed
phase clouds. Note that ISCCP retrievals tend to be uncertain
in those regions as well (Rossow and Schiffer, 1999).

3.2 Supersaturation over ice

Restricting cloud formation toSi > Scrit implies that super-
saturation must be built before new ice clouds can form. The
termPq(qt > Scritq

∗

i ) in Eq. (15) also restricts ice nucleation
to supersaturated regions and reduces the nucleated ice crys-
tal concentration and the water vapor relaxation time scale.
Furthermore, MG08 allows for supersaturation within cirrus
since it does not apply saturation adjustment for ice clouds.
These factors lead to sustained supersaturation at cirrus lev-
els (T < 235 K).

Cloud formation and ice crystal nucleation are controlled
in part byScrit, which provides an internal link between ice
nucleation,fc and qi . Scrit depends onT and on the local
vertical velocity at the scale of individual cloudy parcels
(∼ 100 m to 1 km).Scrit is also determined by the availabil-
ity of IN: in general, high IN concentration leads to lowScrit
(Barahona and Nenes, 2009b). The global distribution ofScrit
for T < 235 K (Fig.2, right panel) presents two characteristic
modes, showing predominance of heterogeneous (Scrit ∼
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Figure 2. Annual zonal mean (left panel) and global frequency
distribution (right panel) of the critical saturation ratio,Scrit (%),
for the cirrus regime (T < 235 K), obtained from 6 h instantaneous
GEOS-5 output over a 3-year subset (2002–2004) of the NEW run.
Solid bold lines (left panel) represent the annual mean tropopause
pressure.

120 %) and homogeneous (Scrit ∼ 150 %) ice nucleation. The
peak at 150 % and the highestScrit values correspond to
low T regions with high vertical velocities and low aerosol
concentration, common around the tropopause (Fig.2, left
panel). Values ofScrit as low as 105 % are also not uncom-
mon, and are associated with high concentrations of active IN
(e.g., dust). These are often located aroundT ∼ 230–240 K,
where deposition/condensation IN are active and abundant
enough to impact supersaturation (Sect.3.5). For lowerT ,
the concentration of active IN is too low to decrease supersat-
uration substantially, andScrit increases towardsShom (Fig.2,
left panel).

The global mean value ofScrit (∼ 144 %) is close toShom,
which would in principle indicate a strong predominance of
homogeneous nucleation (Fig.2, left panel). This however
depends on whether a cloud is actually formed under those
conditions. Although high values ofScrit are very frequent
for p < 50 hPa, most cirrus clouds form between 100 and
300 hPa (Sect.3.6), whereScrit ∼ 110–130 %. At these ver-
tical levels,Scrit is relatively high (∼ 130 %) in the Southern
Hemisphere, but lower in the Northern Hemisphere. Homo-
geneous freezing would thus tend to be more predominant in
the Southern Hemisphere. This behavior is further analyzed
in Sect.3.5.

The distribution of clear sky saturation ratio,Si,c = (qv −

fcq
∗)/(1.0−fc), is shown in Fig.3. In-cloudSi is assumed to

be 100 %. In reality, supersaturation relaxation may be slow
in cirrus clouds, particularly at lowT (Krämer et al., 2009;
Barahona and Nenes, 2011). However, it is expected that for
p > 200 hPa most supersaturation is relaxed inside clouds
over the time step of the simulation (∼ 1800 s) (Barahona
and Nenes, 2008). Figure3 also shows data from the AIRS
(Atmospheric Infrared Sounder) (Gettelman et al., 2006) and
MOZAIC (Measurement of ozone and water vapor by Airbus
in-service aircraft) (Gierens et al., 1999) projects. The un-
certainty in the retrieval increases withSi,c. However, both
MOZAIC and AIRS data show an exponential decrease in

Figure 3. Global frequency distribution of clear sky saturation ratio
with respect to ice obtained from 6 h instantaneous GEOS-5 output
over a 3-year subset (2002–2004) of the NEW run (left panel, black
dots). Filled areas correspond to the frequency distributions from
AIRS (solid area) satellite retrievals (Gettelman et al., 2006) and
the MOZAIC (hatched area) data set (Gierens et al., 1999), respec-
tively, for the years 2002–2004. Uncertainty in the observations was
calculated as one standard deviation around the mean value within
a 2◦ × 2◦ grid cell and introducing a 10 % perturbation inSi along
the x axis. The center and right panels show the zonal mean fre-
quency (%) of clear sky supersaturation from GEOS-5 and AIRS,
respectively.

P(Si,c) with increasingSi,c (Fig. 3, left panel). GEOS-5 also
shows this exponential decrease and is in agreement with
AIRS and MOZAIC data. The peakP(Si,c) in the model
is shifted towardsSi,c ∼ 100 % since retrievals tend to avoid
zones withSi,c ∼ 100 % near the cloud edges (Gettelman and
Kinnison, 2007). The frequency ofSi,c > 101 % in GEOS-5
distributes almost symmetrically around the tropics (Fig.3,
middle panel), with a slightly higher probability of supersat-
uration in SH than in NH. This is in part due to lower IN con-
centrations in SH (Fig.7), although differences in the dynam-
ics of SH and NH also play a significant role. In agreement
with AIRS data (Fig.3, right panel), GEOS-5 predicts about
10 % supersaturation frequency in the upper tropical lev-
els. GEOS-5 seems to slightly overpredictP(Si,c > 100 %)
above 300 hpa at the high latitudes of the NH and SH and
near the TTL; however, the uncertainty in the retrieval in
these regions is also high (Gettelman and Kinnison, 2007).

3.3 Subgrid-scale vertical velocity

The nucleation of ice crystals and cloud droplets is strongly
influenced by the subgrid-scale vertical velocity,wsub.
φ(w̄,σ 2

w) in stratocumulus and anvils is mainly determined
by σw, whereasw̄ is typically small (∼ 10−2 m s−1). For
convective cloudswcp is explicitly calculated by solving
Eq. (28). In general the eddy contribution toσ 2

w is significant
near the surface and negligible above 500 hPa. At 900 hPa,
where mostly liquid clouds are formed,σw ranges between
0.1 and 0.7 m s−1 and is typically lower over the ocean than
over land (Fig.4). High σw is however found in the storm
track regions of the Southern and Northern hemispheres.
At this vertical levelσw is the lowest in the Arctic region
(∼ 0.1 m s−1). The range ofσw shown in Fig.4 is in good
agreement with in situ measurements of vertical velocity at
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Figure 4. Annual mean subgrid vertical velocity standard deviation,σw, for the NEW run.

Figure 5. Annual vertically integrated droplet number concentration (106 cm−2) from GEOS-5 using theFountoukis and Nenes(2005)
(FN05) andAbdul-Razzak and Ghan(2000) (ARG) CCN activation parameterization, and from the MODIS retrieval, calculated using
Eq. (38). Data for latitudes higher than 60◦ have been excluded from the analysis.

cloud base in marine stratocumulus (Peng et al., 2005; Guo
et al., 2008), and continental regions (Fountoukis et al., 2007;
Tonttila et al., 2011), showingσw mostly between 0.2 and
1 m s−1. However, global measurements ofσw have not been
reported. Compared to similar schemes (e.g.,Golaz et al.,
2010) Eq. (21) results in higher velocities within the PBL
since the characteristic length decreases near the surface,
consistent with the vertical momentum balance within the
PBL (Blackadar, 1962). σ 2

w thus rarely hits the prescribed
minimum (∼ 0.01 m s−1) within the PBL.

Gravity wave motion dominates the global distribution of
σw at 500 and 150 hPa, being typically larger over land than
over the ocean (Fig.4). Air flowing over orographic fea-
tures produces high-frequency waves that propagate to the
free troposphere (Bacmeister et al., 1999; Herzog and Vial,
2001). σw is thus highest over the mountain ranges of Asia,
South America, and the Antarctic. At 500 hPa,σw is about
0.1 m s−1 over land, and may reach up to 0.5 m s−1 over
mountain ranges. These values are in good agreement with
in situ measurements (Gayet et al., 2004). A similar distribu-
tion of σw is found at 150 hPa, with values over land slightly
higher than at 500 hPa. Over the ocean,σw is typically larger
at 150 hPa than at 500 hPa, particularly over the tropics, since
gravity waves in these regions can reach larger amplitudes
before breaking. Figure4 shows thatσw in the upper tropo-
sphere varies by up to three orders of magnitude around the
globe. Such variability has important implications for the ef-
fects of IN emissions on cloud formation (Sect.3.5).

3.4 Cloud droplet number concentration

Comparison of cloud droplet number concentration against
satellite retrievals is typically challenging. Retrieval

algorithms generally introduce assumptions on the droplet
size distribution that may bias the cloud droplet number
concentration. To compare satellite retrievals and model
data over the same basis, we take advantage of the output
generated by the COSP MODIS simulator to obtain a “model
retrieved” column-integrated droplet concentration,Nl,cum,
in the form (Han et al., 1998)

Nl,cum =
τ

2πR2
eff,liq(1− b)(2− b)

, (38)

whereτ is the liquid cloud optical depth,b = 0.193 (Han
et al., 1998), and Reff,liq is the effective radius of cloud
droplets. To apply Eq. (38), Reff,liq andτ are obtained either
from the GEOS-5 COSP output or from the MODIS retrieval.
This procedure does not aim to produce an accurate retrieval
of Nl,cum, but rather to compare GEOS-5 and MODIS data
equally. Equation (38) is applied between 60◦ S and 60◦ N,
where the MODIS retrieval is more reliable (Platnick et al.,
2003).

Figure 5 shows the global distribution ofNl,cum from
GEOS-5 (NEW run, FN05) and MODIS. GEOS-5 is able
to capture the highNl,cum found in regions of high sulfate
emissions i.e., Europe, Central and Southeast Asia and the
eastern coast of North America. There is also agreement be-
tween MODIS and GEOS-5 in regions with high biomass
burning emissions like Subsaharan Africa and South Amer-
ica. However, the model tends to slightly underpredictNl,cum
in the remote Atlantic and Pacific Oceans. There is also
underprediction ofNl,cum off the western coasts of North and
South America and Africa. This is due to underprediction of
shallow stratocumulus in GEOS-5 (Fig.1) and becausewsub
tends to be small in these regions (Fig.4). The global mean
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Nl,cum in GEOS-5 (1.68 cm−2) is slightly lower than with
MODIS results (1.96 cm−2).

Droplet concentration is influenced by the CCN activation
parameterization and the aerosol size distribution. The GO-
CART model uses a single moment aerosol microphysics,
and some uncertainty may result from assuming a fixed size
distribution to obtain the aerosol number concentration. The
impact of this assumption is discussed in Sect. 5. The sensi-
tivity of Nl,cum to the CCN activation parameterization was
studied by implementing theAbdul-Razzak and Ghan(2000)
activation parameterization (Fig. 5, middle plot) and is ana-
lyzed in Sect.4.

3.5 Ice crystal number concentration

At any givenT , Ni varies by up to four orders of magnitude,
although mostly within a factor of 10 (Fig.6a). The mean
Ni peaks around 200 L−1 at 225 K, decreasing to∼ 20 L−1

at 190 K, and below∼ 1 L−1 at 180 K. ForT > 245 K Ni
remains mostly below∼ 10 L−1. Global meanNi is around
66 L−1 for all clouds and around 166 L−1 for cirrus (T <

235 K). Figure6 shows agreement of GEOS-5 values with in
situ measurements ofNi over the wholeT interval (Krämer
et al., 2009; Gultepe and Isaac, 1996). There is good agree-
ment of GEOS-5 with field campaign data atT < 200 K,
where most models show a large positive bias (e.g.,Barahona
et al., 2010a; Salzmann et al., 2010; Gettelman et al., 2012).
This results from the proper consideration of the effect of
prior nucleation events on ice crystal nucleation (Section
2.3.3). Ni is also influenced by the presence of preexisting
ice crystals; their effect is analyzed in Sect.4.

The relative contribution of different mechanisms to the
source ofNi is shown in Fig.6. To facilitate comparison
against in situ measurements, integrated variables, instead of
number tendencies, are used. Thus, the ice crystal concen-
tration from ice nucleation in the deposition and condensa-
tion modes,Ndep, is calculated using Eq. (11) and the BN09
parameterization.Ni from immersion freezing,Nimm, is cal-
culated by integration of Eq. (16) over the model time step.
The concentration of detrained ice crystals,Ncnv, is given by
the ice crystal concentration at the cloud top calculated by
Eq. (26).

Ndep varies mostly within the range from 0.1 to 50 L−1,
and is largest around 240 K, where the aerosol concentra-
tion is large enough to result in significant IN concentration
(Fig. 6b). There is however large variability inNdep around
the globe. Most deposition IN come from dust, although the
concentration of black carbon IN may be significant, reach-
ing 2 L−1 at T ∼ 230 K (not shown). A few deposition IN
(∼ 1 L−1) are found atT as high as 260 K, mostly in regions
of large dust concentration.

Nimm reaches up to 40 L−1 around 240 K, but decreases
rapidly for lowerT , where it is prevented by the homoge-
neous freezing of cloud droplets (Fig.6c). In agreement with
in situ observations of mixed-phase clouds (e.g.,DeMott

Figure 6. Global frequency of in-cloud ice crystal number concen-
tration as a function of temperature from 6 h instantaneous GEOS-5
output over a 3-year subset (2002–2004) of the NEW run.(a) Ice
crystal concentration,Ni . Solid lines represent the 25 and 75 %
quantiles from the field campaign data analysis ofKrämer et al.
(2009). Solid-dotted lines represent the typical range of meanNi
found in mixed-phase clouds (Gultepe and Isaac, 1996). (b) Ice
crystal concentration from deposition/condensation ice nucleation,
Ndep. (c) Ice crystal concentration from immersion ice nucleation,
Nimm. (d) Ice crystal concentration from convective cumulus de-
trainment,Ncnv.

et al., 2010), immersion freezing IN are scarce above 250 K,
with typical concentrations below 0.1 L−1. Dust is the most
important source of immersion IN, whereas black carbon IN
typically contribute less than 2 L−1 to Ni . Contact freezing
IN are not explicitly shown in Fig.6, but they follow a sim-
ilar tendency as immersion freezing IN, although with lower
concentrations.

Ncnv remains below 50 L−1 for T > 240 K, characteris-
tic of heterogeneous ice nucleation. ForT > 250 K, Ncnv
reaches up to 10 L−1 mostly from immersion and contact
freezing of supercooled droplets within the convective cumu-
lus (Fig.6d). Homogeneous freezing of cloud droplets is evi-
dent in the strong increase inNcnv aroundT ∼ 240 K, which
in some instances may reach up to 10 cm−3. Such very high
Nncv is responsible for the highest values ofNi in Fig. 6.
Along with immersion freezing, detrainment from convec-
tive cumulus determinesNi for T > 240 K.

Figure7 (left panel) shows the spatial distribution of ice
crystal concentration nucleated in cirrus (T < 235 K) and
weighted by cloud fraction. The spatial distribution (also
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Figure 7. Annual mean ice crystal concentration nucleated in cirrus (T < 235 K) weighted by cloud fraction for the NEW run (left panel).
Also shown are the weighted average (center panel) and zonal mean (right panel) fractions of ice crystal production by homogeneous freezing
in cirrus.

Figure 8. Zonal mean non-convective ice water mass mixing ratio
(mg kg−1) (upper panels) and total ice condensate (ice and snow,
bottom panels) for non-convective clouds from the CTL and NEW
runs and the CloudSat retrieval (Li et al., 2012). Model results span
over 10 years of simulation, whereas CloudSat retrievals are plotted
for the period 2007 to 2008.

weighted by cloud fraction) and zonal mean of the contri-
bution of heterogeneous ice nucleation toNi,nuc are shown
in the middle and right panels of Fig.7, respectively. Glob-
ally, about 70 % of the production of ice crystals in cirrus
proceeds by homogeneous freezing, with a clear contrast
between the Northern Hemisphere (NH) and the Southern
Hemisphere (SH). Homogeneous freezing is most prevalent
in the SH, and only on the western coasts of South America
and Africa is the contribution of heterogeneous freezing sig-
nificant (∼ 30 %; Fig.7, middle panel). By contrast, most of
the NH is influenced by IN emissions, which in some cases
dominate the ice crystal production.

Part of the higher predominance of heterogeneous ice nu-
cleation in NH than SH is explained by the greater abundance
of dust in NH. However, comparison of Figs.4 (right planel)
and7 (left panel) also reveals a marked effect ofσw on Ni .
Low σw tends to enhance the effect of IN onNi because
of the greater residence time of the heterogeneously frozen
ice crystals in the parcel before the onset of homogeneous
freezing, and the lower rate of increase of supersaturation

Figure 9. Zonal mean non-convective liquid water mass mixing ra-
tio (mg kg−1) (upper panels) and total liquid condensate (water and
rain, bottom panels) for non-convective clouds from the CTL and
NEW runs and the CloudSat retrieval (Li et al., 2014). Model re-
sults span over 10 years of simulation, whereas CloudSat retrievals
are plotted for the period 2007 to 2008.

(Barahona and Nenes, 2009a). Heterogeneous freezing thus
tends to dominate ice crystal production in regions of lowσw

and lowNi,nuc like Sub-Saharan Africa, the Arctic, and the
western coast of North America, even though these regions
are not characterized by high emission rates of IN (Fig.7,
left panel). This result is also consistent with the study of
Cziczo et al.(2013) who found predominance of heteroge-
neous ice nucleation in these regions. However, Fig.7 (mid-
dle and right panels) shows that in most other regions, and
globally, homogeneous ice nucleation tends to dominate the
global production of ice crystals. This suggests that variabil-
ity in σw plays a significant role in defining the effect of IN
emissions on cirrus formation.
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3.6 Cloud liquid and ice water

The implementation of the new microphysics resulted in sig-
nificant improvement of the representation of ice and liquid
water content in GEOS-5. Figure8 shows the zonal mean
ice mass mixing ratio,qi , from the NEW and CTL simula-
tion compared to the CloudSat retrieval for non-convective,
non-precipitating ice (Li et al., 2012). The global distribution
of qi in the NEW simulation is in better agreement with the
satellite retrieval than that obtained in CTL. The excessive
freezing aroundT = 240 K, characterized by the bulls-eye
pattern around 600 hPa in the CTL run, is not present in the
NEW simulation. In absolute terms,qi in the NEW and CTL
runs is generally lower than CloudSat data, although mostly
within the intrinsic error of the retrieval, about a factor of 2
(Li et al., 2012; Eliasson et al., 2011). Including snow in the
comparison (Fig.8, bottom panels) still results in lower ice
and snow concentration than in CloudSat, although within
the error of the retrieval.

Figure 9 shows the zonal mean liquid mass mixing ra-
tio, ql , from GEOS-5 for the CTL and NEW runs com-
pared against the CloudSat retrieval for non-convective, non-
precipitating liquid water (Li et al., 2014). There is far lower
ql in the NEW than in the CTL run, particularly over the
tropics and the subtropics of the NH. Above 900 hPa, the spa-
tial distribution ofql in the NEW run is in better agreement
than CTL. In absolute termsql in NEW is closer to Cloud-
Sat than in CTL. However, this must be taken with caution
as CloudSat may not retrieve liquid water close to the ground
(Devasthale and Thomas, 2012). The NEW and CTL simula-
tions however show that most liquid water is held below the
850 hPa level in GEOS-5. The bottom panels of Fig.9 also
suggest that the rain mass mixing ratio is lower in NEW than
in the CTL simulation and CloudSat. Still, the spatial distri-
bution of the concentration of liquid and rain from NEW and
from the CloudSat retrieval shows similar characteristics.

The spatial distribution of the liquid water path (LWP)
(Fig. 10) in the NEW simulation is similar to that observed
by CloudSat, although in general LWP is larger in the NEW
simulation that in CloudSat, particularly over marine regions.
Comparison against other retrievals reveals uncertainty in ex-
perimental observations of LWP. Annual average LWP from
MODIS is 144 g m−2, about twice as much as the GEOS-5
output when using COSP to simulate the MODIS retrieval
(60 g m−2). MODIS however tends to predict higher LWP in
polar regions than in the tropics, pointing to an artifact of the
retrieval (Platnick et al., 2003). SSMI data (Spencer et al.,
1989) is also typically used for model evaluation, although
it is restricted to oceanic regions. Annual mean LWP from
SSMI is about 84 g m−2, which is higher than predicted by
GEOS-5 over the ocean (∼ 48 g m−2, not shown).

Figure10shows the annual mean IWP (non-precipitating,
non-convective) from GEOS-5 and CloudSat (Li et al.,
2012). In general there is reasonable agreement in IWP
between CloudSat and GEOS-5, with and slightly higher

Figure 10. Liquid (LWP), ice (IWP), and total (TWP) water paths
(g m−2) for non-convective, non-precipitating clouds from GEOS-5
output using the new microphysics and from the CloudSat retrieval
(Li et al., 2012, 2014).

IWP in GEOS-5 (27.1 g m−2, NEW run) than in Cloud-
Sat (25.8 g m−2). There is also uncertainty in IWP obtained
by different retrievals; however, a recent intercomparison
showed agreement between the ISCCP and CloudSat re-
trieved IWP (Eliasson et al., 2011). GEOS-5 is able to cap-
ture the high IWP observed in the Tropical Warm Pool, Cen-
tral Asia, and over the mountain ranges of Africa, and North
and South America. The high IWP of the latter regions re-
sults in part from strong ice crystal production over mountain
ranges (Sect.3.5). GEOS-5 however underestimates IWP in
the tropical western Pacific Ocean. The spatial distribution of
the total-water path (liquid and ice) is similar to that obtained
with CloudSat, although the global mean TWP is higher in
GEOS-5 (∼ 64 g m−2) than in the retrieval (∼ 49 g m−2) due
to the larger LWP in GEOS-5.

3.7 Supercooled cloud fraction

Figure 11 shows the supercooled cloud fraction (e.g., the
fraction of cloud condensate present as liquid, SCF = 1−fice,
in mixed-phase clouds for the CTL and NEW simulations.
In the CTL simulation the total condensate is linearly parti-
tioned into liquid and ice between 235 and 270 K (Bacmeis-
ter et al., 2006). In the NEW simulation partitioning of the
condensate is carried out taking into account the activity and
concentration of IN and the Bergeron–Findeisen process. In
CTL most values of SCF below 260 K follow the prescribed
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Figure 11. Global frequency of supercooled cloud fraction (SCF)
from GEOS-5 for the CTL and NEW runs. The most frequent SCF
value for each temperature is marked∗. The solid lines represent the
range of SCF (mean plus and less one standard deviation) derived
from the CALIOP satellite retrieval for the years 2006–2007 (Choi
et al., 2010).

linear tendency. Variability in SCF increases strongly above
260 K due to the freezing of condensate at 273 K and ice-
enhanced precipitation (Fig.11). The tendency of SCF with
T in NEW shows different features than in CTL follow-
ing a sigmoidal instead of a linear tendency. This behavior
has been observed in satellite retrievals and field campaigns
(Choi et al., 2010; Hu et al., 2010) and is characteristic of
immersion freezing mediated mainly by dust (e.g.,Murray
et al., 2011; Marcolli et al., 2007). The region of maxi-
mum SCF frequency in Fig.11however expands about 10 K,
which results from variation in particle size and concentra-
tion, the presence of black carbon IN, enhanced precipitation
in mixed-phase clouds, and variation inσw. There is also a
higher frequency of SCF> 0.4 for T < 255 K in the NEW
than in the CTL simulation, which results from a higher frac-
tion of supercooled liquid in the convective detrainment in
NEW than in CTL.

Compared with CALIOP (Cloud-Aerosol Lidar with Or-
thogonal Polarization) retrievals (Fig.11, solid lines) (Choi
et al., 2010), SCF in NEW is shifted by about 6 K towards
higherT , which implies that clouds tend to glaciate at higher
T in the model than observed by the satellite. This would in-
dicate higher IN activity (i.e., a higher dust concentration or
more active dust) in GEOS-5 than implied by the CALIOP
data. However, CALIOP is sensitive mostly to cloud-top
properties, and SCF may be biased low in deep convective
clouds, where most of the supercooled liquid is found below
the cloud top (Hu et al., 2010). The influence of these fac-
tors on SCF requires more investigation, and will be under-
taken in a future study. The sigmoidal increase of SCF with
T in both GEOS-5 and the satellite retrieval still indicates
that SCF is significantly influenced by the presence of IN.

3.8 Cloud droplet and ice crystal effective radii

The annual mean droplet effective radiusReff,liq from the
NEW simulation (14.3 µm) is in agreement with MODIS
retrievals (14.8 µm) (Fig.12). This is higher than the pre-
scribed mean for the CTL run and simulated by other models
also using the MG08 stratiform microphysics (∼ 9–11 µm)
(Gettelman et al., 2008; Salzmann et al., 2010) but similar
to the one obtained inSud et al.(2013) in GEOS-5. The
results presented in Fig.12 benefit from using the COSP
package that accounts for the preferential cloud-top sam-
pling of MODIS (Bodas-Salcedo et al., 2011). Other studies
(Gettelman et al., 2008; Salzmann et al., 2010) however did
not use COSP for comparison. In agreement with the MODIS
retrieval the spatial distribution ofReff,liq in the NEW run
shows a clear ocean-land contrast (Fig.12). Reff,liq is overes-
timated in the western coasts of South America, Africa, and
to a lesser extent, North America, due to lowNl over these re-
gions. Over the landReff,liq is underestimated in southern and
central Asia, Europe and the western coast of North Amer-
ica, likely due to the high concentration of cloud droplets
predicted by GEOS-5 in these regions (Sect.3.4).

The global distribution of ice effective radius,Reff,ice, for
the NEW run is presented in Fig.13 along with MODIS
retrievals. The global mean value ofReff,ice in the NEW
simulation (26.2 µm) is in good agreement with the satel-
lite (24.2 µm). GEOS-5 is able to reproduce the lowReff,ice
seen by MODIS over most of the large mountain ranges, e.g.,
over the Andean and Himalayan regions, although it tends
to underestimateReff,ice over northeastern Asia. LowReff,ice
is caused by strong homogeneous freezing events withNi >

1 cm−3 in high orographic uplift (Fig.4), although local con-
vection may also have an effect onReff,ice as detrainment
from deep convection tends to increaseNi (Sect.3.5). There
is some contrast inReff,ice between land and ocean in the
MODIS retrievals, which is captured by GEOS-5. However,
the model tends to overestimateReff,ice in the subtropical re-
gions of NH and SH, which may be caused by lowσw leading
to low Ni .

There may be some uncertainty in the retrieval ofReff,ice,
particularly for optically thick clouds (Chiriaco et al., 2007).
To corroborate the GEOS-5 results further, in situ ob-
servations of the volumetric ice crystal radius,Rvol,ice =(

3qi
4πNiρi

)1/3
, are used. Figure14 showsRvol,ice as a function

of T along with a composite of in situ data from several field
campaigns (Krämer et al., 2009; McFarquhar and Heyms-
field, 1997). There is reasonable agreement between the field
data and the model, particularly forT < 230 K, where both
show a decrease inRvol,ice with decreasingT . AroundT ∼

230 K the model tends to predict slightly higherRvol,ice than
the observations, although mostly within the spread of the
data. The discrepancy may also be a result of crystal shatter-
ing in ice crystal probes, which tends to increase measured
Ni decreasingRvol,ice (Krämer et al., 2009). The smooth
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Figure 12.Liquid cloud effective radius (µm) from GEOS-5 (NEW run) using COSP and from the MODIS retrieval.

Figure 13. Ice cloud effective radius (µm) from GEOS-5 (NEW run) using COSP and from the MODIS retrieval.

Figure 14.Global frequency of ice volumetric radius as a function
of temperature from GEOS-5, NEW run. Solid lines represent the
25 and 75 % quantiles from the field campaign analysis ofKrämer
et al.(2009). Filled circles were calculated using the correlation ob-
tained byMcFarquhar and Heymsfield(1997) from field measure-
ments in mixed-phase and cirrus clouds.

transition inRvol,ice at 235 K indicates that both homoge-
neous and heterogeneous ice nucleation significantly con-
tribute to ice crystal formation at this temperature (Sect.3.5).
In agreement with observations (McFarquhar and Heyms-
field, 1997) Rvol,ice increases steadily forT > 235 K, which
results from increasing vapor deposition rates and decreasing
Ni asT increases (Sect.3.5).

3.9 Annual mean diagnostics

Table4 and Fig.15 show the summary of the annual mean
cloud properties analyzed in this work. Annual mean LWP
for the NEW run is 37.1, and 60 g m−2 if the MODIS COSP

simulator is used. LWP in NEW is higher than the CloudSat
retrieval (23.0 g m−2) (Li et al., 2014) mostly from higher
LWP at the middle latitudes of the SH, and lower than
MODIS retrievals (∼ 100 g m−2). Ocean-only LWP is also
lower than SSMI output by about a factor of two (not shown).
LWP in GEOS-5 refers only to non-convective (anvil and
stratiform) clouds and it is likely that the discrepancy with
SSMI and MODIS originates from the consideration of con-
vective clouds in the retrievals. IWP in NEW (27.2 g m−2)
is in better agreement with CloudSat (25.8 g m−2) (Li et al.,
2012), although GEOS-5 tends to overestimate IWP at the
middle latitudes of the SH and the NH. Including snow in
the comparison does not affect IWP in the tropics, but results
in larger subtropical IWP in NEW than in CloudSat. Global
mean LWP in CTL is higher (60.0 g m−2) and IWP slightly
lower (19.0 g m−2) than in NEW.

The prescribedReff,liq and Reff,ice in CTL are generally
smaller than those retrieved by MODIS with a global mean
bias of about−5 and−4 µm forReff,liq andReff,ice, respec-
tively. Reff,liq andReff,ice in NEW are closer to MODIS with
a global bias of about−0.5 and 2 µm, respectively (Table4),
well within the intrinsic error of the retrieval (King et al.,
2003). Zonal meanReff,liq is however overestimated in the
Northern Hemisphere from underestimation ofNl in oceanic
regions (Sect.3.4).

Global mean cloud fraction in the NEW simulation is
higher than in CTL but still lower than ISSCP retrievals
(Rossow and Schiffer, 1999). The higherfc in NEW re-
sults from higher cloud coverage over continental regions
(Sect.3.1). There is good agreement between NEW and IS-
CCP cloud fraction at the continental middle latitudes and
most of the underestimation in NEW originates in marine
regions. However, in these regions both the NEW and CTL
simulations show agreement with the MODIS retrieval. The
reason for the better agreement of GEOS-5 with MODIS than
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Table 3.Description of sensitivity runs performed with GEOS-5 using the new microphysics.

Run Description

NOCNV Single moment microphysics within convective clouds
NOBC Black carbon not acting as IN
LC400 Lc = 400 m
PDA08 Usage of the Phillips (2008) heterogeneous ice nucleation spectrum
MUIZERO Prescribed constantµi = 0.0
ARGACT Usage of theAbdul-Razzak and Ghan(2000) activation parameterization
NOGLASS Glassy organics not considered as IN
NOPREEX Preexisting ice crystals not considered
DCS200 Dcs= 200 µm

with ISCCP in these regions is however not clear but may
be related to differences in the cloud masks of ISCCP and
MODIS (Pincus et al., 2012).

Global annual mean precipitation,Ptot, is lower in the
NEW (2.72 mm d−1) than in the CTL (2.85 mm d−1) simu-
lation and in better agreement with GPCP (Huffman et al.,
1997) and CMAP (Xie and Arkin, 1997) observations (∼
2.6 mm d−1), although both simulations tend to overestimate
Ptot in the tropics. In SH the NEW simulation tends to predict
Ptot higher than CMAP and lower than GPCP, whereas CTL
is in better agreement with GPCP data. In NH,Ptot in the
NEW and CTL simulations is closer to GPCP than to CMAP
data, although in NEW it tends to be lower than the GPCP
observations.

The global top of the atmosphere (TOA) net radiative bal-
ance is about+0.95 W m−2 in the NEW simulation. The
slight radiative imbalance in NEW results in part from the
negative bias in stratocumulus cloud coverage in the NEW
simulation (Sect.3.1). The liquid cloud optical depth in
NEW however agrees with MODIS data (Fig.15), particu-
larly over the tropics. In CTL liquid clouds tend to be op-
tically much thicker than MODIS observations (Fig.15),
which results from larger LWP and smallerReff,liq than the
observations (Sects.3.6and3.8). The higher optical depth in
CTL leads to a more negative SWCF (−52.1 W m−2) than in
CERES and to a higher net radiative imbalance−2.4 W m−2.
Longwave cloud effect (LWCF) is similar in the CTL and
NEW runs (∼ 25.0 W m−2) and in agreement with CERES
data (26.2 W m−2). Compared to MODIS ice cloud optical
depth is however overestimated in CTL and underestimated
in NEW. In NEW the low bias in ice optical depth is com-
pensated by a positive bias in the high-level cloud fraction
(Sect.3.1).

4 Sensitivity studies

Tables3 and4 present a summary of the sensitivity of GEOS-
5 to different microphysical parameters. To study the sensi-
tivity of cloud properties to the description of CCN activa-
tion, the parameterization ofAbdul-Razzak and Ghan(2000)

(hereafter, ARG) was implemented (run ARGACT, Table3
and Fig.5, middle panel). ARG is based on a fit to the numer-
ical solution of the equations of an ascending parcel written
in terms of dimensionless parameters. Compared to the NEW
run, the usage of ARG resulted in slightly higherNl than
with the FN05 formulation, particularly over marine regions
(Fig. 5, middle panel). The ARG parameterization also pre-
dicts higher droplet concentration in regions of high aerosol
emissions like Southeast Asia and southern Africa. Global
meanReff,liq was lower for ARG than for FN05 by about
0.7 µm leading to about 2 W m−2 more negative SWCF (Ta-
ble 4). LWP and cloud fraction remained almost the same as
in NEW suggesting that the change in SWCF was driven by
modification of cloud albedo.

The sensitivity of cloud properties to the characteristic cir-
rus scale,Lc, was also investigated.Lc is associated with the
wavelength of the highest-frequency waves leading to cirrus
formation (Eq.23), and impacts the subgrid vertical veloc-
ity variability in the upper troposphere. IncreasingLc from
100 to 400 m reduced globalNc by about a factor of two (run
LC400) due to a reduction inσw and a decrease in the rate of
ice crystal formation. The global meanReff,ice increased by
about 3 µm and LWCF decreased by 2 W m−2. Global mean
σw for Lc = 400 m is about 0.07 m s−1 and 0.11 m s−1 at 500
and 150 hPa, respectively, about half the value obtained in
the NEW simulation (Fig.4). These values are still within the
observed values in field campaigns (e.g.,Gayet et al., 2004),
and further observations are needed to better constraintLc.
Table 4 however shows that GEOS-5 results are robust to
moderate changes inσw.

The effect of the dispersion in the ice crystal size distribu-
tion, µi , on ice cloud properties (Table4) was analyzed by
settingµi = 0.0 (run MUIZERO) instead of using a temper-
ature dependent parameterization forµi (Sect.2.3). This led
to about a factor of two lower IWP andReff,ice than in NEW,
which resulted from an increase in autoconversion and accre-
tion of ice by snow at lowT (not shown). Despite the lower
IWP, the lower ice crystal size increased the ice cloud optical
depth and resulted in slightly higher LWCF and SWCF than
in the NEW simulation. Because of this compensating effect
the radiative properties of ice clouds are robust to moderate
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Table 4.Annual mean model results and observations. The experimental data sets are described in Sect.3. CTL and NEW refer to runs with
the operational version of GEOS-5 and with the implementation of the new microphysics, respectively. Sensitivity studies are described in
Table3 and Sect.4.

Simulation CTL NEW ARGACT NOBC NOGLASS PDA08 NOPREEX LC400 NOCNV MUIZERO DCS200 OBS

Ptot (mm d−1) 2.85 2.72 2.72 2.71 2.72 2.73 2.66 2.77 2.90 2.70 2.83 2.68 (GPCP),
2.60 (CMAP)

LWP (g m−2) 60.0 37.3 38.0 37.6 37.5 37.1 37.3 37.2 36.1 36.5 35.3 23.0 (CloudSat),
109.8 (MODIS),
88.4 (SSMI, ocean)

IWP (g m−2) 19.0 27.1 27.3 27.0 26.9 27.3 32.8 21.3 25.2 10.3 16.1 25.8 (CloudSat)
TWP (g m−2) 79.0 64.4 65.3 64.6 64.4 64.4 70.1 58.6 61.3 46.8 51.4 48.8 (CloudSat)
fc (%) 46.0 56.0 56.8 56.3 55.8 55.2 58.3 54.2 51.0 56.8 50.0 52 (MODIS),

62 (ISCCP)
Nl,cum (cm−2) 1.68 1.85 1.67 1.68 1.70 1.66 1.55 2.29 1.65 2.33 1.96 (MODIS)
Ni (L−1) 66 65 64 67 55 135 38 74 60 62
Ni (L−1) (cirrus) 166 163 160 168 139 359 91 183 154 158
Reff,liq (µm) 10.2 14.2 13.5 14.3 14.3 14.3 14.6 14.6 13.2 13.7 13.0 14.8 (MODIS)
Reff,ice (µm) 20.8 26.2 26.0 26.0 26.2 27.2 23.2 29.3 25.5 12.5 23.6 24.2 (MODIS)
SWCF (W m−2) 52.1 49.5 52.0 50.3 49.7 49.5 53.2 46.7 45.0 49.7 44.6 47.2 (CERES),

51.8 (ERBE)
LWCF (W m−2) 25.2 26.6 27.3 27.2 26.2 25.8 31.2 23.2 22.2 26.9 20.8 26.2 (CERES),

30.67 (ERBE)
OLR (W m−2) 238.9 238.3 237.3 237.5 238.2 238.9 233.3 241.4 243.0 237.0 244.5 239.8 (CERES),

240.2 (ERBE)
OSR (W m−2) 236.5 239.3 236.7 238.4 238.9 239.2 235.6 242.0 243.8 239.2 244.2 240.6 (CERES),

255.7 (ERBE)
Net TOA (W m−2) −2.4 0.95 −0.52 0.90 0.77 0.32 2.24 0.58 0.75 2.08 −0.28 0.75 (CERES)

changes in the ice crystal size distribution. Decreasing the
critical size for ice autoconversion from 400 to 200 µm (run
DCS200) also increased ice autoconversion leading to lower
IWP than in NEW.Reff,ice was also reduced, although to a
lower extent than in MUIZERO. The net radiative effect of
reducingDcs was thus a decrease of about∼ 6 W m−2 in
LWCF.

Several studies were performed to investigate the sensitiv-
ity of GEOS-5 to the description of heterogeneous ice nu-
cleation. In NOBC and NOGLASS the effect of black car-
bon and glassy IN, respectively, was switched off. These runs
suggested that black carbon and glassy IN only have a subtle
effect on global climate (Table4), although their local ef-
fects may be significant. In particular black carbon IN tend
to increase LWCF in regions of high aerosol emissions like
East Asia and the eastern coast of North America. In the
same regions glassy IN tend to reduceNi at lowT (Fig. 16).
The global TOA radiative imbalance due to black carbon and
glassy IN amounts to−0.05 and−0.18 W m−2, respectively.
Although these values are comparable to other published
studies (Gettelman et al., 2012), they must be taken with cau-
tion, since they are based on limited results. A comprehen-
sive description of the aerosol indirect effect in GEOS-5 will
be addressed in future studies.

In the PDA08 run thePhillips et al.(2008) (hereafter Ph08)
ice nucleation spectrum was used. Ph08 was employed in
previous studies to study the effect to the ice nucleation
spectrum onNi (Barahona et al., 2010a; Morales Betancourt
et al., 2012; Liu et al., 2012). Ph08 accounts for the effect
of both soluble and insoluble organic material acting as IN,
whereas in Ph13, only soluble organics are considered to be

IN. Using the Ph08 parameterization reducedNi increasing
Reff,ice by about 1 µm, slightly decreasing LWCF. This re-
sulted in part from the effect of organic IN inhibiting ho-
mogeneous freezing in cirrus clouds. Other cloud properties
remained similar as in NEW.

The effect of preexisting ice crystals on ice crystal forma-
tion was analyzed in NOPREEX, where it was assumed that
Ni,pre = 0. For this run, the global meanNi was 359 L−1,
about twice that in NEW, with the greater increase occurring
between 200 and 240 K (Fig.16), and mostly in the tropics
(not shown), indicating that the presence of ice crystals from
convective detrainment tends to inhibit new ice nucleation
events. MeanReff,ice was reduced by about 6 µm, increasing
LWCF by 5 W m−2.

In NOCNV the generation of precipitation in cumulus
convection was described by a single-moment approach
(Bacmeister et al., 2006). Some studies (e.g.,Gettelman
et al., 2008; Salzmann et al., 2010) did not consider explicitly
the freezing and activation of aerosol particles in convective
cumulus. It is thus important to study how this assumption
would affect GEOS-5 results. In NOCNV the contribution
of convective detrainment to ice crystal and droplet number
concentration was approximated by assuming a fixed droplet
size of 10 µm for droplets and using the correlation ofMcFar-
quhar and Heymsfield(1997) to obtain the ice crystal size as
a function ofT . Compared to NEW, the single-moment ap-
proach resulted in enhanced precipitation rates, particularly
over the Tropical Warm Pool. SWCF and LWCF were lower
than in NEW by about 3 W m−2, which was in part the re-
sult of a lower detrainment flux of condensate in the tropical
upper troposphere.Reff,liq decreased by about of 1 µm due
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Figure 15. Annual zonal means from the GEOS-5 model for the
CTL (blue lines) and NEW (red lines) runs compared against dif-
ferent observations (black lines).(a, b) Liquid (Reff,liq ) and ice
(Reff,ice) effective radius from COSP output against MODIS.(c,
d) Shortwave (SWCF) and longwave (LWCF) cloud forcing against
CERES-EBAF retrievals (Loeb et al., 2009). (e) Liquid water path
against CloudSat (black lines) and MODIS (black circles) retrievals.
(f) Non-convective, non-precipitable ice water path against Cloud-
Sat retrievals (Li et al., 2012, 2014). Also shown is the total (ice and
snow) non-convective ice water path (red circles) from GEOS-5 us-
ing the new microphysics.(g) Total cloud fraction from COSP out-
put against MODIS (black lines) and ISCCP (black circles).(h) To-
tal precipitation against GPCP data (Huffman et al., 1997). Also
shown are data from the CMAP data set (Xie and Arkin, 1997)
(black circles).(i, j) Liquid and ice optical depth (COD) from COSP
output against MODIS retrievals.

to an increase in droplet number concentration. MeanReff,ice
only changed by about 0.5 µm; however,Ni was slightly in-
creased, particularly at lowT (Fig. 16).

Finally it is important to analyze the effect of microphysi-
cal parameters onNi at low T . Figure16 shows the temper-
ature dependency ofNi for the runs of Table4. All curves of
Fig. 16show the same characteristics, increasingNi with de-
creasingT to a maximum around 210 K and then decreasing
to values typically below 10 L−1 at 185 K. The only excep-
tion to the latter is the NOCNV run in which meanNi is
about 140 L−1 at 185 K, resulting from the lower detrained

Figure 16. Annual mean ice crystal concentration as a function of
temperature for the different runs of Table4.

Ni acting as preexisting ice crystals at lowT . The maximum
Ni is around 300 L−1 for most runs, and only for the NO-
PREEX run does it increase up to 800 L−1. The fact that in
all runsNi decreases forT below 200 K indicates that as the
T decreases,Ni becomes more dependent onScrit (Sect.3.2).
This indicates that parcel history plays a primary role in de-
terminingNi at low T , whereas preexisting ice crystals and
IN only play a secondary role.

5 Summary and conclusions

A new cloud microphysics scheme was developed for the
NASA GEOS-5 global atmospheric model. The main fea-
tures of the new microphysics are

– A comprehensive two-moment microphysics descrip-
tion for stratiform clouds (Morrison and Gettelman,
2008).

– Consistent coupling of the cloud fraction and strati-
form condensation with the microphysics. The strati-
form condensation scheme was modified to allow su-
persaturation in ice clouds.

– A two-moment microphysics scheme embedded within
the RAS convective parameterization. The new scheme
explicitly treats the formation of droplets and ice crys-
tals, the partitioning of condensate between ice and liq-
uid, and the generation of precipitation within convec-
tive cumulus.

– A comprehensive description of cloud droplet activation
and ice nucleation in stratiform and convective clouds,
linked to the aerosol physicochemical properties. The
description of ice formation considers homogeneous
freezing of cloud droplets and interstitial aerosol as well
as heterogeneous ice nucleation on ice nuclei. Compe-
tition between homogeneous and heterogeneous ice nu-
cleation, and between different ice nuclei is explicitly
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treated. Immersion, contact, condensation and deposi-
tion ice nucleation modes are considered.

– Explicit calculation of the critical saturation ratio for
ice formation considering aerosol properties, tempera-
ture and subgrid-scale dynamics.

– Explicit parameterization of the effect of preexisting ice
crystals on ice nucleation.

– Explicit parameterization of the distribution of subgrid-
scale vertical velocity in stratiform clouds, accounting
for the effect turbulence and gravity wave motion on
the vertical velocity variance. A new parameterization
in terms of large-scale variables was developed for the
latter.

The new microphysics was evaluated against satellite re-
trievals and field campaign data. Usage of the COSP satel-
lite simulator greatly facilitated the comparison with satellite
observations, reducing the uncertainty in the sampling of the
model results. In general, cloud microphysical fields like ice
water, liquid water content and droplet and ice crystal size
were in much better agreement with observations than when
obtained with the operational version of GEOS-5. The model
performance in reproducing the observed total cloud fraction
and longwave and shortwave cloud forcings is also improved,
and is in reasonable agreement with satellite observations.

In the new microphysics ice and cloud droplet nucleation
are tightly linked to the evolution of the cloud properties.
Cloud droplet number impacts the formation of precipita-
tion. Precipitation decreases total water, which in turn feeds
back into the cloud fraction through modification ofPq(q)

(Sect.2.3.1). The link betweenNi , fc, and qi is stronger,
since the production of condensate is controlled in part by
Scrit, which depends on the presence of IN (Eq.13). The
linkage between cloud micro- and macro-physical variables
in the model emphasizes the internal consistency of the new
cloud scheme.

A new cloud coverage scheme was developed to allow su-
persaturation with respect to the ice phase. The frequency
and spatial distribution of supersaturation simulated by the
model was in good agreement with satellite and in situ ob-
servations. It was shown that supersaturation is controlled in
part by ice crystal nucleation and the value ofScrit. The lat-
ter dictates the minimum water vapor threshold required for
cloud formation.Scrit is highly variable over the globe, and
dependent on aerosol concentration and temperature. Mod-
els that assume a single threshold for ice cloud formation are
thus inherently biased.

The variation of supercooled cloud fraction with tempera-
ture in the new microphysics followed a sigmoidal tendency.
This is in agreement with CALIOP data (Choi et al., 2010)
and differs from the typical linear increase of SCF withT as-
sumed in most GCMs. There are no temperature-based con-
straints to the occurrence of the Bergeron–Findeisen process

nor to the partition of total condensate between ice and liquid
in the new microphysics. The sigmoidal tendency in SCF re-
sulted from explicit consideration of homogeneous, immer-
sion and contact freezing in the model. This suggests that
rather than temperature alone, the presence of IN greatly in-
fluences the frequency of supercooled liquid in mixed-phase
clouds.

A new approach was proposed to parameterize the distri-
bution of subgrid-scale vertical velocity in cirrus and stra-
tocumulus, which takes into account turbulence and gravity
wave motion. Although no observational studies have been
reported on the global distribution ofσw, the parameteriza-
tion results were within reported values in field campaigns.
Since the parameterization proposed here focuses on surface
and orographic stresses, which are higher over land,σw may
be underestimated in the upper troposphere in oceanic re-
gions. The ability to predictσw as a function of large-scale
variables still points in the right direction to reduce one of
the main sources of uncertainty in the modeling of the effect
of aerosol emissions on climate. It was also shown that the
variability in σw is a determining factor defining the effect of
IN emissions on cirrus formation.

The simulated ice crystal concentration was in agreement
with field campaign data, even at very lowT , where most
models tend to overestimateNi (e.g.,Barahona et al., 2010a;
Salzmann et al., 2010; Hendricks et al., 2011). In GEOS-
5, the decrease inNi with decreasingT results from an in-
crease inScrit (Fig.2), which limitsPq(qt > Scritq

∗

i ) at lowT ,
decreasing the probability of homogeneous freezing events.
The termPq(qt > Scritq

∗

i ) in Eq. (15) provides a link be-
tween current cloud formation and prior ice nucleation events
(Barahona and Nenes, 2011). This suggests that a statisti-
cal rather than a single-parcel approach (e.g.,Jensen et al.,
2012; Spichtinger and Cziczo, 2010) is required for the cor-
rect modeling of low-temperature cirrus.

A new parameterization of the effect of preexisting ice
crystals on ice cloud formation was developed. It was shown
that their effect is more pronounced forT around 200 K, typ-
ically reducingNi . However, preexisting ice crystals alone
can not explain the low ice crystal concentration at lowT .
The effect of organic glassy IN on cloud formation was also
analyzed and it was found that it tends to reduceNi at low
temperatures. Although these factors alone cannot explain
the tendency ofNi at T < 190 K, they are still necessary
for reproducing the observedNi in the upper troposphere.
In fact, it was found that the observed values of ice crystal
concentration in the upper troposphere result from a com-
bination of several factors: parcel history, IN concentration,
convective detrainment and subgrid dynamics.

Effective cloud droplet size simulated with GEOS-5 was
in agreement with the MODIS retrieval. There was how-
ever a slight underestimation inReff,liq over the land, and
overestimation over the tropical marine regions. This points
to the need for a more sophisticated description of aerosol
microphysics in GEOS-5. Sensible assumptions were made
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regarding the aerosol size distribution; however, there is high
variability in the aerosol properties around the globe, which
may affect CCN activation. The inclusion of a more compre-
hensive aerosol microphysics in GEOS-5 will be addressed
in a future study. The simulated cloud droplet number con-
centration also showed some sensitivity to the parameteriza-
tion of CCN activation, which in turn influences the cloud
albedo.

There was good agreement in the global mean ice effec-
tive radius between GEOS-5 and the MODIS retrieval. The
decrease inRvol,ice asT decreases, a common feature of in
situ observations (Krämer et al., 2009) was also captured by
GEOS-5. The model was able to capture key features of the
spatial distribution ofReff,ice, as for example the predomi-
nance of lowReff,ice near mountain ranges. This was a result
of the explicit consideration of ice nucleation and of the spa-
tial variation of σw,gw. Reff,ice was however overestimated
in marine regions, particularly in the Southern Hemisphere.
The parameterization ofσw,gw developed in this work may
underestimateσw over the ocean. Other IN sources like bi-
ological particles (Burrows et al., 2013) and sea salt (Wise
et al., 2012) were not considered in this study but may en-
hance ice nucleation in marine environments. Some uncer-
tainty may be introduced by the single-moment approach
used for the aerosol microphysics in GEOS-5 ice nucleation,
although ice nucleation is less dependent on aerosol size than
CCN activation. There is also uncertainty in the formulation
of the heterogeneous ice nucleation spectrum, since factors
like mixing of dust/soot with sulfate, which may lead to IN
deactivation/activation, are not taken into account in Ph13.
The role of the uncertainty in the satellite retrieval must also
be accounted for when comparingReff,ice against model re-
sults. All of these factors require further investigation. Never-
theless, the approach proposed here results in a realistic and
reasonable spatial distribution ofReff,ice.

It was shown that the cloud radiative fields modeled in
GEOS-5 with new microphysics are in good agreement
with observations, although local biases may be significant.
GEOS-5 tends to underestimate the optical depth of persis-
tent stratocumulus decks, which leads to a negative radiative
bias in the western Pacific. Reducing such bias requires an
explicit representation of shallow cumulus condensation in
GEOS-5. The long-term and large-scale climatic response of
GEOS-5 with the new microphysics will be analyzed in a fu-
ture study.

A simple approach was assumed to describe the cloud mi-
crophysics in convective clouds. The description of precipi-
tation within convective cores is highly complex due to the
interplay of several cloud species (e.g., graupel, hail, rain, ice
and snow). Some authors have developed more comprehen-
sive microphysical packages for convective clouds, including
processes of autoconversion, aggregation, collection and ac-
cretion (e.g.,Song and Zhang, 2011; Sud and Walker, 1999;
Lohmann, 2008). To be effective, a detailed description of
microphysics in convective clouds requires prognostic pre-
diction of the vertical profiles of rain and snow, which is
not implemented in most GCMs. Also, collection and ag-
gregation rates depend on the vertical profiles of rain and
snow, which are not known in advance. The advantages of
a complex representation of the microphysics of convective
cores must thus be weighted against the uncertainty intro-
duced in accommodating such descriptions within the diag-
nostic integration schemes of the convective parameteriza-
tions in GCMs.

The model results were quite robust to variation in micro-
physical parameters. The largest differences from the base
configuration were found for a decrease in the size disper-
sion parameter of the ice crystal size distribution and in the
critical size for ice autoconversion. Both changes lead to a re-
duction inReff,ice and IWP and modified the long wave cloud
forcing. The high sensitivity ofReff,ice and IWP to the value
of µi suggests that more attention must be put on its correct
parameterization in GCMs.

The implementation of the comprehensive microphysics
developed in this work resulted in a more realistic simulation
of cloud properties in GEOS-5. Mounting evidence suggests
that the explicit description of processes of droplet and ice
crystal nucleation and precipitation is necessary for the cor-
rect representation of clouds in Earth system models. The
new microphysics would likely result in improved and more
realistic climate simulations in GEOS-5. The new parameter-
izations developed here may also help to improve our under-
standing of the role of microphysics and aerosol emissions
on the evolution of clouds. Within the larger picture, the fur-
ther development of the microphysics GEOS-5 will help to
understand the role of clouds on climate and eventually re-
duce the uncertainty in their prediction.
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Appendix A: Cloud fraction scheme

The total-water PDF for stratiform condensation is assumed
to follow a uniform distribution in the form (Fig.A1)

Pq(q) =

{ 1
1q

, if qmn ≤ q ≤ qmx

0, otherwise
, (A1)

wherePq is the total-water PDF,1q the width of the PDF,
qmx = qt +0.51q andqmn = qt −0.51q the upper and lower
limits of the PDF, respectively, andqt the non-convective
total-water mixing ratio. Equation (A1) is applied to non-
convective part of the grid cell, whereas the contribution of
convective detrainment to cloud fraction follows a prognos-
tic approach (Tiedtke, 1993). The vertical profile of1q is
initially prescribed followingMolod (2012). Application of
Eq. (3) to the PDF (Fig.A1a) gives

fc = (1− fcn)

∞∫
Scritq

∗

Pq(q)dq + fcn (A2)

= (1− fcn)
qmx − Scritq

∗

1q
+ fcn,

where fcn is the detrained cloud fraction. Application of
Eq. (5) gives, for the total condensate,

qc = (1− fcn)

qmx∫
Scritq

∗

(q − Scritq
∗)

1q
dq + qc,det (A3)

= (1− fcn)
1

2
αL

(qmx − Scritq
∗)2

1q
+ qc,det.

After microphysical processes have taken place,Pq(q) is
assumed to follow a uniform PDF (Fig.A1b); however,
the contribution of convective detrainment is not explic-
itly treated, since anvil clouds are considered stratiform
(Sect.2.3). Thus, in analogy with Eq. (A2), but without the
explicit contribution from detrained condensate, we can write
for the cloud fraction after the microphysics,

f ′
c =

q ′
mx − Scritq

∗

1q ′
, (A4)

where the prime superscripts indicate values after the micro-
physics. The width of the distribution1q ′ may be different
from its original value1q since precipitation and sedimen-
tation processes alterqt. Similarly, for the cloud condensate,

q ′
c =

1

2

(q ′
mx − Scritq

∗)2

1q ′
, (A5)

whereq ′
mx = q ′

t +0.51q ′. The correction factorαL is not ap-
plied to Eq. (A5) since there is no additional condensation
after the microphysics. Sinceq ′

c andq ′
t are known, Eqs. (A4)

Figure A1. Probability distribution function of total water before
(a) and after(b) the microphysics.1q, qmx andqmn represent the
width and the upper and lower limits of the total water distribu-
tion, respectively. Shaded regions represent stratiform condensate,
qc, andqc,det represents the contribution of convective detrainment
to total condensate. Prime superscripts are used to denote values
affected by microphysical processes.

and (A5) can be used to estimate1q ′, hencef ′
c. Making

X = q ′
mx−Scritq

∗ andY = q ′
t −Scritq

∗ then1q ′
= 2(X−Y ),

f ′
c = 0.5X/(X − Y ) andq ′

c = 0.25X2/(X − Y ). Sincef ′
c =

2q ′
c/X, these equations can be combined into

X2
− 4q ′

cX + 4Yq ′
c = 0. (A6)

The only physical root of Eq. (A6) is given by

X = 2q ′
c

(
1+

√
1−

Y

q ′
c

)
. (A7)

Using the definitions ofX andY , we obtain, forf ′
c,

f ′
c =

(
1+

√
1−

q ′
t − Scritq∗

q ′
c

)−1

. (A8)

Equation (A8) provides the cloud fraction corrected for mi-
crophysical processing, consistent withq ′

t andq ′
c.

Appendix B: Parameterization of the subgrid vertical
velocity variance from gravity wave motion

Parameterizations of the subgrid vertical velocity from grav-
ity wave motion consider either the displacement of a single
wave from orographic uplift (Joos et al., 2008; Dean et al.,
2007) or the spectrum of velocities resulting from the su-
perposition of waves from different sources (Barahona and
Nenes, 2011; Jensen and Pfister, 2004). The characteristic
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scale of gravity wave motion leading to the formation of
clouds is typically smaller than the scale of the GCM grid
cell. A spectrum of vertical velocities rather than a single
wave may thus be a more realistic representation of the sub-
grid dynamics in the upper troposphere. Still, surface per-
turbations are likely to determine the maximumwsub in the
spectrum (Joos et al., 2010; Barahona and Nenes, 2011). Us-
ing this concept, a semi-empirical parameterization forσw,gw
can be developed as follows.

The mean vertical momentum flux at the surface
(McFarlane, 1987) is given by

τ =
1

2
kρaUsNsδh

2
s, (B1)

whereδhs is the vertical displacement at the surface caused
by the orographic perturbation,Ns the Brunt–Väisälä fre-
quency at the surface andUs the surface wind (taken as the
geometrical mean between the meridional and zonal com-
ponents), andk is the horizontal wave number. Equatingτ

with the mean surface stress,τ0, and scalingδh according
to McFarlane(1987) i.e, δh = δhs

[
ρaUsNs/ρaUN

]1/2, the
mean wave amplitude,δh, at any height can be written as

δh2
= min

(
2|τ0|

kρaUN
,
U

N

)
, (B2)

whereU
N

is the saturation wave amplitude (Dean et al., 2007).
The maximum vertical velocity in the gravity wave spectrum
is related toδh by (Joos et al., 2008)

wmax = kUδh. (B3)

In a spectrum of randomly superimposed gravity waves,
wmax can be empirically related toσw,gw by (Barahona and
Nenes, 2011)

σw,gw ≈ 0.133wmax (B4)

makingk =
2π
Lc

and combining Eqs. (B2) to (B4), we obtain

σ 2
w,gw = 0.0169min

[
4πU |τ0|

ρaLcN
,

(
2πU2

NLc

)2]
, (B5)

whereLc is a characteristic scale associated with the wave-
length of the highest-frequency waves in the spectrum, typ-
ically between 50 and 500 m (Bacmeister et al., 1999), al-
though considered a free parameter.

Appendix C: Parameterization of the effect of
preexisting crystals on ice nucleation

Water vapor deposition onto ice crystals from previous nu-
cleation events decreases supersaturation and may reduce
Ni , particularly at low temperatures (Barahona and Nenes,
2011). To account for this effect, the local rate of change of

Si in a cloudy parcel with preexisting crystals is written in
the form (Barahona and Nenes, 2011)

dSi

dt
= αwsubSi − β

dqi,nuc

dt
− β

dqi,pre

dt
, (C1)

whereα andβ are temperature-dependent parameters (Ap-

pendixD), anddqi,nuc
dt

and
dqi,pre

dt
are the local rates of ice crys-

tal growth of recently nucleated and preexisting ice crystals,
respectively. The latter is given by

dqi,pre

dt
=

Ni,preπβcρiAi(Si − 1)

2λ0,i,pre
, (C2)

where it was assumed that the size of preexisting ice crystal
follows a gamma distribution (Eq.2). Introducing Eq. (C2)
into Eq. (C1), we obtain

dSi

dt
= αwsubSi − β

dqi,nuc

dt
− β

Ni,preπβcρiAi(Si − 1)

2λ0,i,pre
, (C3)

Ice crystal nucleation in cirrus occurs over smallSi intervals
(Barahona and Nenes, 2008; Kärcher and Lohmann, 2002).
Therefore, to a good approximation, the size of preexisting
ice crystals can be considered constant during ice nucleation.
With this assumption, Eq. (C3) can be reorganized as

dSi

dt
= αwsubSi

[
1−

Ni,preπβcρiAi(Shom− 1)

2λ0,i,preαwsubShom

]
(C4)

− β
dqi,nuc

dt
,

where it was assumed thatSi−1
Si

≈
Shom−1
Shom

. If Ni,pre = 0 then
Eq. (C4) reduces to the saturation balance of a parcel with
no preexisting crystals present (Barahona and Nenes, 2008).
The effect of preexisting crystals on ice nucleation can thus
be accounted for by redefining the cloud scale vertical veloc-
ity in the form

wsub,pre = (C5)

wsub max

[
1−

Ni,preπβcρiAi(Shom− 1)

2λ0,i,preαwsubShom
, 0

]
.

Equation (C5) shows that the effect of water vapor deposi-
tion onto preexisting crystals can be understood as a reduc-
tion in the rate of increase of supersaturation by expansion
cooling. Sincewsub is typically an input to ice cloud forma-
tion parameterizations, Eq. (C5) also provides a simple way
of accounting for the effect of preexisting ice crystals on ice
cloud formation, independently of the ice nucleation param-
eterization employed.
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Appendix D

Table D1.List of symbols and acronyms.

αL Correction toq∗ fom latent heat effects during condensation

α
g1HsMw
cpRT 2 −

gMa
RT

β
Map

Mwps,i
−

1H2
s Mw

cpRT 2

γ Virtual mass coefficient
γc Cooling rate
η Cloud tracer
1Hs Enthalpy of sublimation of ice
1q Width of the total-water PDF
1t Model time step
1tL Average time of a convective parcel within a model layer
ϕx Active site density of the species x
8i Aerosol particle number fraction in modei
φ(w̄,σ2

w) Subgrid distribution of vertical velocity
κ Hygroscopicity parameter
λ Entrainment rate
λm Value oflm in the free troposphere
λ0,y Slope parameter ofny(D)

µy Dispersion ofny(D)

ρi Bulk density of ice
σg,x Geometric size dispersion of the x species
σ2
w,turb Variance inwsubdue to turbulence

σ2
w,gw Variance inwsubdue to gravity wave dynamics

σw Standard deviation ofwsub
τ0 Surface stress

Ai

[
ρi1H2

s
kaRvT 2 +

ρiRvT
ps,wDw

]−1

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization
CCN Cloud condensation nuclei
CERES Clouds and Earth’s Radiant Energy System
CMAP CPC Merged Analysis of Precipitation
cp Specific heat capacity of air
D Convective detrainment rate
Dcs Critical size for ice–snow autoconversion
Dc,y Critical size for precipitation of the y cloud species
Dg,x Geometric mean diameter of the x aerosol species
Dy Diameter of the y cloud species
Dw Water vapor diffusivity in air
ERBE Earth Radiation Budget Experiment
fc Total cloud fraction
f ′

c Cloud fraction modified by the cloud microphysics
fgr Fraction of ice existing as graupel
fhet Fraction of ice crystals produced by heterogeneous ice nucleation
fice Mass fraction of ice in the total condensate
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Table D1.Continued.

fcn Detrained anvil cloud fraction
g Acceleration of gravity
GPCP Global Precipitation Climatology Project
IN Ice nuclei
ISCCP International Satellite Cloud Climatology Project
IWC Ice water content
IWP Ice water path
ka Thermal conductivity of air
L Weighted latent heat between liquid and ice
KT Mixing coefficient for heat
Lc Characteristic wavelength in cirrus
lm Mixing length
LWC Liquid water content
LWCF Longwave cloud forcing
LWP Liquid water path
m1...n Moments of the aerosol number distribution
Mw,Ma Molar masses of water and air, respectively
MODIS Moderate Resolution Imaging Spectroradiometer
N Brunt–Väisälä frequency
Na, Nx Aerosol number concentration
Ni,cv Ice crystal concentration within convective cumulus
Ns

i,nuc Ice crystal concentration nucleated in a single parcel ascent
Ni,nuc Ice crystal concentration nucleated in cirrus
Nl,act Activated cloud droplet number concentration
Nl,cum Column-integrated droplet number concentration
nl , Nl Grid mean and in-cloud droplet number concentration, respectively
ni , Ni Grid mean and in-cloud ice crystal number concentration, respectively
ni,cp Ice crystal number concentration within convective parcels
Ncnv Detrained ice crystal concentration
Ndep Ice crystal concentration produced by deposition and condensation nucleation
ngr, qgr Graupel number concentration and mixing ratio, respectively
ni/s, qi/s Ice plus snow number concentration and mixing ratio, respectively
Nhet Ice nucleation spectrum
Nimm Ice crystal concentration produced by immersion freezing
N0,y Intercept parameter ofny(D)

ns,x Immersion active site surface density for the x species
Nx Aerosol number concentration of the x species
ny(D) Size distribution of the y species
p Pressure
Pq (q) Probability distribution of total cloud condensate
ps,w, ps,i Liquid water and ice saturation vapor pressure, respectively
Ptot Total precipitation
q∗ Weighted saturation mixing ratio between liquid and ice
qc Total condensate mixing ratio
qc,det Detrained condensate mixing ratio
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Table D1.Continued.

qcn Mixing ratio of total condensate in a convective parcel
qgr Graupel mass mixing ratio within a convective cumulus
qi Grid cell mean ice water mixing ratio
qi,cp Ice water mixing ratio within convective parcels
ql Grid cell mean liquid water mixing ratio
qmx,qmn Upper and lower limits of the total water distribution, respectively
q∗

l , q∗
i Saturation specific humidities for liquid and ice, respectively

qt Total water mixing ratio,(qv + qc)

qv Water vapor mixing ratio
R Universal gas constant
Reff,liq Cloud droplet effective radius
Reff,ice Ice crystal effective radius
RH Ambient relative humidity
Rv R/Ma

Rvol,ice Volumetric ice crystal radius,
(

3qi
4πNiρi

)1/3

Si,c Clear sky saturation ratio
SCF Supercooled cloud fraction
Scrit Critical saturation ratio
Si Saturation ratio with respect to ice
Si,max Maximum water vapor supersaturation with respect to ice
Si,wsat Value ofSi at water saturation
Sl,max Maximum water vapor supersaturation with respect to water
s̄p,x Mean particle surface area of the x species
SWCF Shortwave cloud forcing
t Time
T Temperature
Tv andT ′

v Virtual temperature of the cloud and the environment, respectively
TWP Total water path
U Horizontal wind
w̄ Mean vertical velocity
wls Large-scale vertical velocity
wsub Subgrid-scale vertical velocity
w̄+

sub Positive mean vertical velocity
wterm Hydrometeor terminal velocity
wcp Cumulus vertical velocity
W Convective mass flux
z Altitude
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Code availability

The GEOS-5 source code is available un-
der the NASA Open Source Agreement at
http://opensource.gsfc.nasa.gov/projects/GEOS-5/.
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