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Abstract. Being able to accurately estimate parameters char-
acterising land surface interactions is currently a key scien-
tific priority due to their central role in the Earth’s global
energy and water cycle. To this end, some approaches have
been based on utilising the synergies between land surface
models and Earth observation (EO) data to retrieve relevant
parameters. One such model is SimSphere, the use of which
is currently expanding, either as a stand-alone application
or synergistically with EO data. The present study aimed at
exploring the effect of changing the atmospheric sounding
profile on the sensitivity of key variables predicted by this
model assuming different probability distribution functions
(PDFs) for its inputs/outputs. To satisfy this objective and to
ensure consistency and comparability to analogous studies
conducted previously on the model, a sophisticated, cutting-
edge sensitivity analysis (SA) method adopting Bayesian
theory was implemented on SimSphere. Our results did not
show dramatic changes in the nature or ranking of influen-
tial model inputs in comparison to previous studies. Model
outputs examined using SA were sensitive to a small number
of the inputs; a significant amount of first-order interactions
between the inputs was also found, suggesting strong model
coherence. Results showed that the assumption of different
PDFs for the model inputs/outputs did not have an important
bearing on mapping the most responsive model inputs and
interactions, but only the absolute SA measures. This study
extends our understanding of SimSphere’s structure and fur-
ther establishes its coherence and correspondence to that of a
natural system’s behaviour. Consequently, the present work
represents a significant step forward in the global efforts on
SimSphere verification, especially those focusing on the de-
velopment of global operational products from the model
synergy with EO data.

1 Introduction

Understanding the natural processes of the Earth as well as
how the different components (i.e. lithosphere, hydrosphere,
the biosphere and atmosphere) of the Earth’s systems inter-
play, especially in the context of global climate change, has
been recognised by the global scientific community as a very
urgent and important research direction requiring further in-
vestigation (Battrick et al., 2006). This requirement is also of
crucial importance for addressing directives such as the EU
Water Framework Directive. To this end, being able to accu-
rately obtain spatio-temporal estimates of parameters such as
the latent (LE) and sensible (H ) heat fluxes as well as of soil
moisture is of great importance. This is due to their important
role in many physical processes characterising land surface
interactions of the Earth system as well as their practical use
in a wide range of multidisciplinary studies and applications
(Kustas and Anderson, 2009; Seneviratne et al., 2010).

As a result, deriving information on the spatio-temporal
distribution of these parameters has attracted the attention of
scientists from many disciplines. Over the past few decades,
a wide variety of approaches for their retrieval have been
proposed operating at different observation scales, including
data sets from ground instrumentation, simulation models
and Earth observation (EO). Recent studies have also focused
on exploring the synergies between EO data and land surface
process models (see reviews by Olioso, 1992 and Petropou-
los and Carlson, 2011). Essentially, these techniques endeav-
our to provide improved predictions by combining the hori-
zontal coverage and spectrally rich content of EO data with
the vertical coverage and excellent temporal resolution of
simulation process models.
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Figure 1. Left: the different layers of the SVAT model in the vertical domain; right: a schematic representation of the surface energy balance
components computation in the SVAT model (after SimSphere user’s manual available athttp://www.aber.ac.uk/en/iges/research-groups/
earth-observation-laboratory/simsphere/workbook/preface/).

One such group of approaches, the so-called “triangle”
method (Carlson, 2007), is used to predict regional esti-
mates of LE,H fluxes and soil moisture content (SMC).
SimSphere is a soil–vegetation–atmosphere–transfer (SVAT)
model, originally developed by Carlson and Boland (1978)
and considerably modified to its current state by Gillies et
al. (1997) and Petropoulos et al. (2013a). SVAT models are
essentially mathematical representations of one-dimensional
“views” of the physical mechanisms controlling energy and
mass transfers in the soil–vegetation–atmosphere continuum,
providing deterministic estimates of the time course of vari-
ous variables characterising land surface interactions at time
steps appropriate to the dynamics of atmospheric processes
(Olioso et al., 1999). An overview of SimSphere use was re-
cently provided by Petropoulos et al. (2009a). The different
facets of the SVAT model’s overall structure – namely the
physical, the vertical and the horizontal – are illustrated in
Fig. 1 (left). An extensive mathematical description of the
model can be found in Carlson and Boland (1978), Carlson
et al. (1981) and Gillies and Carlson (1995). The Sim-
Sphere model is maintained and is distributed freely globally
(both the executable version and model code) from Aberys-
twyth University, United Kingdom (http://www.aber.ac.uk/
simsphere).

As regards the triangle method in particular, it has its foun-
dations in the physical properties encapsulated in a satellite-
derived scatterplot of surface temperature (Ts) and vege-
tation index (VI), linked with SimSphere. Petropoulos et
al. (2009b) have underlined the potential of this group of
approaches for operational implementation in deriving es-
timates of LE/H fluxes and/or SMC. A recent description
of the triangle workings can be found in Petropoulos and
Carlson (2011). At present, variants of this method are ex-
plored – or even some already implemented in practice –
for deriving, in some cases operationally and on a global
scale, estimates of LE andH fluxes and/or SMC (Chauhan et
al., 2003; Piles et al., 2011; ESA STSE, 2012). In addition,

SimSphere use is continually expanding worldwide both as
an educational and as a research tool – used either as a stand-
alone application or synergistically with EO data – to con-
duct studies aiming to improve understanding of land surface
processes and their interactions. Considering the research
and practical work with respect to SimSphere use, it is ev-
idently of primary importance to execute a variety of valida-
tory tests to evaluate its adequacy and coherence in terms
of its ability to accurately and realistically represent Earth’s
surface processes.

Performing a sensitivity analysis (SA) provides an impor-
tant and necessary validatory component of any computer
simulation model or modelling approach before it is used
in performing any kind of analysis. SA allows determining
the effect of changing the value of one or more input vari-
ables of a model and observing the consequence that this has
on given outputs simulated by the model. Its implementa-
tion on a model allows understanding the model’s behaviour,
coherence and correspondence to what it has been built to
simulate (Saltelli et al., 1999, 2000; Nossent et al., 2011).
As such, SA provides a valuable method to identify signifi-
cant model inputs as well as their interactions and rank them
(Chen et al., 2012), offering guidance to the design of exper-
imental programs as well as to more efficient model coding
or calibration. Indeed, by means of a SA unrelated parts of
the model may be dropped or a simpler model can be built or
extracted. The latter can reduce, in some cases significantly,
the required computing power while maintaining the mod-
els’ correspondence to a natural system’s behaviour in the
real world (Holvoet et al., 2005).

A range of SA approaches have been proposed, a com-
prehensive overview of which can be found for example in
Saltelli et al. (2000). One group includes the so-called global
SA (GSA) methods. These techniques aim to apportion the
output variability to the variability of the input parameters
when they vary over their whole uncertainty domain, gen-
erally described using probability densities assigned to the
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model’s inputs. The sensitivity of the input parameters is
examined based on the use of samples derived directly from
the model, which are distributed across the parameter domain
of interest. These methods, despite their high computational
demands, have become popular in environmental modelling
due to their ability to incorporate parameter interactions and
their relatively straightforward interpretation (Nossent et al.,
2011). They also account for the influence of the input pa-
rameters over their whole range of variation, which in turn
enables obtaining SA results independent of any “modelers’
prejudice”, or site-specific bias (Song et al., 2012).

Petropoulos et al. (2009a) in a recent review of SimSphere
exploitation underlined the importance of carrying out SA
experiments on the model, as part of its overall verification.
In response, Petropoulos et al. (2009c, 2010, 2013b, c, d)
performed advanced GSA on SimSphere based on a Gaus-
sian process (GP) emulator. As previous SA studies on Sim-
Sphere had been scarce, their results provided for the first
time an insight into the model architecture, allowing the map-
ping of the sensitivity between the model inputs and key
model outputs. Although all the model input parameters were
varied across their full range of variation by those studies,
a particular atmospheric sounding setting had been used in
these GSA experiments by the authors. In addition, the effect
of different probability distribution functions (PDFs) for the
model inputs/outputs to the obtained had not been adequately
explored.

In this context, the aim of the present study was to perform
a GSA on SimSphere using an atmospheric sounding derived
from a different region and evaluate the effect of atmospheric
sounding on the SA results obtained on SimSphere assuming
different PDFs for the model inputs/outputs. This will allow
us to extend our understanding of this model structure and
further establishing its coherence.

2 The Bayesian sensitivity analysis method

To satisfy the objectives of this study and to ensure con-
sistency and comparability of our work to previous stud-
ies on SimSphere, SA is conducted here by employing a
sophisticated, cutting-edge GSA method adopting Bayesian
Analysis of Computer Code Outputs (BACCO; Kennedy
and O’Hagan, 2001). It is implemented using the Gaus-
sian Emulation Machine (GEM)-SA software, the develop-
ment of which was funded by the National Environmen-
tal Research Council, United Kingdom. The theory behind
the BACCO GEM-SA technique can be found by Oakley
and O’Hagan (2004); detailed descriptions of the mathemat-
ical principles governing the GP emulation are available in
Kennedy and O’Hagan (2001), Kennedy (2004) and Oakley
and O’Hagan (2004). The use of the GPs to model unknown
functions in Bayesian statistics dates back to Kimeldorlf and
Wahba (1970) and O’Hagan (1978).

Briefly, BACCO GEM-SA implementation consists of two
phases: first, a statistically based representation (i.e. an emu-
lator) of the model is built from training data obtained from
simulations derived from the actual model, which have been
designed to cover the multidimensional input space using a
space-filling algorithm. Second, the emulator itself is used
to compute a number of statistical parameters to characterise
the sensitivity of the targeted model output in respect to its
inputs.

BACCO SA implementation starts from a prior belief
about the code (i.e. that it has no numerical error), and then –
based on a GP model, Bayes’ theorem and a set of the model
code runs – this assumption is refined to yield the posterior
distribution of the output, which is the emulator. In building
the emulator, the most important prior assumption is that the
output emulator is a reasonably smooth function of its in-
puts. On this basis, the emulator is used to calculate a mean
function, which attempts to pass through the observed runs at
the same time it quantifies the remaining uncertainty due to
the emulator being an approximation to the true code. Within
BACCO, various statistical measures are generated automat-
ically when the emulator is built in order to check the accu-
racy of both types of output.

In simple mathematical terms, the basic SA output from
GEM-SA includes a direct decomposition of the model out-
put variance into factorial terms, called “importance mea-
sures” (e.g. Ratto et al., 2001):

V (Y ) =

s∑
i=1

Di +

∑
iCj

Dij + . . . + D1...s (1)

Di = V (E(Y |Xi)), (2)

Dij = V (E(Y
∣∣Xi,Xj )) − V (E(Y

∣∣Xi))

− V (E(Y
∣∣Xj )), (3)

wheres denotes the number of inputs (so-called “factors”),
−V (Y ) is the total variance of the output variableY , Di is
the importance measure for inputXi , Dij is the importance
measure for the interaction between inputsXi andXj , D1...s

denote similar formulae for the higher-order terms.E(Y |Xi)

is the conditional expectation ofY given a value ofXi and
the variance ofE(Y |Xi) is taken over all inputs factors which
are fixed in the conditional expectations.

In addition, in the BACCO method, sensitivity indices are
computed by dividing the importance measures from Eq. (1)
by the total output variance as follows:

Si =
Di

V (Y )
, Sij =

Dij

V (Y )
. (4)

These ratiosSi for i = 1, . . . , s are called main effects or
first-order sensitivity indices, because eachSi delivers a di-
rect measure of the share of the output variance explained by
X. The main effect or first-order sensitivity indexSi is the
expected amount of variance that would be removed from
the total output variance if the true value ofXi were known

www.geosci-model-dev.net/7/1873/2014/ Geosci. Model Dev., 7, 1873–1887, 2014



1876 G. P. Petropoulos et al.: SimSphere model sensitivity analysis

(within its uncertainty range). Thus, this is a measure that
quantifies the relative importance of an individual input vari-
able Xi, in driving the total output uncertainty, indicating
where to direct future efforts to reduce that uncertainty. Us-
ing similar formulae, higher-order sensitivity indices (joint
effect indices) are also computed in GEM-SA to compute
the sensitivity of the model output to input parameter inter-
actions. However, in practice, because the estimation ofSi or
Sij , or higher order, can be computationally very expensive,
the SA is rarely carried out further after the computation of
first-order interaction indices (i.e. the second term of Eq. 5
below). This is also the case with GEM-SA.

Thus, from the definitions of the above indices, and assum-
ing non-correlated inputs, a complete series development of
the output variance can be achieved:∑

i

Si +

∑
iCj

Sij +

∑
iCjCm

Sijm + . . . + S12...k = 1, (5)

where higher-order indices are defined in a similar way to
Eq. (7). This decomposition of variance into main effects
and interactions is commonly known as analysis of variance–
high-dimensional model representation (HDMR).

The percentage variance contribution of each input’s main
effect is also reported in BACCO, providing a simple means
of ranking the inputs in terms of their importance. The per-
centage variance component associated with each input mea-
sures the amount its main effect contributes to the total output
variance, based on the uncertainty distributions for all inputs.
It should be noted that, in general, summing the main effect
contributions will not total to 100 % because of the additional
contributions from the interaction effects. However, the total
can be used to determine the degree of interactions.

In addition to the above indices, another measure that is
computed in GEM-SA is the total sensitivity index. This is
used to provide a cheaper computational method of investi-
gating the higher-order sensitivity effects as it collects all the
interactions involvingXi in one single term. The total sensi-
tivity index of a given factorXi takes into account the main
effect and the effect of all its interactions with other model
inputs, and is defined as

STi =
Di + Di,∼i

V (Y )
, (6)

whereDi,∼i indicates all interactions between factorXi and
all the others (X∼i).

The total sensitivity index represents the expected amount
of output variance that would remain unexplained (residual
variance) if onlyXi were left free to vary over its range,
the value of all other variables being known. The useful-
ness of the STi is that it is possible to compute them with-
out necessarily evaluating the single indicesSi (and higher-
order ones), making the analysis computationally affordable.
The total sensitivity indices are generally used to identify
unessential variables (i.e. those that have no importance ei-
ther singularly or in combination with others) while building

a model. The existence of large total effects relative to main
effects implies the presence of interactions among model in-
puts.

The BACCO method has already supplied useful insights
in various disciplines and in various SA studies underly-
ing the advantages of this approach (Kennedy and O’Hagan,
2001; Johnson et al., 2011; Kennedy et al., 2012; Parry et
al., 2012). Petropoulos et al. (2009c) demonstrated for the
first time the use of the BACCO method in performing a
SA on SimSphere, providing an insight into the model struc-
ture. Petropoulos et al. (2010) performed a comparative study
of various emulators including BACCO GEM, investigating
the effect of sampling method and size on the sensitivity of
key target quantities simulated by SimSphere. Their results
showed that the sampling size and method did affect the SA
results in terms of absolute values, but had no bearing in iden-
tifying the most sensitive model inputs and their interactions,
for model outputs on which SA was performed.

3 Sensitivity analysis implementation

To ensure consistency and comparability with previous anal-
ogous SA studies on SimSphere, the BACCO GEM-SA was
implemented herein along the lines of previous similar GSA
studies applied to that model (Petropoulos et al., 2009c,
2010, 2013b, c, d). The only difference was the use of a dif-
ferent atmospheric sounding profile derived from a different
location and season. Thus, the sensitivity of the following
SimSphere outputs was evaluated:

– Daily Average Net Radiation (Rndaily),

– Daily Average Latent Heat flux (LEdaily),

– Daily Average Sensible Heat flux (Hdaily),

– Daily Average Tair (Tairdaily),

– Daily Average Surface Moisture Availability (Modaily),

– Daily Average Evaporative Fraction (EFdaily),

– Daily Average Non-Evaporative Fraction (NEFdaily),

– Daily Average Radiometric Temperature (Traddaily).

A design space of 400 SimSphere simulations developed
using the LP-tau sampling method. In creating the input
space from the 400 model runs, all SimSphere inputs were al-
lowed to vary, except those of the geographical location (lat-
itude/longitude) and atmospheric profile (Fig. 2), for which
a priori real observations for the 7 August 2002 were used
from the Loobos CarboEurope site, located in the Nether-
lands (52◦10′04.29′′ N, 05◦44′38.25′′ E). In accordance with
previous GSA studies on SimSphere, GEM-SA was imple-
mented assuming both normal and uniform PDFs for the in-
puts/outputs from the model. For all variables, the theoretical
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Figure 2.Atmospheric soundings used in the present study in comparison to the Petropoulos et al. (2009c) study for temperature(a, b), wind
direction(c, d) and wind speed(e, f).

ranges of values were defined from the entire possible theo-
retical range which they could take in SimSphere parameter-
isation (Table 1). The potential of co-variation between the
parameters was assumed negligible, as in previous studies. In
addition, the emulator performance was evaluated based on

the “leave final 20 % out” method offered in GEM-SA, again
in accordance with previous GEM-SA studies conducted to
the model.
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Table 1. Summary of the SimSphere inputs considered in the GSA implementation. Units of each of the model inputs, where appropriate,
are provided in brackets.

Model input Actual name of Process in which Min Max
short name the model input each parameter is involved value value

X1 Slope (degrees) time & location 0 45
X2 Aspect (degrees) time & location 0 360
X3 Station height (metres) time & location 0 4.92
X4 Fractional vegetation cover (%) vegetation 0 100
X5 LAI (m2 m−2) vegetation 0 10
X6 Foliage emissivity (unitless) vegetation 0.951 0.990
X7 [Ca] (external [CO2] in the leaf) (ppmv) vegetation 250 710
X8 [Ci] (internal [CO2] in the leaf) (ppmv) vegetation 110 400
X9 [03] (ozone concentration in the air) (ppmv) vegetation 0.0 0.25
X10 Vegetation height (metres) vegetation 0.021 20.0
X11 Leaf width (metres) vegetation 0.012 1.0
X12 Minimum stomatal resistance (s m−1) plant 10 500
X13 Cuticle resistance (s m−1) plant 200 2000
X14 Critical leaf water potential (bar) plant −30 −5
X15 Critical solar parameter (W m−2) plant 25 300
X16 Stem resistance (s m−1) plant 0.011 0.150
X17 Surface moisture availability (vol/vol) hydrological 0 1
X18 Root zone moisture availability (vol/vol) hydrological 0 1
X19 Substrate max volum. water content (vol/vol) hydrological 0.01 1
X20 Substrate climatol. mean temperature (◦C) surface 20 30
X21 Thermal inertia (W m−2 K−1) surface 3.5 30
X22 Ground emissivity (unitless) surface 0.951 0.980
X23 Atmospheric precipitable water (cm) meteorological 0.05 5
X24 Surface roughness (metres) meteorological 0.02 2.0
X25 Obstacle height (metres) meteorological 0.02 2.0
X26 Fractional cloud cover (%) meteorological 1 10
X27 RKS (satur. thermal conduct. (Cosby et al., 1984) soil 0 10
X28 Cosby B (see Cosby et al., 1984) soil 2.0 12.0
X29 THM (satur. vol. water cont.) (Cosby et al., 1984) soil 0.3 0.5
X30 PSI (satur. water potential) (Cosby et al., 1984) soil 1 7

4 Results

4.1 Emulator validation

The uncertainty of the SA due to the performance of the
emulator was evaluated on the basis of a number of statis-
tical measures computed internally by GEM-SA. Those in-
cluded the “cross-validation root mean square error”, “cross-
validation root mean squared relative error” and the “cross-
validation root mean squared standardised error”. In addi-
tion a unitless parameter called “roughness value”, also com-
puted internally in GEM-SA, was used. This parameter pro-
vides an estimate of the changes in model outputs in response
to changes in the inputs to the model. Finally, the “sigma-
squared” statistical parameter, also computed within GEM-
SA, was also used to statistically appreciate the performance
of the emulator build. Within BACCO GEM-SA, this ex-
presses the variance of the emulator after standardising the

output, and effectively provides a measure of the quality of
the fit of the emulator to the original model code.

Tables 2 and 3 summarise the results from the compu-
tation of the main statistical measures used to evaluate the
performance of the emulator. As can be observed, sigma-
squared values for all parameters were low, as were cross
validation root mean square error values for all model out-
puts. Cross-validation root mean squared relative error var-
ied widely between 3.03 %(Tairdaily) and 41.63 % (Hdaily).
Roughness values for the majority of the model inputs were
reported having very low values for both normal and uniform
PDFs, indicating that the built emulator is a very good ap-
proximation of the actual model. For thermal inertia, for ex-
ample, roughness values are 0 for all model outputs with the
exception ofH flux and daily LE andH fluxes (which are all
0.01). Most roughness values obtained were below 1.0, sug-
gesting that the emulator responded smoothly to variations
in model inputs. Roughness values above 1.0 were rare (e.g.
vegetation height and surface soil moisture availability (Mo)
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for Hdaily, and aspect, fractional vegetation cover, vegetation
height and Mo forTraddaily). Noticeably, the results obtained
herein in regards to the emulator accuracy were largely com-
parable to previous GSA studies on SimSphere (Petropoulos
et al., 2009c, 2013b, c, d), suggesting a good emulator build
able to emulate the target quantities examined reasonably ac-
curately.

4.2 SA results

Tables 4 and 5 summarise the relative sensitivity of the model
outputs with respect to its inputs, for both the cases of normal
and uniform PDF assumptions for the model inputs/outputs.
Input parameters with a main effect> 1 % and/or> 1 % total
effect are highlighted in bold. Figure 3 exemplifies the main
effect and total effects for each model output of which the
SA was examined. The following sections systematically de-
scribe the main results obtained in terms of the SA for both
cases of PDF assumption, focusing primarily on the analysis
of the main and total SA indices computed.

4.2.1 Parameter sensitivity forRndaily

Main effects and total effects from 0 to 50.1 % and 0 to
63.6 %, respectively, for normal PDFs (Table 4, Fig. 3) and
from 0 to 48.1 % and 0 to 65.7 % (Table 5), respectively, in
the case of uniform PDF assumption. Under normal PDF
assumption, the inputs with the largest percentage variance
contribution were aspect (50.1 %), slope (20.3 %) and Fr
(7.2 %), and LAI (2.1 %) and Mo (3.6 %) were also relevant.
As Table 4 shows, these parameters also contributed signif-
icantly to the total effects, although vegetation height also
contributed here (1.2 %). Clearly, changing the PDFs to uni-
form did not significantly alter the nature or the ranking of
the most important model inputs (Table 5, Fig. 3). Yet, it is
noticeable that for this PDF assumption, surface roughness
input became more important, contributing 1.1 % to the to-
tal effects. In summary, the model input parameters with the
highest total effects (i.e. those to whichRndaily is most sensi-
tive) were aspect, slope, Fr, LAI, Mo, vegetation height and
surface roughness. Only nine significant (> 0.1 %) first-order
interactions were found for this parameter assuming a normal
PDF and assuming a uniform PDF for the model inputs. As-
suming a uniform PDF, the most significant first-order inter-
actions were between slope and aspect (13.4 %) and between
Fr and LAI (0.6 %). For normal PDFs the interaction between
slope and aspect was by far the most important (10.20 %). In-
teractions between aspect and Fr (0.4 %), Fr and LAI (0.3 %)
and aspect and Mo (0.3 %) were also significant.

4.2.2 Parameter sensitivity forHdaily

Main effects and total effects were lower in this case and
ranged from 0 to 15.2 % and from 0 to 31.1 %, respectively,
for normal PDFs (Table 4) and from 0 to 16.6 % and 0
to 30.4 %, respectively, for uniform PDFs (Table 5). Under

normal PDFs, the inputs parameters with the largest percent-
age variance contribution were Fr (15.2 %), Mo (11.7 %), as-
pect (10.9 %) and vegetation height (10.4 %). Surface rough-
ness (3.5 %) and slope (1.4 %) were also important. In terms
of the total effects, aspect was the most important parameter
(31.1 %) for the simulation ofHdaily by the model, followed
by vegetation height (29.7 %), Mo (26.3 %) and Fr (25.5 %).
A number of other parameters also showed significant total
effects (Table 4). The nature and rank of significant input
parameters to main effects was also not changed by chang-
ing the PDFs to uniform (Table 5, Fig. 3). In terms of the
total effects, however, vegetation height becomes the most
important by a small margin (30.4 % compared to 30.1 %
for aspect). Numerous important input parameters are seen
to influenceHdaily therefore, with the most important be-
ing aspect, Fr, vegetation height, Mo and surface rough-
ness. A large number of first-order interactions with values
higher than 0.1 % were observed forHdaily assuming a uni-
form PDF (32 in total) and assuming a normal PDF (39 in
total). Assuming a uniform PDF the most important inter-
actions were between vegetation height and surface rough-
ness (4.76 %), Fr and Mo (2.46 %), Fr and vegetation height
(1.95 %), aspect and surface roughness (1.67 %) and aspect
and Mo (1.40 %). The most significant interaction assum-
ing a normal PDF was between vegetation height and sur-
face roughness (4.31 %), but interactions between aspect and
surface roughness (2.52 %), Mo (1.71 %), vegetation height
(1.13 %) and O3 in the air (0.72 %) as well as interactions
between Fr and Mo (2.26 %) and vegetation height (1.91 %)
were also found. In terms of second-order or higher inter-
actions, a higher level of significant interactions was found,
with 16.8 and 21.9 % noted assuming normal and uniform
PDFs, respectively.

4.2.3 Parameter sensitivity forLEdaily

As regards theLEdaily, SA results showed ranges in main
effects and total effects ranging from 0 to 36.0 % and 0 to
51.9 %, respectively, for normal PDF assumption (Table 4)
and from 0 to 29.8 % and 0 to 48.0 %, respectively, for
uniform PDFs (Table 5, Fig. 3). Under normal PDFs, the
model inputs with the highest percentage variance contribu-
tion were those of aspect (36.0 %), Mo (17.6 %), Fr (8.1 %),
slope (8.0 %) and cuticle resistance (1.0 %). This is also mir-
rored in the total effects results obtained, yet at higher per-
centage contributions (e.g. 51.9 % for the aspect). Both PSI
(saturated water potential) and substrate maximum volumet-
ric water content contributed> 1 % to the total effects also.
Once again, the nature and rank of significant model input
parameters was mirrored when the PDFs were changed to
uniform, but additional parameters contribute to the total ef-
fects, including [Ca], [O3] in the air, ground emissivity, RKS
(saturated thermal conductivity), Cosby B and THM (satu-
rated volume water content). In summary, results suggest that
the most important model inputs influencing the simulation

www.geosci-model-dev.net/7/1873/2014/ Geosci. Model Dev., 7, 1873–1887, 2014



1880 G. P. Petropoulos et al.: SimSphere model sensitivity analysis

Table 2.Emulator accuracy statistics for the SA tests conducted in our study (under both normal and uniform PDF assumptions for the model
inputs/outputs).

Fitted model parameters (based on standardised input/output)Rndaily Hdaily LEdaily Traddaily Modaily Tairdaily EFdaily NEFdaily

Sigma-squared: 0.413 1.619 1.057 0.875 1.240 1.630 1.483 1.483
Emulator accuracy:
Cross-validation root mean squared error (W m−2): 25.060 34.776 28.798 2.771 31.012 0.491 0.082 0.082
Cross-validation root mean squared relative error (%): 6.349 41.633 23.485 7.913 13.814 3.030 20.033 25.292
Cross-validation root mean squared standardised error: 1.111 1.790 1.484 1.117 1.474 1.505 1.717 1.717

Table 3. Summarised statistics concerning the emulator accuracy evaluation for the different SimSphere model outputs examined in our
study. Bold font highlights the roughness values of the model inputs with values greater than 1.0. Rows X1 to X30 show roughness values
for the different model outputs examined (for normal and uniform PDFs).

Model Inputs Rndaily Hdaily LEdaily Traddaily Modaily Tairdaily EFdaily NEFdaily

X1 1.842 0.092 0.479 0.755 0.688 0.488 0.049 0.049
X2 12.728 4.317 8.451 8.557 7.638 7.247 0.617 0.617
X3 0.156 0.289 0.105 0.013 0.611 0.187 0.043 0.043
X4 0.643 0.672 0.931 1.307 0.668 0.838 1.845 1.845
X5 0.608 0.065 0.062 0.223 1.027 0.035 0.150 0.150
X6 0.022 0.053 0.000 0.015 0.010 0.000 0.000 0.000
X7 0.001 0.102 0.094 0.000 0.012 0.000 0.091 0.091
X8 0.000 0.007 0.016 0.000 0.038 0.005 0.035 0.035
X9 0.174 0.172 0.121 0.338 0.018 0.201 0.002 0.002
X10 0.377 2.389 0.000 1.036 0.137 2.272 4.396 4.396
X11 0.019 0.054 0.040 0.034 0.156 0.030 0.030 0.030
X12 0.000 0.008 0.003 0.000 0.000 0.000 0.386 0.386
X13 0.022 0.048 0.161 0.043 0.030 0.040 0.217 0.217
X14 0.014 0.000 0.001 0.010 0.004 0.019 0.037 0.037
X15 0.016 0.000 0.000 0.071 0.000 0.009 0.000 0.000
X16 0.011 0.023 0.048 0.058 0.047 0.000 0.033 0.033
X17 1.197 2.146 1.416 1.048 0.408 0.422 1.346 1.346
X18 0.025 0.000 0.056 0.007 0.131 0.000 0.135 0.135
X19 0.000 0.000 0.077 0.004 0.048 0.000 0.070 0.070
X20 0.012 0.006 0.054 0.000 0.107 0.005 0.000 0.000
X21 0.005 0.013 0.000 0.000 0.000 0.002 0.011 0.011
X22 0.007 0.000 0.101 0.041 0.000 0.000 0.010 0.010
X23 0.004 0.000 0.042 0.104 0.055 0.003 0.098 0.098
X24 0.176 3.328 0.064 0.185 0.329 4.195 1.384 1.384
X25 0.030 0.000 0.053 0.145 0.169 0.070 0.000 0.000
X26 0.008 0.089 0.058 0.032 0.000 0.000 0.105 0.105
X27 0.000 0.000 0.092 0.000 0.026 0.000 0.000 0.000
X28 0.012 0.046 0.125 0.034 0.222 0.000 0.091 0.091
X29 0.079 0.178 0.092 0.102 0.204 0.026 0.022 0.022
X30 0.079 0.006 1.710 0.083 0.054 0.174 0.003 0.003

of LEdaily were aspect, Mo, Fr and slope. Assuming uniform
PDFs for the model inputs, two first-order interactions domi-
nate for this parameter – those between slope and aspect once
more (6.8 %) and those between Fr and Mo (6.8 %). Inter-
actions between aspect and Mo (1.0 %) and Fr (4.6 %), re-
spectively, are also important. When normal PDFs for model
inputs/outputs were assumed, 24 first-order interactions with
values higher than 0.1 % were observed, and, once again, the
interaction between slope and aspect (6.1 %) were the most
important. However, important interactions between Fr and

Mo (4.6 %), aspect and Mo (1.2 %) and between aspect and
Fr (0.8 %) were also observed.

4.2.4 Parameter sensitivity forTraddaily

Main effects and total effects forTraddaily simulation by Sim-
Sphere ranged from 0 to 34.9 % and 0 to 52.0 % respectively,
assuming normal PDFs for the model inputs (Table 4, Fig. 3)
and from 0 to 29.6 % 0 to and 49.2 %, respectively, for the
case of uniform PDFs (Table 5). For normal PDFs the most
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Table 4. Summarised results from the implementation of the BACCO GEM-SA method on the different outputs simulated by SimSphere
using the normal PDFs. Computed main (ME) and total effect (TE) indices by the GEM tool (expressed as %) for each of the model
parameters are shown, whereas the last three lines summarise the percentages of the explained total output variance of the main effects alone
and after including the interaction effects. Input parameters with a variance decomposition of greater than 1 % are highlighted in bold font.

Model Input Rndaily Hdaily LEdaily Traddaily Modaily Tairdaily EFdaily NEFdaily

ME TE ME TE ME TE ME TE ME TE ME TE ME TE ME TE

X1 20.294 31.964 1.388 3.078 7.969 16.245 12.676 24.032 17.129 29.450 1.846 10.1500.991 1.613 0.991 1.613
X2 50.095 63.626 10.944 31.147 36.024 51.870 34.857 52.048 28.462 50.207 21.877 43.797 4.283 8.883 4.283 8.882
X3 0.016 0.353 0.469 4.245 0.066 0.825 0.031 0.150 1.278 4.853 0.411 2.482 0.130 0.610 0.130 0.610
X4 7.161 8.916 15.239 25.509 8.132 16.975 5.586 10.6060.704 6.702 16.655 25.647 10.362 26.932 10.362 26.932
X5 2.060 3.357 0.135 1.710 0.184 0.709 0.049 1.462 12.028 20.080 0.071 0.672 0.060 1.824 0.060 1.824
X6 0.014 0.094 0.142 1.136 0.027 0.028 0.048 0.177 0.030 0.151 0.020 0.022 0.032 0.034 0.032 0.034
X7 0.010 0.015 0.090 2.166 0.049 0.855 0.028 0.029 0.054 0.198 0.037 0.039 0.0651.086 0.065 1.086
X8 0.008 0.008 0.120 0.262 0.031 0.181 0.020 0.021 0.065 0.474 0.102 0.200 0.060 0.544 0.060 0.544
X9 0.029 0.465 0.093 3.309 0.098 0.898 0.149 1.703 0.032 0.222 0.067 2.669 0.093 0.120 0.093 0.120
X10 0.427 1.234 10.357 29.664 0.015 0.016 3.293 7.415 0.803 2.066 7.832 22.447 8.155 24.214 8.155 24.214
X11 0.021 0.095 0.275 1.401 0.350 0.677 0.127 0.432 0.177 2.093 0.044 0.500 0.308 0.759 0.308 0.759
X12 0.006 0.007 0.137 0.306 0.065 0.091 0.026 0.027 0.033 0.034 0.058 0.060 0.4423.400 0.442 3.400
X13 0.134 0.203 0.158 1.041 1.546 2.699 0.609 0.922 0.151 0.490 0.247 0.929 1.652 4.295 1.653 4.295
X14 0.013 0.066 0.088 0.090 0.037 0.052 0.074 0.155 0.131 0.174 0.097 0.395 0.155 0.599 0.155 0.599
X15 0.024 0.077 0.037 0.039 0.041 0.042 0.070 0.506 0.030 0.031 0.122 0.260 0.025 0.026 0.025 0.026
X16 0.021 0.057 0.242 0.717 0.021 0.422 0.168 0.563 0.042 0.648 0.055 0.057 0.042 0.477 0.042 0.477
X17 3.554 5.219 11.669 26.284 17.567 27.166 16.911 21.465 3.563 7.129 7.010 11.169 38.200 49.518 38.199 49.518
X18 0.071 0.160 0.099 0.101 0.251 0.707 0.095 0.159 0.0541.229 0.143 0.145 0.835 2.507 0.835 2.507
X19 0.010 0.010 0.054 0.056 0.643 1.300 0.056 0.090 0.284 0.735 0.033 0.035 0.2861.055 0.286 1.056
X20 0.083 0.125 0.190 0.308 0.098 0.538 0.346 0.347 0.7491.608 0.167 0.256 0.036 0.038 0.036 0.038
X21 0.032 0.050 0.228 0.487 0.029 0.030 0.043 0.044 0.035 0.037 0.105 0.137 0.072 0.234 0.072 0.234
X22 0.016 0.043 0.119 0.121 0.130 0.841 0.043 0.449 0.055 0.057 0.094 0.096 0.045 0.194 0.045 0.194
X23 0.009 0.025 0.052 0.054 0.032 0.378 0.042 0.718 0.124 0.653 0.025 0.081 0.0661.239 0.066 1.239
X24 0.285 0.745 3.509 24.425 0.222 0.707 0.853 2.332 1.391 4.019 6.465 23.644 1.318 9.913 1.318 9.913
X25 0.010 0.129 0.049 0.051 0.044 0.552 0.0511.067 0.061 1.551 0.042 1.070 0.075 0.076 0.075 0.076
X26 0.030 0.059 0.264 2.020 0.079 0.625 0.087 0.368 0.051 0.052 0.047 0.049 0.0501.240 0.050 1.240
X27 0.005 0.005 0.043 0.045 0.032 0.909 0.017 0.018 0.053 0.330 0.031 0.033 0.026 0.028 0.026 0.028
X28 0.035 0.075 0.072 1.019 0.044 0.882 0.049 0.321 0.374 2.540 0.082 0.084 0.224 1.261 0.224 1.261
X29 0.058 0.289 0.402 2.995 0.028 0.866 0.344 1.024 0.103 2.105 0.206 0.585 0.118 0.404 0.118 0.404
X30 0.036 0.276 0.074 0.199 0.285 5.121 0.096 0.781 0.042 0.661 0.071 2.333 0.052 0.099 0.052 0.099
Main effects only 84.568 56.735 74.138 76.844 68.091 64.061 68.258 68.258
1st-order
interactions only

13.486 26.454 19.706 17.916 24.610 24.309 22.129 22.129

2nd- or higher-
order interactions

1.946 16.810 6.155 5.240 7.299 11.630 9.613 9.613

important model inputs were aspect (34.9 %), Mo (16.9 %)
and slope (12.7 %), with Fr and vegetation height also im-
portant. This is mirrored in the total effects, but here LAI,
[O3] in the air, surface roughness, obstacle height and THM
also contributed more than 1 %. The nature and ranking of the
model inputs contributing significant main effects under uni-
form PDFs were largely similar to those of normal PDFs. In
common with the parameters discussed above, therefore, as-
pect, slope, Mo and vegetation characteristics (Fr and height)
exert the most influence onTraddaily. Assuming a uniform
PDF, 21 first-order interactions with values higher than 0.1 %
were reported. The most important was between slope and
aspect (9.5 %), followed by some less important interactions,
e.g. between Fr and Mo (1.2 %) and between aspect and
Mo (0.8 %). Assuming a normal PDF 24 significant first-
order interactions with values higher than 0.1 % were re-
turned. The two most important were once again between
slope and aspect (8.9 %) and between aspect and Mo (0.9 %).
Interactions between Fr and Mo (0.9 %) and aspect and Fr
(0.7 %) were also important. Second-order or higher interac-
tions contributed 5.2 and 8.0 % in the total variance decom-
position for the normal and uniform PDFs, respectively.

4.2.5 Parameter sensitivity forModaily

For main and total effects for normal PDFs, a similar range
was observed forModaily to those of other parameters, from
0 to 28.5 % and 0 to 50.2 %, respectively (Table 4, Fig. 3).
However, a much larger range was observed for these val-
ues under uniform PDFs – from 0 to 96.4 % and 0 to 97.6 %
for main and total effects, respectively (Table 5). For normal
PDFs the most important model input parameters were as-
pect (28.5 %), slope (17.1 %) and LAI (12.0 %) in the main
effects. These were also important in terms of total effects,
but in addition many other factors also become important in
that case, the most significant being Mo (7.1 %), Fr (6.7 %)
and station height (4.9 %). In this case therefore, although
the most significant parameters were, once again, aspect and
slope, many other parameters also appear to contribute to the
sensitivity ofModaily. Evidently, a marked difference in terms
of sensitivity was observed when a uniform PDF is assumed
for this parameter (Table 5, Fig. 3). In this case, the sensi-
tivity is dominated by Mo in both the main and total effects
– 96.4 and 97.6 %, respectively. In the total effects, substrate
maximum volumetric water content and PSI both contributed
to a much lesser degree. For the case of uniform PDFs,
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Table 5. Summarised results from the implementation of the BACCO GEM-SA method on the different outputs simulated by SimSphere
using the uniform PDFs. Computed main (ME) and total effect (TE) indices by the GEM tool (expressed as %) for each of the model
parameters are shown, whereas the last three lines summarise the percentages of the explained total output variance of the main effects alone
and after including the interaction effects. Input parameters with a variance decomposition of greater than 1 % are highlighted in bold font.

Model Input Rndaily Hdaily LEdaily Traddaily Modaily Tairdaily EFdaily NEFdaily

X1 ME TE ME TE ME TE ME TE ME TE ME TE ME TE ME TE
X2 12.975 28.482 1.275 3.143 4.924 14.568 8.652 21.4670.004 0.137 1.629 11.437 1.060 1.835 1.060 1.836
X3 48.063 65.740 8.488 30.090 29.778 48.045 29.559 49.1600.030 0.225 18.069 43.831 2.378 7.725 2.378 7.725
X4 0.011 0.486 0.493 4.965 0.062 1.103 0.054 0.207 0.005 0.064 0.2273.012 0.126 0.747 0.126 0.747
X5 9.495 12.012 16.600 28.455 8.924 21.070 5.572 12.0510.069 0.106 16.940 28.347 9.465 30.328 9.465 30.328
X6 2.588 4.589 0.190 1.926 0.255 0.920 0.046 2.046 0.002 0.002 0.073 0.835 0.043 2.241 0.043 2.241
X7 0.010 0.121 0.122 1.265 0.030 0.031 0.044 0.210 0.004 0.004 0.023 0.025 0.035 0.037 0.035 0.037
X8 0.013 0.020 0.078 2.519 0.044 1.150 0.032 0.033 0.004 0.019 0.042 0.044 0.0431.353 0.043 1.353
X9 0.010 0.010 0.096 0.253 0.042 0.234 0.023 0.025 0.006 0.093 0.098 0.218 0.045 0.653 0.045 0.653
X10 0.035 0.646 0.148 3.845 0.072 1.130 0.140 2.224 0.001 0.020 0.165 3.944 0.100 0.134 0.100 0.134
X11 0.459 1.614 8.144 30.406 0.017 0.018 2.941 8.203 0.002 0.003 5.886 23.266 7.743 27.736 7.743 27.737
X12 0.041 0.140 0.325 1.595 0.342 0.765 0.209 0.603 0.003 0.032 0.046 0.651 0.287 0.857 0.287 0.857
X13 0.008 0.008 0.150 0.341 0.072 0.104 0.030 0.031 0.003 0.003 0.065 0.068 0.3414.153 0.341 4.153
X14 0.179 0.277 0.249 1.234 1.791 3.330 0.689 1.110 0.014 0.038 0.418 1.263 1.885 5.225 1.885 5.225
X15 0.014 0.088 0.087 0.089 0.041 0.060 0.085 0.191 0.005 0.022 0.105 0.496 0.135 0.699 0.135 0.699
X16 0.035 0.111 0.037 0.039 0.046 0.047 0.077 0.682 0.003 0.003 0.149 0.326 0.027 0.029 0.027 0.029
X17 0.026 0.076 0.280 0.811 0.023 0.536 0.172 0.699 0.002 0.002 0.062 0.065 0.060 0.620 0.060 0.620
X18 4.907 7.116 11.788 28.159 20.154 33.046 22.206 28.072 96.361 97.557 8.174 13.430 35.735 49.092 35.735 49.092
X19 0.073 0.196 0.098 0.100 0.321 0.921 0.112 0.195 0.346 0.472 0.162 0.164 0.6352.692 0.635 2.692
X20 0.012 0.013 0.053 0.055 0.708 1.564 0.061 0.105 0.950 2.090 0.037 0.039 0.297 1.262 0.297 1.262
X21 0.092 0.151 0.188 0.319 0.117 0.693 0.396 0.398 0.001 0.002 0.181 0.294 0.039 0.041 0.039 0.041
X22 0.038 0.062 0.192 0.480 0.032 0.034 0.049 0.051 0.002 0.009 0.116 0.156 0.079 0.280 0.079 0.280
X23 0.027 0.065 0.117 0.120 0.120 1.052 0.026 0.532 0.002 0.002 0.106 0.108 0.048 0.233 0.048 0.233
X24 0.011 0.034 0.051 0.054 0.036 0.495 0.048 0.955 0.003 0.003 0.028 0.099 0.0711.620 0.071 1.620
X25 0.405 1.081 3.761 27.617 0.281 0.913 1.136 3.181 0.006 0.015 4.772 26.161 1.217 12.448 1.217 12.448
X26 0.009 0.184 0.049 0.051 0.031 0.687 0.0411.452 0.009 0.019 0.080 1.392 0.081 0.083 0.081 0.083
X27 0.031 0.073 0.250 2.123 0.079 0.774 0.067 0.429 0.004 0.004 0.053 0.055 0.0411.584 0.041 1.584
X28 0.006 0.007 0.042 0.045 0.041 1.128 0.020 0.021 0.015 0.454 0.035 0.037 0.028 0.030 0.028 0.030
X29 0.049 0.106 0.082 1.130 0.040 1.145 0.091 0.446 0.058 0.797 0.093 0.095 0.3731.682 0.372 1.682
X30 0.092 0.436 0.470 3.459 0.090 1.130 0.488 1.384 0.010 0.417 0.201 0.687 0.115 0.480 0.115 0.480

0.022 0.361 0.082 0.220 0.137 6.415 0.046 0.956 0.026 1.103 0.060 3.286 0.055 0.113 0.055 0.113
Main effects Only 79.736 53.985 68.651 73.112 97.950 58.096 62.586 62.586
1st-order
interactions only

17.077 24.146 22.103 18.889 0.830 24.932 22.731 22.731

2nd- or higher-
order interactions

3.187 21.869 9.246 7.999 1.220 16.972 14.683 14.683

only one first-order interaction with values higher than 0.1 %
was observed between Mo and substrate maximum volumet-
ric water content (0.2 %). Thirty-two first-order interactions
with values higher than 0.1 % were reported assuming a nor-
mal PDF for the model inputs/outputs. The interaction be-
tween slope and aspect was once again the most significant
(8.5 %), followed by that between Fr and LAI (2.18 %). In-
teractions between aspect and LAI (1.4 %) and Mo (1.2 %),
respectively, were also important.

4.2.6 Parameter sensitivity forTair daily

Ranges of main and total effects for this parameter were
found to be comparable to the majority of the other parame-
ters discussed previously. For normal PDFs these range from
0 to 21.89 % and from 0 to 43.8 %, respectively (Table 4,
Fig. 3), and for uniform PDFs these range from 0 to 18.1 %
and 0 to 43.8 % (Table 5), respectively. For main effects un-
der normal PDFs the most significant model input parame-
ters were, once again, aspect (21.9 %), Fr (16.7 %), vegeta-
tion height (7.8 %), surface Mo (7.0 %) and surface rough-
ness (6.5 %). The total effects were broadly similar, but sur-
face roughness became the third-most-important parameter,

whereas other inputs (e.g. station height, [O3] in the air,
obstacle height and PSI) become important. Under uniform
PDFs, the most important parameters were aspect (18.1 %),
Fr (16.9 %), Mo (8.2 %), vegetation height (5.9 %) and sur-
face roughness (4.8 %). Under total effects, once again, sur-
face roughness becomes more important, and the same ad-
ditional model parameters as were observed under normal
PDFs also contributed greater than 1 %. Once again, aspect,
Fr, vegetation height and surface roughness seem to be the
most important variables influencingTairdaily.

Twenty-three first-order interactions with values higher
than 0.1 % were found for this parameter, and, once again,
the interaction between slope and aspect is the most impor-
tant (5.2 %), although it is closely followed by interactions
between vegetation height and surface roughness (4.4 %), be-
tween Fr and vegetation height (2.0 %) and between aspect
and surface roughness (1.9 %). Of the 23 first-order interac-
tions higher than 0.1 % also found assuming a normal PDF
for model inputs/outputs, the most important was between
slope and aspect (5.0 %), closely followed by the interactions
between vegetation height and surface roughness (4.1 %)
inputs, but a number of other important interactions are
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Figure 3. Variance decomposition and total effects of the model inputs examined for(A) Rndaily, (B) Hdaily, (C) LEdaily, (D) Traddaily,

(E) Modaily, (F) Tairdaily, (G) EFdaily and(H) NEFdaily. Vertical axis is logarithmic (Log10), with the horizontal red line at 1 % signifying
those parameters that are highlighted in Tables 3 and 4. The definitions of the parameters inx axes have been provided in Table 1.
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evident. These include interactions between aspect and sur-
face roughness (2.3 %), vegetation height (1.5 %), Fr (1.4 %)
and Mo (0.7 %), as well as between Fr and vegetation height
(1.9 %) and surface roughness (1.0 %).

4.2.7 Parameter sensitivity forEFdaily

Once again, the ranges of main and total effects reported
for the sensitivity ofEFdaily were to a large degree similar
to most of the other parameters already discussed. For nor-
mal PDFs, main and total effects of the inputs ranged widely
from 0 to 38.2 % and from 0 to 49.5 %, respectively (Ta-
ble 4, Fig. 3), and for the case of uniform PDFs from 0 to
35.7 % and from 0 to 49.1 %, respectively (Table 5). Mo was
found to be the most important model input parameter here in
terms of main effects under normal PDFs (38.2 %), followed
by Fr (10.4 %), vegetation height (8.2 %) and aspect (4.3 %).
As Table 4 shows, many additional parameters become im-
portant contributors to total effects although the nature and
rank of the most significant parameters does not change.
Once again, Table 5 shows very little differences in terms
of the nature and ranking of the main and total effects un-
der a uniform PDF assumption for the model inputs/outputs.
Therefore, for this parameter simulation in SimSphere, the
most important model input parameters are Mo, Fr, vegeta-
tion height and aspect. Assuming a uniform PDF, 32 first-
order interactions with values higher than 0.1 % were ob-
served for this parameter, with the most important being be-
tween Fr and Mo (5.4 %) and vegetation height (4.2 %), re-
spectively, and between vegetation height and surface rough-
ness (1.9 %). Thirty-one first-order interactions with values
higher than 0.1 % were found assuming normal PDFs. The
two most important are those between Fr and Mo (4.8 %)
and vegetation height (3.7 %). Other important interactions
included those between vegetation height and surface rough-
ness (1.9 %) and Mo (0.8 %), and between Fr and cuticle
resistance (0.7 %). Second- or higher-order interactions for
this parameter assuming normal PDFs were largely similar
to those observed for other parameters.

4.2.8 Parameter sensitivity forNEFdaily

The main and total effects for this parameter assuming both
normal (Table 4, Fig. 3) and uniform PDFs (Table 5) were
very similar (if not identical) to those observed forLEdaily.
The first-order interactions with values higher than 0.1 % for
this parameter were very similar to those forEFdaily with re-
spect to the nature and ranking of the most important interac-
tions assuming both normal and uniform PDFs, as were the
contributions of second-order or higher interactions.

5 Discussion

The aim of this study was to undertake a SA on the Sim-
Sphere SVAT model using different atmospheric sounding

data from another location compared to previous SA stud-
ies on the model, in order to identify whether this had any
impact on the model sensitivity to a set of input parame-
ters. The most important implication of this study is that the
same input parameters (in broadly the same ranking of im-
portance) have been identified as the most significant influ-
ences on model outputs despite the SA using sounding data
from a different site, in a different region and under a dif-
ferent climatic regime. The fact that this has not shown any
major differences in the nature of the model sensitivity, espe-
cially the ranking of importance, is a significant step forward
in terms of the model use, in that it demonstrates the appli-
cability of the model at different sites. It has also shown that
– although the complex combinations of slope, aspect, veg-
etation and soil characteristics that are unique to each site
will introduce some site-specific results (Ellis and Pomeroy,
1975) – in broad terms the most important parameters gov-
erning the sensitivity of model outputs do not change. This
further confirms the findings of Petropoulos et al. (2013b, c)
that, by fixing the relatively unimportant model inputs to typ-
ical value ranges, the dimensionality of SimSphere could be
reduced and its robustness could thus be further improved.
The fact that a large number of significant first-order inter-
actions have been found for almost all the model outputs,
as well as substantial contributions of higher-order interac-
tions, is important since it further confirms that the model is
coherent. This also suggests that no parts of the model are
redundant and that there is no need to remove any element of
the model architecture.

In common with the other recent SA experiments under-
taken on SimSphere (e.g. Petropoulos et al., 2009c, 2013b,
c, d), this study has shown that slope and aspect are the two
most significant input parameters in terms of their influence
on the model outputs, even assuming different PDFs. As has
been outlined in these previous works, the influence of these
topographic parameters is a result of their control on the
amount of incoming solar radiation reaching the surface of
the Earth (Oliphant et al., 2003; Sabetraftar et al., 2011). As
a result they will also influence LE andH fluxes surface tem-
perature by providing energy for evapotranspiration and heat
transfer through the surface energy budget. High levels of in-
coming solar radiation can be translated into high sensible
heat transfers and into high surface temperatures. First-order
interactions between slope and aspect that were higher than
all other first-order interactions for numerous model outputs
further demonstrate the sensitivity of the model outputs to
these parameters.

Once again, in common with other SAs undertaken on the
model, vegetation parameters have been shown to be im-
portant, and the reasons for this discussed at length previ-
ously by Petropoulos et al. (2009c, 2013b, c). In summary,
both Fr and vegetation height may influence the surface en-
ergy budget by influencing the proportion of incoming so-
lar radiation that reaches the surface of the Earth. Large Fr
shades the Earth surface and, as such, will influence sur-
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face temperatures. The proportion of vegetation can affect
the fluxes of both LE andH fluxes through its influence on
evapotranspiration, for example, as well as the proportion of
incoming solar radiation which is reflected and emitted by
the surface. By reducing wind speed and evaporation and
increasing plant transpiration, vegetation height and surface
roughness can influence surface temperatures as well as the
proportion of incoming solar radiation that is converted into
latent or sensible heat. The influence of Mo onLEdaily is to
be expected, as is its influence on LE fluxes. Previous SA
works on SimSphere have shown that Mo can influence air
temperature (Carlson and Boland, 1978; Petropoulos et al.,
2009c, 2013c) because it can exert a significant control on
evapotranspiration (Santanello et al., 2009; Dirmeyer, 2011;
Lockart et al., 2012) and, therefore, the partitioning of net
radiation into LE andH fluxes. The importance of Fr is im-
portant since it is one of the two parameters in the triangle
method, and its more recent modifications (Chauhan et al.,
2003) for deriving LE andH fluxes as well as SMC from EO
data (Petropoulos et al., 2009c) and this work have shown
once again that this method correctly identifies Fr and Mo as
important variables.

The results of this study have significant implications for
the development of successful modelling approaches involv-
ing the use of SimSphere either as a standalone application
or synergistically with EO data. These results evidently fur-
ther confirm the model coherence and solid structure in es-
timating land surface interactions, supporting ongoing work
with the model on a global scale. Results obtained herein can
be used practically to assist in future model parameterisation
and implementation in diverse ecosystem conditions, allow-
ing better understanding of Earth system and feedback pro-
cesses. In particular the synergistic use of SimSphere with
EO data via the triangle method appears to be a promising di-
rection in this respect in providing regional estimates of key
parameters characterising land surface interactions at differ-
ent observational scales exploiting EO technology.

6 Conclusions

This study represents a significant step forward in the vali-
dation of the coherence of the SimSphere SVAT model, an
effort currently ongoing globally. Whereas previous work
has examined the influence of different parameters and PDFs
against real observations collected from a site in Italy, this
study examines the sensitivity of the model against data
collected from a different region with a different climatic
regime. In common with previous works, results confirmed
that, once again, model outputs are only significantly sensi-
tive to a small group of model inputs. Slope and aspect were
the most important, but the influence of vegetation parame-
ters (vegetation height, Fr and surface roughness) and soil
moisture content are also important influences on a num-
ber of output parameters. Significant interactions have also

been found to exist between the input parameters. The latter
suggests that the model is a coherent representation of real-
world processes and that natural feedbacks and interactions
between, for example, vegetation and soil moisture are being
represented.

In common with previous SA on SimSphere, this study
has examined runs of the model at 11 a.m. UTC. Examining
the sensitivity of the model outputs at different times would
be a very important direction in which future SA studies on
SimSphere could be conducted. In combination with direct
comparisons of the model outputs against in situ “reference”
estimates diurnally, conducted at different ecosystem and en-
vironmental conditions, this can assist to further extend our
understanding of the SimSphere structure and establish fur-
ther its coherence and correspondence to the behaviour of
natural systems. It will also provide information that will be
of key scientific and practical value as regards the model use,
particularly as the use of SimSphere is at present expanding
globally.
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