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Abstract. We present a new variational inverse transport
model, named INVICAT (v1.0), which is based on the global
chemical transport model TOMCAT, and a new correspond-
ing adjoint transport model, ATOMCAT. The adjoint model
is constructed through manually derived discrete adjoint
algorithms, and includes subroutines governing advection,
convection and boundary layer mixing, all of which are linear
in the TOMCAT model. We present extensive testing of the
adjoint and inverse models, and also thoroughly assess the
accuracy of the TOMCAT forward model’s representation
of atmospheric transport through comparison with observa-
tions of the atmospheric trace gas SF6. The forward model
is shown to perform well in comparison with these obser-
vations, capturing the latitudinal gradient and seasonal cycle
of SF6 to within acceptable tolerances. The adjoint model
is shown, through numerical identity tests and novel trans-
port reciprocity tests, to be extremely accurate in compari-
son with the forward model, with no error shown at the level
of accuracy possible with our machines. The potential for
the variational system as a tool for inverse modelling is in-
vestigated through an idealised test using simulated obser-
vations, and the system demonstrates an ability to retrieve
known fluxes from a perturbed state accurately. Using basic
off-line chemistry schemes, the inverse model is ready and
available to perform inversions of trace gases with relatively
simple chemical interactions, including CH4, CO2 and CO.

1 Introduction

Chemical transport models (CTMs) are powerful tools with
which we can describe transport and chemical processes
in the Earth’s atmosphere. CTMs provide global, three-
dimensional (3-D) concentration fields of atmospheric trace
gases and, through modification of model parameters and
boundary conditions, they allow us to investigate the sensi-
tivity of the state of the atmosphere to both anthropogenic
and natural variations of these conditions. In order to accu-
rately model the chemical composition of the atmosphere, it
is important that a model’s input parameters, such as chem-
ical reaction rates, meteorological conditions and the mag-
nitude and location of emissions of atmospheric species,
are realistic. However, uncertainties still surround the spa-
tial and temporal variation of the surface flux of some trace
gases including, for example, carbon dioxide (CO2), methane
(CH4) and carbon monoxide (CO) (e.g.Gurney et al., 2002;
Frankenberg et al., 2008; Le Quéré et al., 2009; Kopacz et al.,
2010). As well as enhancing the performance of atmospheric
models, improving our estimates of the surface fluxes of at-
mospheric species helps to broaden our knowledge of the
processes through which trace gases are emitted, and there-
fore improve our understanding of the interactions between
anthropogenic activity, the biosphere, atmospheric composi-
tion and climate.

There are a number of methods available for estimating
the surface flux of atmospheric species. These can broadly
be divided into two method types: bottom-up and top-down.
Bottom-up methods are those that attempt to estimate fluxes
either through direct measurements or by modelling the
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processes which lead to flux of the species into the atmo-
sphere. However, direct measurements of emission rates over
relatively small regions are difficult to make and are subject
to significant errors when extrapolated to global scales (Jung
et al., 2011). Process modelling, meanwhile, requires con-
siderable understanding of the complex procedures which
lead to the emissions, and may also be subject to extrap-
olation errors similar to those which affect the direct flux
measurements. Top-down methods, in contrast, attempt to
estimate emissions using information about the atmospheric
distributions of the species and knowledge of atmospheric
transport. This method has the benefit that the assimilation
of observational data provides a constraint on the surface
flux, assuming that the representation of atmospheric trans-
port and chemistry is accurate. However, limitations of the
top-down approach include insufficient global observational
coverage and modelling inaccuracies (Dentener et al., 2003;
Mikaloff Fletcher et al., 2004; Chen and Prinn, 2005). If mea-
surements of the isotopic composition of a species are in-
cluded in a top-down emission estimate, it may be possible to
partition the distinct emission processes of the species. How-
ever, since we currently have relatively poor global coverage
of these isotopic observations (Dlugokencky et al., 2011), it
is necessary that bottom-up and top-down processes must be
used in tandem in order to gain full understanding of trace
gas emission budgets. Since an atmospheric model, such as
a CTM, is generally used to characterise the atmospheric
transport and chemistry in order to relate the concentration
fields to the surface flux, top-down techniques are usually
referred to as “inverse modelling”. This is in contrast to for-
ward modelling, which relates surface flux estimates to at-
mospheric concentration fields. The increasing availability of
satellite measurements of atmospheric constituents provides
a powerful data set for use in data assimilation techniques
such as inverse modelling. This, together with ongoing de-
velopments of available computational power, means that in-
verse techniques are increasingly achievable.

There exist a number of inverse modelling techniques
available for constraining surface emissions of atmospheric
species based on observations of atmospheric concentrations,
many of which are detailed inSandu and Chai(2011). The
variational method used in this work is similar to the four-
dimensional variational (4D-Var) method which has previ-
ously been used in numerical weather prediction (NWP) (e.g.
Le Dimet and Talagrand, 1986; Fisher and Courtier, 1995)
in order to optimise model variables under the strong con-
straint that the other sequences of the model state are ob-
tained by prognostic equations. The variational inverse mod-
elling method used in this study is not strictly identical to that
of NWP 4D-Var data assimilation, since the inverse method
optimises surface fluxes that are not updated as part of the
prognostic equations of the forward model. It is true that
the inverse method often includes the initial 3-D concentra-
tion field of a species within the state vector, but this is usu-
ally included as a side product of the inversion that ensures

consistency, and is not used after it has been computed. The
term “4D-Var” has been used extensively in previous stud-
ies to describe inverse schemes similar to that presented here
(e.g. Meirink et al., 2008a, b; Bergamaschi et al., 2010).
However, in order to avoid confusion with the NWP com-
munity, the term “variational”, rather than “4D-Var”, will be
used throughout this work. It should also be noted that we do
not currently make use of the incremental variational method
described byCourtier et al.(1994).

Variational techniques require the development of the ad-
joint version of a CTM, which evaluates the sensitivity of
a scalar metric of atmospheric concentration fields to input
parameters such as surface fluxes. Through data assimila-
tion, the inverse variational technique minimises, in a least-
squares sense, a cost function which measures the difference
between model predictions and observations, whilst also lim-
iting changes made to existing knowledge of the surface
fluxes as much as is reasonable.

This variational technique, and the related adjoint tech-
nique, have both previously been applied in a number of
studies relating to atmospheric science. Previous applica-
tions have included Lagrangian transport models (e.g.Elbern
et al., 1997), air quality data assimilation (e.g.Elbern and
Schmidt, 2001; Carmichael et al., 2008) and Eulerian CTMs
with full atmospheric chemistry schemes (e.g.Henze et al.,
2007). Since the turn of the century, the combination of in-
creased computational ability supplemented by large, high-
resolution observational data sets provided by remote sens-
ing has allowed atmospheric modellers to significantly ex-
pand the potential of the inverse variational method. Pre-
vious studies to have used this method in order to quan-
tify surface fluxes of atmospheric species includeChevallier
et al. (2005), Pan et al.(2007), Meirink et al. (2008b),
Bergamaschi et al.(2010) andBousquet et al.(2011).

This paper details the development and testing of a new
variational inversion model which uses the TOMCAT CTM
(Chipperfield, 2006) as its basis. TOMCAT has been ex-
tensively used in the past for investigations into chemistry
and tracer transport in the troposphere and stratosphere (e.g.
Arnold et al., 2005; Monge-Sanz et al., 2007; Breider et al.,
2010; Hossaini et al., 2010; Feng et al., 2011; Monks et al.,
2012). The variational inverse modelling process initially re-
quired the development of adjoint versions of the transport
routines in TOMCAT, and the development of this adjoint
model is also documented here. We also evaluate TOMCAT’s
representation of atmospheric transport, since accuracy in
this respect is crucial for the formulation of accurate sur-
face flux estimates. One purpose of this work, therefore, is
to quantify how well the new TOMCAT variational system
performs as a tool to estimate surface fluxes in future appli-
cations. The paper also includes a novel reciprocity test for
the adjoint model, which is based upon the work ofHourdin
and Talagrand(2006).

In Sect. 2 we describe the TOMCAT model, while in
Sect. 3 we describe the variational inversion process. In
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Sect.4, we evaluate the representation of atmospheric trans-
port in the TOMCAT model through comparisons with ob-
servations of the trace gas sulfur hexafluoride (SF6), and we
describe the development and testing of a new adjoint model
in Sect.5. Finally, in Sect.6, we report the construction and
testing of the new variational inverse model.

2 The TOMCAT CTM

The TOMCAT model is an Eulerian, grid point, off-line
three-dimensional (3-D) CTM, described inChipperfield
et al. (1993), Stockwell and Chipperfield(1999) and
Chipperfield(2006). The standard horizontal model grid in
the TOMCAT model is made up of regular longitudes and ir-
regular Gaussian latitudes, whilst the vertical grid uses com-
binedσ–p coordinates. Whilst the model typically has a hor-
izontal resolution of 2.8◦

× 2.8◦, with 60 vertical levels up
to 0.1 hPa, the high computational burden of the variational
framework requires that a coarser resolution of 5.6◦

× 5.6◦,
with 31 vertical levels up to 10 hPa is used whilst testing
the inverse model. Previous studies have attempted to alle-
viate the computational burden of the data assimilation or in-
version process using reduced versions of non-linear models
(Amsallem et al., 2013; Stefanescu et al., 2014), or with in-
cremental optimisation using low-resolution linearised mod-
els (Courtier et al., 1994). Further study is necessary to ex-
plore the potential for these methods with the TOMCAT
model. The model meteorology, including winds, tempera-
ture and pressure data, is read in from ERA-Interim anal-
yses provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF,http://www.ecmwf.int) (Dee
et al., 2011) and transformed onto the TOMCAT model grid.
The model uses a process split method, in which separate
routines representing the different transport processes are
carried out in sequence. In the standard model set-up used
in this study, the atmospheric transport consists of routines
based upon the Eulerian conservation of second-order mo-
ments advection scheme developed byPrather(1986), a con-
vection scheme based on that ofTiedtke(1989), and a bound-
ary layer mixing scheme derived from that ofHoltslag and
Boville (1993). The advection routine is further split into
three subroutines that each carry out tracer transport along
one axis only (zonal, meridional or vertical). The model also
contains the option of a full tropospheric chemistry scheme
as detailed inArnold et al.(2005), which may be replaced
by a simpler “offline” scheme at the user’s discretion. The
full chemistry scheme is not included in this work, however.
A key characteristic of TOMCAT’s transport scheme is that
it is linear in nature. This is beneficial, since non-linearities
would complicate the development of the adjoint model.

3 Variational inverse modelling

The theory of the variational inversion technique with
regards to estimating surface flux of atmospheric
species has been well documented in studies such as
Chevallier et al.(2005), Henze et al.(2007) andMeirink et
al. (2008a). We summarise it here, as a full understanding of
the theory is important to the analysis of the inverse model
results. All notation follows that ofIde et al.(1997). The
objective of variational inverse modelling is to optimise
the value of a state vector,x, with n elements, in order to
improve the prediction of the model in comparison with a set
of m observations,y. The state vector in this case is a vector
including the set of surface fluxes of atmospheric species,
together with the initial 3-D atmospheric distribution of the
species on the model grid resolution. Currently in TOMCAT,
the surface flux has a monthly temporal resolution and spa-
tial resolution dependent on the model grid. It is important
to include the initial 3-D field within the state vector for
long-lived species such as CH4 and CO2. The optimisation
is defined via a cost function,J (x), which accounts both
for the accuracy of the model prediction compared with the
observations and for departures from an a priori estimate of
the state vector,xb. J (x) is defined as follows:

J (x) =
1

2
(x − xb)TB−1(x − xb)

+
1

2
(y − Hx)TR−1(y − Hx), (1)

where the superscriptT denotes the transpose of a matrix and
−1 denotes its inverse. The matrixH represents the forward
model simulation that maps from the state vectorx onto the
location and time of the observations iny. Then×n matrixB
is the error covariance matrix for the a priori state vector,xb,
while R is the error covariance matrix for the observations
and has sizem×m. R includes instrument error, representa-
tion error and model error. For Bayesian theory to hold with
Eq. (1), all errors must be assumed to be Gaussian and unbi-
ased. The a priori state vector,xb, is in this case our current
“best estimate” of the state vector, while the error covari-
ance matrixB represents the uncertainty of this estimate. The
cost function may be described in terms of the “background
term” and the “observation term”, which refer to the contri-
bution made by the departures made to the state vector and
the model–observation differences, respectively. Finding the
minimum value of the cost function is equivalent to finding
the optimum value ofx. There are different methods avail-
able for solving this problem, and variational schemes use
iterative methods in order to find the point at which the gra-
dient of the cost function with respect to the state vector, no-
tated∇xJ (x), is zero. This can only occur at a stationary
point (minimum or maximum) ofJ . That is, when

∇xJ (x) = B−1(x − xb) + HT
[
R−1(y − Hx).

]
= 0. (2)
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Numerically, difficulties arise in the calculation ofHT,
which is the transpose of the matrixH, since it is imprac-
tical to find either of these matrices explicitly on the model
grid resolution. Instead we use a forward model,M – in our
case TOMCAT – together with a linear interpolation from the
model grid onto the observation space in place of the matrix
H in Eq. (1). Through linear interpolation from the model
grid onto the latitude, longitude and altitude of each obser-
vation in y at the time that the observation was made, we
thus obtain a mapping from the state vector onto the obser-
vation space. Since the transport in TOMCAT is linear, the
use of this model together with the linear interpolation onto
y is exactly equivalent to the matrixH.

The forward model is, in reality, a set of discrete math-
ematical operations and conditional statements, rather than
a matrix operator, and we can therefore not explicitly find
HT using the forward model only. Instead, we use an adjoint
model,M∗, as shown byTalagrand and Courtier(1987). To-
gether with an adjoint linear interpolation from the obser-
vation space onto the model grid, the adjoint model is used
instead of explicitly findingHT. The theory of adjoint mod-
elling is expanded upon in the next section. Again, due to the
linearity of TOMCAT transport, this adjoint mapping from
the observations onto the state vector is equivalent toHT. The
adjoint version of the TOMCAT model was written for use
with the new inverse model.∇xJ (x) can therefore be found
as in Eq. (2) using the forward and adjoint models in place of
H andHT. Once∇xJ (x) has been found, it can be used in or-
der to choose an appropriate descent direction along which to
minimiseJ (x). This process of finding the Jacobian ofJ (x)

and using it to minimise the cost function is repeated itera-
tively until some convergence criterion is met. The iterative
process of minimisation will be discussed further in Sect.6.

3.1 Adjoint modelling

The forward modelM can be defined such that, for a concen-
tration fieldc at timeti ,

c(ti+1) = M[c(ti)], (3)

where timeti+1 denotes one model time step after timeti .
In practice, the model consists of parameterisations of vari-
ous transport and chemical processes, and each of these pro-
cesses is made up of a finite number of mathematical opera-
tions,Mj :

M[c(ti)] =

∏
j

Mj [c(ti)]. (4)

In our case, each operationMj is linear and differentiable.
However, this is not true for all models, many of which con-
tain non-linear operators. Assuming however that each model
operatorM is differentiable, a first-order approximation of its
first derivative, or Jacobian, can be represented by a tangent
linear model (TLM),M ′. The TLM simulates the propaga-
tion of perturbations forward in time and is dependent upon

the model state at which the linearisation takes place. The
TLM is therefore defined such that

δc(ti+1) = M ′
[c(ti)]δc(ti) =

∂M[c(ti)]

∂c
δc(ti). (5)

Note that the model operator is differentiated with respect
to the concentration fieldc, and not the perturbationδc. In
practice, this means that elements of the forward model state
must be made available in order to run the TLM. This pro-
cess is known a “checkpointing”. Each mathematical opera-
tion Mj must be individually differentiated to createM ′

j :

δc(ti+1) =

∏
j

M ′

j [c(ti)]δc(ti) =

∏
j

∂Mj [c(ti)]

∂c
δc(ti). (6)

As mentioned, if the modelM is already linear, as with
TOMCAT, then the TLM is identical to the forward model.
TLM development and checkpointing are then unnecessary.
From the TLM, the adjoint model (ADM),M∗, can be de-
veloped. The adjoint model propagates variables backwards
through time in order to give the sensitivity of a scalar metric
of c (such asJ ) to the model input parameters.M∗ is defined
such that, for an inner product〈 , 〉 and for vectorsu andv,
it holds that

∀u,∀v 〈M ′u,v〉 = 〈u,M∗v〉. (7)

When creating the adjoint model, it is necessary to choose
whether to use the adjoint of the transport equations on which
the forward model is based, known as a continuous adjoint,
or to find the adjoint from the forward model code directly,
known as a discrete adjoint.Sirkes and Tziperman(1997)
showed that, when using a “leap-frog” advection scheme,
their continuous adjoint differed from the actual numeri-
cal gradient ofJ (x), which slowed down the minimisation,
but that it did not introduce non-physical behaviour, such
as a two-timestep leapfrog computational mode.Gou and
Sandu(2011) carried out a comparison between the continu-
ous and discrete adjoints for a piece-wise parabolic advection
scheme. They found that the discrete adjoint in this case led
to worse performance than the continuous adjoint for vari-
ational applications in experimental settings, but that there
was little difference in the performance of the two schemes in
an inversion using real observational data. Recently,Haines
et al.(2014) used an Eulerian backtracking method in order
to combine the advantages of both the discrete and contin-
uous adjoint formulations into a single adjoint model. We
decided that we would use the discrete adjoint of TOMCAT
for this work, in order to make it consistent with the forward
model. However, further tests in the future should be carried
out in order to examine the performance of the continuous
and discrete adjoints of the TOMCAT advection scheme.

In practice, the forward model consists of several thousand
lines of computer code, each carrying out a mathematical
operation or creating a conditional statement or loop. TLM
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and ADM codes can therefore be created from the forward
code by hand or through the use of automatic code genera-
tors. A variety of these are available, such as TAMC (http://
www.autodiff.com/tamc) and TAPENADE (www-sop.inria.
fr/tropics/tapenade.html), which create a TLM or ADM from
a supplied forward model without the need for the time-
consuming hand-coding process. Whether coded by hand
or automatically, the creation process may produce errors
or inconsistencies in the adjoint code, due to human error
or through bugs introduced in the automatic coding process
(Nehrkorn et al., 2006), and it can often be more efficient to
code by hand in the first place. A major problem with au-
tomatic procedures is that they may also reduce the poten-
tial for optimisation of the adjoint code, such as parallelisa-
tion. Since the variational approach described here relies on
a number of iterations of forward and adjoint model simu-
lations being carried out, parallelisation of the model code
may be necessary in order to carry out inversions with long
inversion time-periods. It was therefore decided to develop
the adjoint version of the TOMCAT model by hand, rather
than through the use of an online tool, as this would allow
a greater level of control over the format of the code, and
a better understanding of the details of the development pro-
cess. Other groups have previously detailed the development
of adjoint versions of atmospheric models using continuous
adjoints and automatic code generators (e.g.Meirink et al.,
2006; Hakami et al., 2007; Henze et al., 2007; Huang et al.,
2009).

For this work it was decided that only the TOMCAT rou-
tines concerning atmospheric transport would be included
within the inversion. The model’s full chemistry scheme was
not included as this would significantly increase the run-
ning time of the inverse program, which we initially intend
to apply to species such as CO2, which is treated as a pas-
sive tracer, and CH4, which can be simulated using speci-
fied chemical destruction fields, and so do not require the
full model chemistry scheme. It is currently intended that
the full chemical adjoint scheme will be included at a later
date. It was therefore necessary to produce adjoint versions
of the TOMCAT model’s advection, convection and plane-
tary boundary layer transport schemes, along with other sub-
routines concerning the model’s calendar and initialisation.

Since each operation within every section of the model’s
transport scheme was already linear, there was no need to
produce a TLM. This meant that we could proceed directly to
the production of the model’s adjoint. With the adjoint model
completed, it was important to thoroughly validate each sub-
routine against its equivalent in the forward model in order
to ensure its accuracy. The details of this testing will be dis-
cussed in Sect.5.

4 Assessment of tropospheric transport in TOMCAT

In order that the TOMCAT model may be used as an inverse
modelling tool, it is important to assess the accuracy of the
model’s representation of atmospheric transport. The varia-
tional inversion process assumes that all model errors are
Gaussian and unbiased, and therefore significant model bi-
ases would propagate through the model and violate these
basic assumptions.

Whilst the observation error covariance matrixR should
theoretically take account of model transport error, in a vari-
ational inverse simulation, in practice this is difficult to quan-
tify and so it is usually assumed that model transport is ac-
curate and unbiased when performing an inversion. Here we
use observations of the atmospheric trace gas sulfur hexaflu-
oride (SF6), together with output from multiple model simu-
lations at different grid resolutions in order to ascertain that
the accuracy of the forward model transport is good enough
to be used for inverse modelling. SF6 is useful for investi-
gating aspects of atmospheric transport, and has been used
previously in a number of such studies (e.g.Gloor et al.,
2007; Patra et al., 2009). It is especially suited to examin-
ing interhemispheric transport, since its sources are almost
exclusively located in the Northern Hemisphere (NH).

SF6, which is a potent greenhouse gas, is inert in the tro-
posphere and stratosphere, giving it an extremely long atmo-
spheric lifetime which has been estimated to be between 800
and 3200 yr (Ravishankara et al., 1993; Morris et al., 1995).
The only atmospheric sinks of SF6 are a relatively slow pho-
tochemical destruction process and electron capture, both of
which only occur in the atmosphere above 60 km, therefore
having only a small impact on its atmospheric concentration
(Reddmann et al., 2001). Hall and Waugh(1998) found that
ignoring the effect of mesospheric destruction when simulat-
ing SF6 may lead to over-estimation of SF6 concentration in
the high-latitude middle stratosphere (above 30 km), but only
has a small effect elsewhere.

This property is one of many which make SF6 a good
tracer for testing the simulated long-term atmospheric trans-
port in CTMs. The fact that SF6 is inert in the troposphere
and stratosphere means that there is no need to include chem-
ical processes in the model. Also, the release of SF6 into the
atmosphere is almost entirely anthropogenic in nature. This
means both that emissions are fairly constant in time (Levin
et al., 2010), with a negligible seasonal cycle (Olivier and
Berdowski, 2001), and that we can produce spatially accu-
rate surface emission estimates by distributing sales num-
bers within each nation according to electrical energy use
(Olivier, 2002).

The TOMCAT model previously submitted the results of
long-term SF6 simulations to the TransCom CH4 intercom-
parison project (Patra et al., 2011), where it captured the sea-
sonal cycle of SF6 at three ground-based observation sites
to a high level of statistical significance, and reproduced the
interhemispheric gradient of SF6 to within 0.05 parts per
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Fig. 1. Emissions ofSF6 (×10−3 kggridcell−1s−1) on the5.6◦×5.6◦ TOMCAT grid for the year 2008.
Locations of NOAA surface stations used in this study are also shown.
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Figure 1. Emissions of SF6 (×10−3 kg grid cell−1 s−1) on the
5.6◦

× 5.6◦ TOMCAT grid for the year 2008. Locations of NOAA
surface stations used in this study are also shown.

trillion (ppt). However, those simulations were carried out
using the standard TOMCAT model grid resolution (2.8◦

×

2.8◦ with 60 vertical levels up to 0.1 hPa), whilst the varia-
tional inverse model will initially be run using a coarser res-
olution (5.6◦

× 5.6◦, 31 vertical levels up to 10 hPa) in or-
der to reduce simulation times and memory requirements as
much as possible. Therefore, new SF6 simulations were car-
ried out with the TOMCAT model at this coarse resolution
in order to assess the effect that reducing the model’s reso-
lution has on its performance. For these simulations, the 3-
D SF6 field was initialised on 1 January 1988, with initial
values provided by TransCom, and ran up until 31 Decem-
ber 2010, with full 3-D output every 3.75 days. The model
timestep was 60 min. We linearly interpolated the TransCom
initial concentration field from a 2.8◦

× 2.8◦ horizontal grid
with 60 vertical levels to the coarser 5.6◦

× 5.6◦, 31 level
TOMCAT grid. Due to the long spin-up time for this simu-
lation, the initial field should not significantly influence the
results in the more recent years. Emissions were also sup-
plied by TransCom, and were originally taken from the Emis-
sion Database for Global Atmospheric Research (EDGAR),
Version 4.0 (Olivier and Berdowski, 2001), and scaled as in
Reddmann et al.(2001). Figure1 shows annual mean SF6
emissions for the year 2008 on the 5.6◦

× 5.6◦ TOMCAT
model grid, showing that the majority of SF6 emissions are
from NH industrialised countries. Model output was com-
pared with flask measurements of surface SF6 from remote
station sites in the National Oceanic and Atmospheric Ad-
ministration (NOAA) network, who have taken weekly mea-
surements of SF6 at a number of stations since 1995. The
locations of the stations used for comparison with the model
are also shown in Fig.1. Measurements have an accuracy of
approximately 0.04 ppt.

Table 1. Pearson’s correlation value (r_5.6 andr_2.8) and root-
mean-square error (RMSE_5.6 and RMSE_2.8) for modelled and
observed seasonal cycle of SF6 at eight surface stations, shown in
Fig. 2, for two different model grid resolutions.

Station r_5.6 r_2.8 RMSE_5.6 (ppt) RMSE_2.8 (ppt)

ALT 0.29 0.58 0.018 0.015
BRW 0.52 0.64 0.012 0.011
MHD 0.60 0.67 0.020 0.015
MLO 0.36 0.32 0.017 0.018
SMO 0.85 0.89 0.014 0.009
CGO 0.13 0.53 0.011 0.009
PSA 0.22 0.42 0.012 0.011
SPO 0.49 0.75 0.012 0.010

Figure 2 shows the modelled and observed mean de-
trended seasonal anomalies of SF6 at each station at both the
2.8◦

×2.8◦ and 5.6◦
×5.6◦ grid resolutions. Table1 shows the

Pearson’s correlation value (r) and the root-mean-square er-
ror (RMSE) between observed and modelled SF6 anomalies
at each station for both model resolutions. For both modelled
and observed SF6, in order to display only the seasonal cy-
cle due to transport, the linear trend displayed by SF6 at the
South Pole station (SPO), the site furthest from the source
regions, was removed from all data. The modelled and ob-
served SF6 was averaged over the years 2005 to 2010, and
the mean value at each station over this time period was sub-
tracted. This figure shows that switching to the lower reso-
lution does not have a significant impact upon the model’s
representation of the seasonal cycle, especially in the SH.
Prather(1986) showed that the advection scheme used in the
model performs well at low resolutions and is relatively non-
diffusive. In the NH, however, the proximity of the majority
of SF6 emissions mean that the larger grid boxes produce
a diffusive effect as emissions are more rapidly mixed across
grid boxes, which slightly alters the model concentrations.
Differences between the two resolutions are never greater
than 0.03 ppt, however. The greatest difference between the
two resolutions is at the MHD station, due to the fact that this
particular station, located on the west coast of Ireland, is sub-
ject to numerical diffusion of high UK and Irish emissions
through the model grid box to different extents depending
on the grid box size. Due to the effect of these local emis-
sions, MHD has the largest RMSE of any of the stations, but
the correlation is relatively high (≥ 0.60), since the timing
of the variations is captured well in the model. At the two
Arctic stations, ALT and BRW, there appears to be a system-
atic underestimation of the negative seasonal anomaly dur-
ing September and October. This may indicate strong model
transport into the Arctic during these months, or weak trans-
port away from the region.

SH sites such as CGO, PSA and SPO have relatively
weak seasonal cycles, and the model shows extremely lit-
tle variation around the mean in the SH. Some SH seasonal
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the six-year period.
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Figure 2.Modelled and observed monthly mean SF6 anomaly (ppt)
averaged over the period 2005–2010. The blue line represents mod-
elled SF6 using the 2.8◦

× 2.8◦ TOMCAT model grid, while the
red line shows results for the 5.6◦

× 5.6◦ model grid. Black dots
represent flask observations from NOAA surface station sites, and
error bars show one standard deviation of the monthly mean of the
observations over the 6-year period.

variation may be missing in the model, as the observations
display larger anomalies than those produced by the simu-
lation. This may indicate that there is too much homogene-
ity in the modelled SH troposphere. The decrease in reso-
lution produces very little impact on the modelled seasonal
cycle at these stations. Due to the weak seasonal cycle, small
model–observation correlations are not necessarily represen-
tative of poor model performance, and the fact that the RMSE
is less than 0.012 ppt at each of these stations indicates that
the model is representing transport to the SH well. SMO dis-
plays positive anomalies in December through to March and
negative anomalies for the rest of the year due to its posi-
tion relative to the Intertropical Convergence Zone (ITCZ),
which is the meteorological (rather than the notional 0◦)
boundary between the NH and SH. As the position of the
ITCZ varies throughout the year due to the changing loca-
tion of the sun’s zenith point, SMO alternates between sam-
pling NH and SH air. This oscillation is reproduced in both
of the model simulations, with correlations greater than 0.8
produced by each. MLO displays a biannual seasonal cycle,
due to the increased influence of SH air at MLO during the
NH summer and winter (Lintner et al., 2006), and the model
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Fig. 3. Modelled and observed annual meanSF6 concentrations (ppt) at different latitudes for the period
2002–2006. The black symbols represent observations at eight surface stations, while the red symbols
show the equivalent modelled concentrations using the5.6◦×5.6◦ model grid. Different years are rep-
resented by different symbols, as shown in the legend. The dotted lines represent the observed (black)
and modelled (red) NH and SH mean concentration for each year.
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Figure 3. Modelled and observed annual mean SF6 concentrations
(ppt) at different latitudes for the period 2002–2006. The black
symbols represent observations at eight surface stations, while the
red symbols show the equivalent modelled concentrations using the
5.6◦

×5.6◦ model grid. Different years are represented by different
symbols, as shown in the legend. The dotted lines represent the ob-
served (black) and modelled (red) NH and SH mean concentration
for each year.

produces the same semi-annual variation, albeit with smaller
negative SF6 anomalies during January and February. The
correlations here are relatively low (0.32–0.36) due to this
fact.

Figure3 shows the annual mean modelled and observed
SF6 at eight surface stations located at different latitudes for
the years 2002 to 2006. The modelled SF6 is taken from the
simulation which used the 5.6◦

×5.6◦ grid resolution, and in
order to remove any bias caused by the model initialisation,
the mean model bias at SPO for January 2000 was removed
uniformly from all modelled SF6 concentrations at all times.
The model captures the annual increase of SF6 at the surface
well, but the interhemispheric difference (IHD) is too large
in the model compared with the observations. The mean ob-
served IHD is approximately 0.28 ppt for this period, while
the mean modelled IHD is 0.34 ppt, which is approximately
18 % too high. This shows that interhemispheric transport in
TOMCAT is likely too slow.

Overall, the tracer transport in the TOMCAT model per-
forms well in comparisons with observed SF6. Comparisons
with flask samples at station sites provide a validation of the
large-scale transport in the model such as interhemispheric
and zonal transport and representation of seasonal large-scale
atmospheric variations such as the ITCZ. The simulations
reproduce the phase and amplitude of the seasonal cycle at
most stations. Some SH seasonal transport variations are not
reproduced in the model, and model transport in the Arc-
tic may not be strong enough during the NH autumn. How-
ever, the timing and magnitude of the effect of the ITCZ is
captured well. The observation accuracy of 0.04 ppt at these
stations is close to the absolute seasonal variation in many
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places, and the model is always within this level of accuracy.
Work is always ongoing to improve the TOMCAT model’s
representation of physical processes, and the adjoint model
will be similarly maintained in the future.

5 Construction and validation of the adjoint model

As discussed in Sect.3, in order to use the TOMCAT model
in a variational framework, it is first necessary to produce
an adjoint version of the model. In order to reduce the run-
ning time of the adjoint model, the forward TOMCAT model
was altered so it saved any variables at each model timestep
that are also needed by the adjoint model. This meant that
these variables did not have to be recalculated for use in the
adjoint model. Adjoint versions of the advection, convection
and boundary layer transport schemes were produced, and
each of the new forward and adjoint routines were coded
by hand. Each subroutine was individually and thoroughly
tested to confirm its accuracy in relation to the original for-
ward version of the routine. They were then combined to pro-
duce the full adjoint version of the TOMCAT model, known
as ATOMCAT. The accuracy of the full adjoint model was
then also tested.

5.1 Adjoint model tests

This section describes the tests which were used in order to
assess the accuracy of ATOMCAT. If the transport in the ad-
joint model is not exactly accurate, then at best, it will intro-
duce errors into the a posteriori estimate of the state vector.
In the worst case, the cost function may not converge at all.
Three different tests were carried out, the first of which con-
firmed that the adjoint identity equation, as defined in Eq. (7),
held for ATOMCAT. This first test should in fact be suffi-
cient to be assured of the accuracy of the adjoint model, but
a second test was also performed which ensured that tracer
transport in ATOMCAT is reciprocal to that of the TOM-
CAT model, a property that should hold for adjoint models
(Hourdin and Talagrand, 2006). This test is an extension of
the adjoint identity test, and provides further validation of the
adjoint transport over longer time periods. Finally, a test we
refer to as the “alpha test”, described inNavon et al.(1992),
was carried out. This tested the accuracy of the adjoint model
using a Taylor expansion of the cost function. While none of
these tests are exhaustive, in the sense that they cannot pos-
sibly be carried out using all possible input values, they do
provide a strong endorsement of the accuracy of the adjoint
model.

For each individual subroutine, it was checked that the
identity shown in Eq. (7) held. In practice, it was checked
that the following identity held up to the level of accuracy
possible due to the rounding error introduced on the machine
used to perform the simulation, known as the machine ep-
silon:

∀u,∀v
〈M ′u,v〉

〈u,M∗v〉
= 1. (8)

Equation (8) was tested for each of the three subroutines
representing advection in each dimension, and also for the
convection and boundary layer mixing schemes, as well as
for the full ATOMCAT model. The input variable for the for-
ward subroutine,u, was defined as a normally distributed
random variable, and in the input variables for the adjoint
subroutines were defined to be equal to the output from the
corresponding forward subroutine,M ′(u). The identity in
Eq. (8) is then

||M ′(u)||2

〈u,M∗(M ′(u))〉
= 1. (9)

The ADM was tested based on Eq. (9) using 10 different
random initialisations for 480 iterations (equal to 20 model
days) of each subroutine. We found that for each subroutine
and each initialisation, the identity given in Eq. (9) holds up
to machine epsilon, strongly indicating that the adjoint model
has been accurately coded from the forward model. The level
of accuracy of the results of this test implies that the adjoint
model is likely to be correct.

5.2 Reciprocity of atmospheric transport

In order to further test the accuracy of the adjoint transport
in ATOMCAT, the property of reciprocity of model trans-
port was investigated. It has been previously discussed that
for a linear model, transport in the adjoint model is recipro-
cal to transport in the forward model (e.g.Hourdin and Tala-
grand, 2006; Hourdin et al., 2006). This result is equivalent to
Eq. (7) and implies that the accuracy of ATOMCAT may be
tested by examining the reciprocity of its transport. The tests
in this section are therefore extensions of those performed in
Sect.5.1, and examine the accuracy of the adjoint model over
multiple model time steps. The reciprocity test posits that
if the adjoint model is initialised with a mass,m, of tracer
in any given model grid box,D, and integrated backwards
through time from timetn to time t0, then the mass in any
other specified grid boxS at t0 is equal to that which is found
in D if the forward model is integrated fromt0 to tn after be-
ing initialised with massm of tracer in grid boxS. Figure4
shows a schematic of this theory. Due to the high computa-
tional burden of adjoint modelling and the increased simula-
tion time required to carry out both forward and adjoint sim-
ulations, the reciprocity of tracer transport in the ATOMCAT
model was examined on two different timescales. The adjoint
transport over 1 day was examined from every surface grid
box, while longer simulations were carried out which inves-
tigated adjoint transport from selected grid boxes only.

In order to test the short-term reciprocity of the ADM
transport, separate forward simulations were carried out in
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Fig. 4. Diagram showing the principle of reciprocity of atmospheric transport using an adjoint model.
(a) shows the dispersion of a massm of tracer in the forward model, released from box “S” at time t =0
aftern model timesteps. Concentration is indicated by colour intensity. (b) shows the equivalent adjoint
transport for a massm of tracer, released from grid box “D” at time n, integrated backwards to time0.
The mass of tracer in box “D” in (a) at timen and in box “S” in (b) at time0 is identical.
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Figure 4. Diagram showing the principle of reciprocity of atmo-
spheric transport using an adjoint model:(a) shows the dispersion
of a massm of tracer in the forward model, released from box “S”
at time t = 0 aftern model time steps; concentration is indicated
by colour intensity;(b) shows the equivalent adjoint transport for
a massm of tracer, released from grid box “D” at timen, integrated
backwards to time 0. The mass of tracer in box “D” in (a) at timen

and in box “S” in (b) at time 0 is identical.

which one surface grid box,S, was initialised with an (ar-
bitrary) concentration of tracer mass of 100 kg, with zero
mass elsewhere. One separate simulation was performed for
each surface grid box. After the simulation period of 1 day
(1 July 2008) was complete, the locationD and valuemD

of the maximum tracer mass in each simulation was noted.
Following this, separate adjoint simulations were carried out
in which a pulse of 100 kg was placed into each boxD and
the ADM was integrated backwards over the same day. In an
accurate adjoint model, the total mass,mS contained in grid
boxS at the end of the adjoint simulation should be equal to
mD. All forward and adjoint simulations included all of the
transport processes available in the model. This was repeated
for every surface grid box, using the 5.6◦

× 5.6◦ resolution
(giving 64×32= 2048 simulations). For each simulation, the
values ofmD andmS were exactly equal at machine epsilon,
indicating that the adjoint transport in ATOMCAT is correct
over short timescales.

In order to test the reciprocity property of adjoint transport
in the ATOMCAT model over a longer time period, simula-
tions were carried out in which the reciprocity experiment
described above was repeated over a time period of 1 month
(July 2008), but for 10 surface grid boxesSn, 1≤ n ≤ 10,
only. This test was carried out only at certain locations due
to the computational burden and time that a more large-scale
test would necessitate. Again, at the end of the forward sim-
ulation the grid boxDn with the largest mass of tracermn

D

was found and chosen to be the initial grid box for an adjoint
simulation over the same month. Figure5 shows the results

of this experiment for one of the sites chosen for the emis-
sion pulse’s starting point, with the location of the other sites
marked in the uppermost panel. Figure5b shows the tracer
mass distribution at the seventh vertical model level from the
surface on 31 July, 1 month after release from the grid box
marked “S”, located at 84.4◦ W, 30.5◦ N. The grid box con-
taining the maximum tracer mass at this time is marked “D”.
Figure5c meanwhile, displays the surface level distribution
of tracer mass on 1 July, at the end of an adjoint simulation
initialised on 31 July with a tracer mass of 100 kg released
from grid box “D”. In this case, and in each of the other
cases, the tracer massesmn

S andmn
D are exactly equal at ma-

chine epsilon. Again, this implies that the tracer transport in
ATOMCAT is consistent with that of the forward model, and
suggests that over a longer time period the adjoint model is
representative of the forward model transport to a high level
of accuracy.

Finally, we carried out the accuracy test described by
Navon et al.(1992), in which the Taylor series of the cost
function is evaluated. Taylor’s theorem states that

J (x + αδx) = J (x) + αδxT
∇xJ (x) + O(δx2), (10)

whereα is a small scalar andδx is a vector of the size ofx.
Rewriting this equation, we have

φ(α) =
J (x + αδx) − J (x)

αδxT ∇xJ (x)
= 1+ O(δx). (11)

Therefore, for values ofα that are small, but not too close
to the order of accuracy of the machine,φ(α) should be close
to 1. We tested this identity by letting the state vector,x, be
the emissions of SF6 on the TOMCAT model grid, shown
in Fig. 1. Note that, for this test, we did not include the ini-
tial atmospheric concentrations in the state vector. We also
discarded the background term of the cost function, as it
would not affect the result, and generated a set of pseudo-
observations,y, by running the forward model for 7 days
from 1 July 2008 and multiplying the resultant 3-D field by
a factor of 1.5. We definedδx to equalx/10, and letα vary
between 1×10−14 and 1. Figure6 shows the results of this
test. It is clearly seen that for values ofα between 1×10−11

and 1×10−2, a unit value ofφ(α) is obtained. As previously
explained, whilst these tests do not completely validate the
accuracy of the adjoint model, the perfect level of accuracy
attained very strongly suggests that the adjoint transport in
ATOMCAT is correct.

6 The TOMCAT variational inverse model

Once ATOMCAT had been completed and fully tested, it
could be included in the new variational inverse version
of the TOMCAT model, named INVICAT. The variational
scheme used was based upon the system developed by
Chevallier et al.(2005), which makes use (non-exclusively)
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Fig. 5. (a)Locations of grid-cells from which tracer is released for ten individual one-month transport
reciprocity tests described in Sect. 5.(b) Tracer mass (kg) at the 7th model level from the surface
(approximately 2.6km) at the end of a 30 day forward simulation initialised with a mass of 100kg at the
surface below the grid cell labelled “S” on 1 July 2008. The mass of tracer in the grid cell labelled “D”
is 10.807×10−2 kg. (c) Surface tracer mass (kg) at the end of a 30 day adjoint simulation initialised with
a mass of 100kg above grid cell labelled “D” on 31 July 2008. The tracer mass in “S” at the surface is
also equal to10.807×10−2 kg.
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Figure 5. (a) Locations of grid cells from which tracer is released
for 10 individual 1-month transport reciprocity tests described in
Sect.5. (b) Tracer mass (kg) at the seventh model level from the
surface (approximately 2.6 km) at the end of a 30-day forward sim-
ulation initialised with a mass of 100 kg at the surface below the
grid cell labelled “S” on 1 July 2008. The mass of tracer in the grid
cell labelled “D” is 10.807× 10−2 kg. (c) Surface tracer mass (kg)
at the end of a 30-day adjoint simulation initialised with a mass of
100 kg above grid cell labelled “D” on 31 July 2008. The tracer
mass in “S” at the surface is also equal to 10.807× 10−2 kg.

of the M1QN3 minimisation program, described byGilbert
and Lemarechal(1989), in order to minimise the cost func-
tion J (x). This program uses the Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) algorithm which re-
duces the amount of computer memory necessary to find the
optimal solution of a problem (Perry, 1977; Shanno, 1978;
Nocedal, 1980).

The minimisation program is first called once the initial
value and gradient of the cost function have been found. It is
then repeated iteratively until the cost function or its gradient
have met some pre-defined convergence criterion, when the
program returns the a posteriori state vector. As inChevallier
et al. (2005), a preconditioning transformation is applied to
the state vector in order to optimise the speed of the min-
imisation. Instead of minimisingx directly, the variablez is
defined such thatz = B−1/2(x−xb), and this variable is min-
imised instead. This increases the efficiency of the minimisa-
tion by reducing the ratio of its largest and smallest eigenval-
ues (known as the condition number) of the Hessian of the
cost function (∇2J (x)) (e.g.Andersson et al., 2000).

At each iterationk, k ≥ 1, the program determines an ap-
propriate descent direction,dk, of J (x) at xk, wherexk is
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Fig. 6. Verification of the alpha test.(a) variation ofφ(α) with respect toα; (b) variation oflog10(φ(α)−
1) with respect tolog10(α).
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Figure 6.Verification of the alpha test.(a)variation ofφ(α) with re-
spect toα; (b) variation of log10(φ(α)−1) with respect to log10(α).

the updated state vector at iterationk. A quasi-Newtonian
(QN) method is used in order to choose an appropriate de-
scent direction. This has the advantage over other methods
of not needing an exact line search in order to find the mini-
mum alongdk, although it requires a relatively large amount
of computer memory when compared to conjugate gradient
methods (Gilbert and Lemarechal, 1989). INVICAT’s min-
imisation program chooses the descent direction with the
valuedk = −Wkgk, whereWk approximates the inverse Hes-
sian ofJ (xk), andgk is the gradient of the cost function at
xk. Once this descent direction is chosen, the step size,αk, to
be taken along this direction is determined by the line search
procedure. At the next iteration the state vector therefore has
the formxk+1 = xk + αkdk.

Initially, αk is set to equal2J (xk)
〈gk,gk〉

, before iteratively being
quickly reduced to an appropriate length to find the mini-
mum alongdk by testing the Wolfe conditions, which are as
follows:

J (xk + αkdk) ≤ J (xk) + ω1〈gk,dk〉, (12)

〈gk+1,dk〉 ≥ ω2〈gk,dk〉, (13)

where it is necessary to have 0< ω1 < 1
2 andω1 < ω2 < 1.

For this study, values ofω1 = 0.0001 andω2 = 0.9 were cho-
sen. The line-search algorithm iteratively reduces the value
of αk until Eqs. (12) and (13) both hold.

Figure7 shows a flowchart representing the steps under-
taken by INVICAT model in order to find the a posteriori
flux estimate. As mentioned, since the adjoint model needs
to read some forward model data at every time step, these
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data are saved to output files during each forward simulation,
and is later read by the adjoint model. It was decided that
the data must be written to files rather than held in the ma-
chine’s memory due to the large memory requirements nec-
essary, especially for long simulations. For example, a 1 year
simulation requires approximately 90 Gb of available storage
in order to run. This amount of data storage is currently read-
ily available, and it is not feasible for the machine to hold all
of the necessary data in the internal memory during such an
inversion.

6.1 Validation of INVICAT

In order to examine the potential of INVICAT to retrieve
surface fluxes of an atmospheric species, an inversion was
carried out in which pseudo-observations of SF6 were cre-
ated using the TOMCAT model. In this experiment, a 2-D
field flux array was constructed with the same distribution
as the SF6 emissions for the year 2008, shown in Fig.1, but
multiplied by a factor of 1000 so that the fluxes alter the at-
mospheric concentration significantly over a short time span.
This field was considered for this experiment to be the “true”
emissions,xtr, and were used to produce a set of atmospheric
SF6 concentrationsytr. Note that, for this test, the initial 3-D
SF6 distribution was not included in the state vector. A sim-
ulation was performed which was initialised at midnight on
1 July 2008 and ran for 7 days. Each grid cell of the 3-D
model field was initialised with a mixing ratio of 5 ppt.ytr

was defined to be the modelled surface layer SF6 field at the
end of each 24 h period over the course of the simulation, giv-
ing ytr a dimension of 64× 32× 7 = 14336. These are then
used as pseudo-observations in INVICAT in order to attempt
to reproducextr from a perturbed a priori flux estimate. The
a priori was defined to have the same spatial distribution as
the “true” fluxes, but with random perturbations which are
consistent with the background error covariance matrixB,
i.e.

xb
= xtr

+ qw1/2, (14)

whereq is an array of random numbers with the same di-
mension asx and a standard normal distribution, whilstw

is an array containing the eigenvalues ofB. B was defined
to be diagonal, with the a priori fluxes being given errors
of 20 % if the “true” emissions for that grid cell were non-
zero, or 0.001 kg s−1 otherwise (to avoid dividing by zero
during the initialisation of the state vector). Meanwhile the
observation error covariance matrixR was also defined to be
diagonal, with all observations having a relatively small er-
ror of 0.1 ppt. The simulation required approximately 70 min
to complete the chosen 10 minimisation iterations (although
11 forward and adjoint simulations were carried out in total,
along with two extra forward simulations) on a machine with
eight cores running at 2.50 GHz. We also performed the same
experiment with 15, 20 and 25 minimisation iterations. How-
ever, whilst these extra iterations required longer simulation
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Figure 7. Flowchart depicting the individual steps taken by the
INVICAT 4D-Var inverse model. TOMCAT and ATOMCAT are
shown in blue, cost function evaluation programs are orange, flux
estimates are red and observations are grey. The green section is re-
peated iteratively until some convergence criterion is met, when the
a posteriori flux estimate is evaluated.

times, they bought only slight improvements to the result of
the inversion, and therefore these results are not shown here.

Figure8a shows the reduction of the cost functionJ (x)

as INVICAT performs 10 minimisation iterations relative to
its initial value J1. Figure8b displays the development of
the normalised cost function gradient norm,|∇J (x)|/|∇J1|,
where∇xJ1 is the initial value of the gradient of the cost
function.J (x) decreases steadily throughout the run, reach-
ing a value almost 2 orders of magnitude less than its initial
value by the end of the minimisation, whilst the cost function
gradient norm is 8 orders of magnitude lower than its initial
value after 10 iterations. The contribution of the background
term to the total cost function is negligible (not shown), and
therefore the value of the observational term decreases by
around 99 % during the inversion. The fact that the cost func-
tion is reduced so quickly indicates that the minimisation
program is, at least in this idealised case, working efficiently.

Figure9a shows the difference between the a priori fluxes,
xb, and the “true” fluxesxtr, while Fig.9b shows the differ-
ence between the updated a posteriori fluxes after 10 min-
imisation iterations,xout, andxtr. The true fluxes have been
almost completely retrieved in all grid cells, with only two
grid cells still having errors larger than 0.25 kg SF6 s−1. The
RMSE of a flux vectorx, RMSEx , is defined as

RMSEx =

√
(x − xtr)2. (15)

The RMSE of the a priori emissions, RMSExb, is equal
to 0.1 kg s−1, while RMSExout is equal to 0.02 kg s−1, mean-
ing that approximately 80 % of the total error in the a priori
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Fig. 8. (a) Normalised cost function reduction for INVICAT retrieval using pseudoSF6 observations.
(b) Normalised cost function gradient development for the sameexperiment.
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Figure 8. (a)Normalised cost function reduction for INVICAT re-
trieval using pseudo SF6 observations.(b) Normalised cost function
gradient development for the same experiment.

emissions have been corrected by INVICAT. It should be
noted that the test described here does not include any ran-
dom error term being ascribed to the observations, which
would be a significant issue for future inversions using real
data. This test should therefore not been seen to be represen-
tative of the performance of INVICAT in a real application,
but as an assessment of the capability of ATOMCAT and the
minimisation program to retrieve a known set of emissions.

An important step in the development of our variational
system is finding a way to measure the error reduction
achieved by an inversion. The variational inverse method
does not allow for explicit output of the a posteriori error
covariance matrix, and therefore must be approximated from
the variables which can be produced during the inversion. For
experiments such as the one described in this section, which
use the forward model to produce pseudo-observations that
are consistent with the error covariance matrices, an ensem-
ble of observations can be carried out in order to measure
the robustness of the result, as inChevallier et al.(2007).
For inversions which assimilate genuine observations of trace
gases, meanwhile, it is possible to output the leading eigen-
vectors and eigenvalues of the Hessian ofJ (x) as a by-
product of the inversion, which can be used to approximate
the posterior error covariance matrix as shown inChevallier
et al. (2005) andMeirink et al. (2008b). It is our aim to de-
velop this technique within INVICAT, allowing us to quan-
tify the error reduction of a given inversion.

a

b

kg SF s6

-1

Fig. 9. (a)A priori flux error (kggridcell−1s−1) for INVICAT experiment using pseudo-observations,
defined asxb−xtr, wherexb is the a priori flux estimate and is created by randomly perturbating the
“true” fluxes,xtr consistently with the error statistics of the a priori.(b) A posteriori flux error for the
same experiment after 10 minimisation iterations, defined asx10−xtr.
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Figure 9. (a) A priori flux error (kg grid cell−1 s−1) for INVICAT
experiment using pseudo-observations, defined asxb

− xtr, where
xb is the a priori flux estimate and is created by randomly perturbing
the “true” fluxes,xtr, consistently with the error statistics of the
a priori. (b) A posteriori flux error for the same experiment after 10
minimisation iterations, defined asxout

− xtr.

The scenario described in this experiment is clearly ide-
alised, as it serves to test the capabilities of the inverse model
in the most optimal conditions. The cost function is converg-
ing towards a minimum, with a relatively small number of
iterations, and is reproducingxtr with high level of accuracy.
This indicates that the performance of INVICAT is currently
robust enough to allow us to carry out inversions with gen-
uine observational data.

7 Summary

We have presented thorough details of the development and
testing of an adjoint version of the transport section of the
TOMCAT CTM and a variational inverse model for the pur-
pose of updating surface fluxes through data assimilation.
These models are named ATOMCAT and INVICAT, respec-
tively, and are initially intended to analyse the carbon and
methane cycles using observed atmospheric concentration
data from in situ measurements and remote sensing. The ad-
joint model was coded by hand, without the use of auto-
matic differentiation tools, for transport subroutines repre-
senting advection in three separate directions, convection and
boundary layer mixing. In each case, the discrete adjoint of
each subroutine was created directly from the original TOM-
CAT code, rather than developing a continuous adjoint from
the equations governing the transport in the forward model.
Meanwhile, since the adjoint model depends upon the state of
the forward model at each time step, the forward TOMCAT
model was updated in order to save the necessary informa-
tion so that they may be read by ATOMCAT.

We investigated the accuracy of the transport scheme in-
cluded in the TOMCAT model using the atmospheric trace
gas SF6. TOMCAT had previously been included in the
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TransCom CH4 model intercomparison, where it had per-
formed accurately in comparison both with observations and
with other transport models for SF6. Further tests showed
that TOMCAT captures the seasonality of atmospheric trans-
port well at surface stations, and that reducing the resolu-
tion of the model grid by approximately 50 % did not signif-
icantly impact the model transport representation. Initially,
it is therefore likely that INVICAT will initially be run using
the lower model grid resolution in order to maximise running
speed and minimise data storage.

Each individual transport routine contained within the ad-
joint model was tested to ensure that they satisfied the ad-
joint identity equation, before being combined to form the
complete adjoint transport model. This too was tested thor-
oughly, using the adjoint identity equation, the property of
reciprocity that must hold for adjoint transport, and finally
the Taylor expansion of the cost function. The reciprocity
condition held up to machine epsilon, for tests involving ev-
ery surface grid cell over a time period of 1 day, and also
for selected grid cells over a longer time period of 1 month.
This level of accuracy, exact up to the accuracy of the ma-
chine used to carry out the tests, strongly implies that the
adjoint transport model is indeed analogous to the transport
in TOMCAT.

Concurrently with the development of INVICAT and
ATOMCAT, a group at the University College London have
developed an alternative adjoint version of the TOMCAT
model (RETRO-TOM) (Haines et al., 2014). This takes ad-
vantage of the property of time symmetry held by the Prather
advection scheme by using an Eulerian backtracking method
to find adjoint sensitivities. Due to the differing philosophies
behind RETRO-TOM and ATOMCAT, each adjoint model
has its own distinct advantages. RETRO-TOM does not re-
quire output from a forward model simulation, and so is cur-
rently likely to be better suited as an alternative to Lagrangian
backtracking (e.g.Haines and Esler, 2014). This also means
that RETRO-TOM can easily be run using different model
grid resolutions. However, ATOMCAT has the advantage that
it is not reliant upon its component transport routines being
time symmetric, which allows greater freedom of choice than
for RETRO-TOM. RETRO-TOM is not currently coupled to
a data assimilation of inverse modelling framework, but it
would be an interesting avenue of further study to explore
the possibility of including RETRO-TOM as an option for
adjoint transport within INVICAT. Examining differences in
the performances of the two models would allow us to pro-
duce the most accurate and consistent inversion results.

Finally, the ability of the variational system INVICAT,
which incorporates ATOMCAT, to update surface fluxes
through data assimilation was investigated using pseudo “ob-
servations” produced using TOMCAT. The model was able
to reproduce a set of surface fluxes from a perturbed a pri-
ori very closely, reducing the cost function by approximately
two orders of magnitude within ten minimisation iterations.
The model will now be applied to studies of CH4 and CO2,

assimilating real observations from both in situ measure-
ments and remote sensing instruments. However, real inverse
modelling studies would require investigation into the opti-
mal values of the error covariance matricesR andB, which
is discussed further inSingh et al.(2011) andBerchet et al.
(2013).

Code availability

TOMCAT/SLIMCAT (www.see.leeds.ac.uk/tomcat) is a UK
community model. It is available to UK (or NERC-funded)
researchers who normally access the model on common fa-
cilities or who are helped to install it on their local machines.
As it is a complex research tool, new users will need help
to use the model optimally. We do not have the resources to
release and support the model in an open way. Any potential
user interested in the model should contact Martyn Chipper-
field.

The model updates described in this paper (INVICAT and
ATOMCAT) will be included in the standard model library
in the future and therefore will be similarly available only
to those who are able to support TOMCAT. The minimisa-
tion code M1QN3, meanwhile, is protected by copyright and
cannot be distributed except with the permission of its au-
thors. For the review process a limited version of the INVI-
CAT code was made available to the editors, which included
sections of the ATOMCAT and TOMCAT code. This code
formed the basis of that used to carry out the accuracy exper-
iments described in Sect.6.1. Inquiries into the availability
of the ATOMCAT/INVICAT code can be addressed to the
authors.
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