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Abstract. We describe Global Atmosphere 4.0 (GA4.0) and
Global Land 4.0 (GL4.0): configurations of the Met Office
Unified Model and JULES (Joint UK Land Environment
Simulator) community land surface model developed for use
in global and regional climate research and weather predic-
tion activities. GA4.0 and GL4.0 are based on the previous
GA3.0 and GL3.0 configurations, with the inclusion of devel-
opments made by the Met Office and its collaborators during
its annual development cycle.

This paper provides a comprehensive technical and scien-
tific description of GA4.0 and GL4.0 as well as details of how
these differ from their predecessors. We also present the re-
sults of some initial evaluations of their performance. Over-
all, performance is comparable with that of GA3.0/GL3.0;
the updated configurations include improvements to the sci-
ence of several parametrisation schemes, however, and will
form a baseline for further ongoing development.

1 Introduction

For more than twenty years, the Met Office has used a single
atmospheric model, the Met Office Unified Model™ (Me-
tUM), for its global and regional Numerical Weather Predic-
tion (NWP) and climate research activities (Cullen, 1993).
The MetUM’s land surface scheme (Cox et al., 1999), and
more recently the JULES (Joint UK Land Environment Sim-
ulator;Best et al., 2011; Clark et al., 2011) community land

surface model, has allowed us to do the same in modelling
the land surface and surface exchange processes. This pro-
vides the technical efficiency of sharing a common code in-
frastructure and libraries of parametrisations, and allows us
to take scientific advantage of the recognised synergies be-
tween climate and NWP modelling (e.g.Martin et al., 2010;
Senior et al., 2010). By studying the same model formula-
tion across a range of timescales and system applications,
one can learn about the rate of growth and nature of both
model errors and desirable behaviours. Also, by constraining
configurations to perform adequately across a wide variety
of systems, scientists can be more confident that model de-
velopments seen to improve performance metrics in any one
system are doing so by modelling a truer representation of
the real atmosphere.

It is for this reason that the Met Office is attempting to
adopt a single set of atmospheric and land surface model
configurations for use in global and regional models across
timescales from short-range weather prediction to multi-
centennial climate projections: the MetUM Global Atmo-
sphere and JULES Global Land. The principle of the Global
Atmosphere and Global Land development processes and the
justification of this approach were described in detail inWal-
ters et al.(2011). An important part of this is the publica-
tion of a paper describing each release developed over an
annual cycle; the current paper and the developments de-
scribed herein present a first attempt to apply these principles
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in practice in the development of the Global Atmosphere 4.0
(GA4.0) and Global Land 4.0 (GL4.0) configurations.

In Sect.2 we provide a description of GA4.0 and GL4.012,
whilst in Sect.3 we describe the main enhancements made
since GA3.0/GL3.0 in more detail. Section4 provides a pre-
liminary evaluation of the performance of the configuration
in several systems. Finally, Sect.5 includes some lessons
learnt over the course of the development cycle and outlines
our priorities for future development.

2 Global Atmosphere 4.0 and Global Land 4.0

2.1 Dynamical formulation and discretisation

The MetUM’s dynamical core uses a semi-implicit semi-
Lagrangian formulation to solve the non-hydrostatic, fully
compressible deep-atmosphere equations of motion (Davies
et al., 2005). The primary dry atmospheric prognostics are
the three-dimensional wind components, potential tempera-
ture, Exner pressure, and density, whilst moist prognostics
such as the mass mixing ratio of water vapour and prog-
nostic cloud fields are advected as free tracers; the same is
also true of other atmospheric loadings. These prognostic
fields are discretised horizontally onto a regular longitude–
latitude grid with Arakawa C-grid staggering (Arakawa and
Lamb, 1977), whilst vertical decomposition is done via
Charney–Phillips staggering (Charney and Phillips, 1953)
using terrain-following hybrid height coordinates.

By convention, global configurations are defined on 2n

longitudes and 1.5n + 1 latitudes of scalar grid points with
scalar and zonal wind variables at the north and south poles.
This choice makes the grid spacing approximately isotropic
in the mid-latitudes and means that the integern, which rep-
resents the maximum number of zonal 2 grid-point waves
that can be represented by the model, uniquely defines its
horizontal resolution; a model withn = 96 is said to be
N96 resolution. Limited-area configurations use a rotated
longitude–latitude grid, usually with the pole rotated so that
the grid’s equator runs through the centre of the model do-
main.

In the vertical, the majority of climate configurations use
an 85-level set labelled L85(50t,35s)85, which has 50 lev-
els below 18 km (and hence at least sometimes in the tropo-
sphere), 35 levels above this (and hence solely in or above
the stratosphere) and a fixed model lid 85 km above the sur-
face. Limited-area climate simulations use a reduced 63-
level set, L63(50t,13s)40, which has the same 50 levels
below 18 km, with only 13 above and a lower model top

1Where the configurations remain unchanged from GA3.0 and
GL3.0, Sect.2 contains material which is unaltered from the docu-
mentation paper for that release (Walters et al., 2011).

2In addition to the material herein, the Supplement to this paper
includes a short list of model settings outside the GA/GL definition
that are dependent on either model resolution or system application.

at 40 km. Finally, NWP configurations use a 70-level set,
L70(50t,20s)80 which has an almost identical 50 levels be-
low 18 km, a model lid at 80 km, but has a reduced strato-
spheric resolution compared to L85(50t,35s)85. Although we
have used a range of vertical resolutions in the stratosphere,
a consistent tropospheric vertical resolution is used through-
out. A more detailed description of these level sets is in-
cluded in the Supplement to this paper.

The use of a consistent vertical resolution in the tropo-
sphere means that the atmospheric time step used is a func-
tion of horizontal resolution only. Simulations at N96 (ap-
proximately 135 km in the mid-latitudes) use a 20 min time
step, whilst simulations at N512 (approximately 25 km in the
mid-latitudes) use a 10 min time step. Limited-area simula-
tions with resolutions of approximately 12 km typically use
time steps of 5 min or less. A more complete list of time
steps, along with other model parameters that change with
horizontal or vertical resolution, is included in the Supple-
ment.

2.2 Structure of the atmospheric model time step

A numerical model of the atmosphere requires adiabatic forc-
ing and diabatic processes occurring on scales too fine to
be resolved by the dynamical core to be treated by physical
parametrisation schemes. The order of these schemes within
the model time step and their coupling to the model’s dy-
namics can be considered part of the design of the dynamical
core. This requires a considered balance between stability,
computational cost and both physical and numerical accu-
racy. The MetUM’s time stepping treats slow timescale pro-
cesses in parallel prior to the main advection step. This is
followed by the fast timescale processes, which are treated
sequentially, prior to the final dynamical solution (Stani-
forth et al., 2002). In this framework, the slow processes
include radiation, large-scale precipitation and gravity wave
drag, whilst the fast processes include atmospheric (bound-
ary layer) turbulence, convection and coupling to the land
surface model. Prognostic cloud variables and tracers such
as aerosols are advected by the semi-Lagrangian dynamics.
Their sources and sinks occur where appropriate within the
physical parametrisation schemes (e.g. phase changes in the
microphysics, wash-out in large-scale precipitation and mix-
ing in the boundary layer and turbulence schemes). Chemical
and physical process internal to the aerosol scheme occur at
the end of the time step. The descriptions of these parametri-
sation schemes below are arranged in an order appropriate to
their place within the model time step.

2.3 Solar and terrestrial radiation

Shortwave (SW) radiation from the Sun is absorbed in the
atmosphere and at the Earth’s surface and provides energy to
drive the atmospheric circulation. Longwave (LW) radiation
is emitted from the planet into space and redistributes heat
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within the atmosphere. These processes are parametrised via
the radiation scheme, which provides prognostic atmospheric
temperature increments and surface fluxes and additional di-
agnostic fluxes.

The radiation scheme ofEdwards and Slingo(1996) is
used with a configuration based onCusack et al.(1999) with
a number of significant updates. The correlated-k method
is used for gaseous absorption with 6 bands in the SW
and 9 bands in the LW. The method of equivalent extinc-
tion (Edwards, 1996) is used for minor gases in each band.
Gaseous absorption coefficients are generated using the HI-
TRAN 2001 spectroscopic database (Rothman et al., 2003)
with updates up to 2003. The water vapour continuum is rep-
resented using version 2.4 of the Clough–Kneizys–Davies
(CKD) model (Clough et al., 1989; Mlawer et al., 1999).
Twenty-one (21)k terms are used for the major gases in the
SW bands. Absorption by water vapour (H2O), ozone (O3),
carbon dioxide (CO2) and oxygen (O2) is included. The treat-
ment of O3 absorption is as described inZhong et al.(2008).
The solar spectrum uses data fromLean (2000) at wave-
lengths shorter than 735 nm with theKurucz and Bell(1995)
spectrum at longer wavelengths. Forty-seven (47)k terms are
used for the major gases in the LW bands. Absorption by
H2O, O3, CO2, CH4, nitrous oxide (N2O), CFC-11 (CCl3F),
CFC-12 (CCl2F2) and HFC134a (CH2FCF3) is included. For
climate simulations, the atmospheric concentrations of CFC-
12 and HFC134a are adjusted to represent absorption by all
the remaining trace halocarbons. The treatment of CO2 and
O3 absorption is as described inZhong and Haigh(2000) to
provide accurate stratospheric heating. Of the major gasses
considered, only H2O is prognostic; O3 uses a zonally sym-
metric climatology, whilst other gasses are prescribed using
either fixed or time-varying mass mixing ratios and assumed
to be well mixed.

Absorption and scattering by the following categories of
aerosol, either prognostic or climatological, are included in
both the SW and LW: ammonium sulphate, mineral dust,
sea salt, biomass burning, fossil-fuel black carbon, fossil-fuel
organic carbon, and secondary organic (biogenic) aerosols.
The parametrisation of cloud droplets is described inEd-
wards and Slingo(1996) using the method of “thick averag-
ing”. Padé fits are used for the variation with effective radius,
which is computed from the number of cloud droplets. When
using prognostic aerosol, this is derived from the aerosol con-
centrations (Jones et al., 1994, 2001); whilst when using ei-
ther no aerosol or climatological aerosol, this is assumed to
be 100 cm−3 for maritime air masses and 300 cm−3 for con-
tinental air masses. The parametrisation of ice crystals is de-
scribed inEdwards et al.(2007). Full treatment of scattering
is used in both the SW and LW. The sub-grid cloud structure
is represented using the Monte Carlo Independent Column
Approximation (McICA) as described inHill et al. (2011),
with optimal sampling using 6 extra terms in the LW and 10
in the SW for the reduction of random noise.

Full radiation calculations are made every 3 h using the in-
stantaneous cloud fields (from the end of the previous time
step) and a mean solar zenith angle for the following 3 h pe-
riod. Corrections are made for the change in solar zenith an-
gle on every model time step and the change in cloud fields
every hour as described inManners et al.(2009). The emis-
sivity and the albedo of the surface are set by the land sur-
face model. The direct SW flux at the surface is corrected for
the angle and aspect of the topographic slope as described
in Manners et al.(2012). The albedo of the sea surface uses
a modified version of the parametrisation fromBarker and Li
(1995) with a varying spectral dependence.

2.4 Large-scale precipitation

The formation and evolution of precipitation due to grid
scale processes is the responsibility of the large-scale pre-
cipitation – or microphysics – scheme, whilst small-scale
precipitating events are handled by the convection scheme.
The microphysics scheme has prognostic input fields of heat,
moisture and cloud from the end of the previous time step,
which it modifies in turn. The microphysics used is based
on Wilson and Ballard(1999), with extensive modifications.
We use a prognostic rain formulation, which allows three-
dimensional advection of the precipitation particles. The par-
ticle size distribution for rain uses rain-rate dependent dis-
tribution of Abel and Boutle(2012). The minimum cloud
liquid content for autoconversion to occur has been altered
from the originalTripoli and Cotton(1980) formulation to
a liquid content where the number of drops over 20 µm is
1000 m−3, as discussed inAbel et al.(2010). In addition, we
have used the fall velocities ofAbel and Shipway(2007),
which allow a better representation of the drizzle drop spec-
trum. We also make use of multiple sub-time-steps of the
precipitation scheme, as inPosselt and Lohmann(2008) with
one sub-time-step for every two minutes of the model time
step to achieve a realistic treatment of in-column evaporation.
When prognostic aerosols are used, the aerosol mass mix-
ing ratios provide the cloud droplet number for autoconver-
sion, according to the formulae ofJones et al.(1994, 2001).
The aerosols which provide the droplet number are ammo-
nium sulphate, sea salt, biomass burning and fossil-fuel or-
ganic carbon. When using either no aerosol or climatological
aerosol, the cloud droplet number assumes the same land–sea
split as in the radiation scheme.

2.5 Large-scale cloud

Clouds appear on sub-grid scales well before the humidity
averaged over the size of a model grid box reaches satura-
tion. A cloud parametrisation scheme is therefore required
to determine the fraction of the grid box which is covered
by cloud and the amount and phase of condensed water con-
tained in those clouds. The formation of clouds will convert
water vapour into liquid or ice and release latent heat. The
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cloud cover and liquid and ice water contents are then used
by the radiation scheme to calculate the radiative impact of
the clouds and by the large-scale precipitation scheme to cal-
culate whether any precipitation has formed.

The parametrisation used is the MetUM’s prognostic cloud
fraction and prognostic condensate (PC2) scheme (Wilson
et al., 2008a, b) along with the modifications to the cloud
erosion parametrisation described byMorcrette(2012). PC2
uses three prognostic variables for humidity mixing ratio –
water vapour, liquid and ice – and a further three prognos-
tic variables for cloud fraction: liquid, ice and total. The to-
tal cloud fraction is not necessarily equal to the sum of the
other two due to the presence of mixed-phase regions. The
following atmospheric processes can modify the cloud fields:
shortwave radiation, longwave radiation, boundary layer pro-
cesses, convection, precipitation, small-scale mixing (cloud
erosion), advection and pressure changes due to large-scale
vertical motion. The convection scheme calculates incre-
ments to the prognostic liquid and ice water contents by de-
training condensate from the convective plume, whilst the
cloud fractions are updated using the non-uniform forcing
method ofBushell et al.(2003). One advantage of the prog-
nostic approach is that clouds can be transported away from
where they were created. For example, anvils detrained from
convection can persist and be advected downstream long af-
ter the convection itself has ceased.

2.6 Orographic gravity wave drag

The effect of local and mesoscale orographic features not re-
solved by the mean orography, from individual hills through
to small mountain ranges, must be parametrised. The small-
est scales, where buoyancy effects are not important, are
represented by an effective roughness parametrisation in
which the roughness length for momentum used by the
boundary layer scheme is increased over orography (Gre-
gory et al., 1998). The effects of the remainder of the sub-
grid orography (on scales where buoyancy effects are impor-
tant) are parametrised by a flow-blocking and gravity wave
drag parametrisation. The scheme is based onWebster et al.
(2003) and accounts for drag effects due to sub-grid orogra-
phy in stable conditions. The sub-grid orography is described
in terms of its amplitude, which is proportional to the stan-
dard deviation of the source orography in a model grid box,
and its anisotropy, i.e. how ridge-like the sub-grid orography
is. The total surface stress is proportional to the bulk low-
level winds and stability, and is determined using a simple
linear hydrostatic expression; idealised modelling (e.g.Wells
et al., 2005) suggests this captures the total surface stress rea-
sonably well. The low-level Froude number is then used to
partition the total stress into gravity wave and flow-blocking
components due to flow over and around the orography re-
spectively. The flow-blocking drag is diagnosed assuming
a linear decrease in the stress over the depth of the sub-
grid orography, whilst the gravity wave stress is launched

upwards and a drag exerted at levels where wave breaking
or wave saturation is diagnosed. Typically, in excess of 90 %
of the global mean of the total surface stress is attributed to
low-level flow blocking. The drag is applied as explicit in-
crements to the model wind fields, so a numerical limiter is
imposed on the flow-blocking drag to ensure the numerical
stability of the scheme (Brown and Webster, 2004).

2.7 Non-orographic gravity wave drag

Non-orographic sources – such as convection, fronts and
jets – can force gravity waves with non-zero phase speed.
These waves break in the upper stratosphere and meso-
sphere, depositing momentum, which contributes to driv-
ing the zonal mean wind and temperature structures away
from radiative equilibrium. Waves on scales too small for
the model to sustain explicitly are represented by a spectral
sub-grid parametrisation scheme (Scaife et al., 2002), which
by contributing to this mechanism leads to a more realis-
tic tropical quasi-biennial oscillation. The scheme, described
in more detail inWalters et al.(2011), represents processes
of wave generation, conservative propagation and dissipation
by critical-level filtering and wave saturation acting on a ver-
tical wavenumber spectrum of gravity wave fluxes following
Warner and McIntyre(2001). Launched in the lower tropo-
sphere, the two-part spectrum is linear from low wavenumber
cut-off up to a spectrum peak, corresponding to wavelengths
of 20 km and 4.3 km, whilst beyond the peak an inverse cubic
tail is characteristic of saturation. Current values chosen to
scale the spectrum represent order 10 % of saturation spec-
trum amplitudes at launch height. Momentum conservation
is enforced at launch, where isotropic fluxes guarantee zero
net momentum, and by imposing a condition of zero vertical
wave flux at the model upper boundary. In between, momen-
tum deposition occurs in each layer where reduced integrated
flux results from erosion of the launch spectrum, after trans-
formation by conservative propagation, to match the locally
evaluated saturation spectrum.

2.8 Atmospheric boundary layer

Turbulent motions in the atmosphere are not resolved by
global atmospheric models, but are important to parametrise
in order to give realistic vertical structure in the thermody-
namic and wind profiles. Although referred to as the “bound-
ary layer” scheme, this parametrisation represents mixing
over the full depth of the troposphere. The scheme is that of
Lock et al.(2000) with the modifications described inLock
(2001) andBrown et al.(2008). It is a first-order turbulence
closure mixing adiabatically conserved heat and moisture
variables, momentum and tracers. For unstable boundary lay-
ers, diffusion coefficients (K profiles) are specified functions
of height within the boundary layer, related to the strength of
the turbulence forcing. Two separateK profiles are used, one
for surface sources of turbulence (surface heating and wind

Geosci. Model Dev., 7, 361–386, 2014 www.geosci-model-dev.net/7/361/2014/



D. N. Walters et al.: MetUM GA4.0 and JULES GL4.0 configurations 365

shear) and one for cloud-top sources (radiative and evapo-
rative cooling). The existence and depth of unstable layers
is diagnosed initially by moist adiabatic parcels and then ad-
justed to ensure that the buoyancy consumption of turbulence
kinetic energy is limited. This can permit the cloud layer to
decouple from the surface (Nicholls, 1984). If cumulus con-
vection is diagnosed (through comparison of cloud and sub-
cloud layer moisture gradients), the surface-drivenK pro-
file is restricted to below cloud base and the mass flux con-
vection scheme is triggered from that level. Mixing across
the top of the boundary layer is through an explicit entrain-
ment parametrisation that is coupled to the radiative fluxes
and the dynamics through a sub-grid inversion diagnosis. If
the thermodynamic conditions are right, cumulus penetration
into a stratocumulus layer can generate additional turbulence
and cloud-top entrainment in the stratocumulus by enhancing
evaporative cooling at cloud top. There are additional non-
local fluxes of heat and momentum in order to generate more
vertically uniform potential temperature and wind profiles in
convective boundary layers. For stable boundary layers and
in the free troposphere, we use a local Richardson number
scheme based onSmith (1990). Its stable stability depen-
dence is given by the “sharp” function over sea and by the
“MES-tail” function over land (which matches linearly be-
tween an enhanced mixing function at the surface and sharp
at 200 m and above). This additional near-surface mixing is
motivated by the effects of surface heterogeneity, such as
those described inMcCabe and Brown(2007). The resulting
diffusion equation is solved implicitly using the monotoni-
cally damping, second-order-accurate, unconditionally stable
numerical scheme ofWood et al.(2007). The kinetic energy
dissipated through the turbulent shear stresses is returned to
the atmosphere as a local heating term.

2.9 Convection

The convection scheme represents the sub-grid scale trans-
port of heat, moisture and momentum associated with cumu-
lus clouds within a grid box. The MetUM uses a mass flux
convection scheme based onGregory and Rowntree(1990)
with various extensions to include down-draughts (Gre-
gory and Allen, 1991) and convective momentum transport
(CMT). The current scheme consists of three stages: (i) con-
vective diagnosis to determine whether convection is possi-
ble from the boundary layer; (ii) a call to the shallow or deep
convection scheme for all points diagnosed deep or shallow
by the first step; and (iii) a call to the mid-level convection
scheme for all grid points.

The diagnosis of shallow and deep convection is based
on an undilute parcel ascent from the near surface for grid
boxes where the surface layer is unstable and forms part of
the boundary layer diagnosis (Lock et al., 2000). Shallow
convection is then diagnosed if the following conditions are
met: (i) the parcel attains neutral buoyancy below 2.5 km or
below the freezing level, whichever is higher, and (ii) the air

in model levels forming a layer of order 1500 m above this
has a mean vertical velocity less than 0.02 ms−1. Otherwise,
convection diagnosed from the boundary layer is defined as
deep.

The deep convection scheme differs from the originalGre-
gory and Rowntree(1990) scheme in using a convective
available potential energy (CAPE) closure based onFritsch
and Chappell(1980). Mixing detrainment rates now depend
on relative humidity and forced detrainment rates adapt to the
buoyancy of the convective plume (Derbyshire et al., 2011).
The CMT scheme uses a flux gradient approach (Stratton
et al., 2009).

The shallow convection scheme uses a closure based on
Grant(2001) and has larger entrainment rates than the deep
scheme consistent with cloud-resolving model (CRM) simu-
lations of shallow convection. The shallow CMT uses flux–
gradient relationships derived from CRM simulations of
shallow convection (Grant and Brown, 1999).

The mid-level scheme operates on any instabilities found
in a column above the top of deep or shallow convection or
above the lifting condensation level. The scheme is largely
unchanged fromGregory and Rowntree(1990), but uses the
Gregory et al.(1997) CMT scheme and a CAPE closure.
The mid-level scheme operates mainly either overnight over
land when convection from the stable boundary layer is no
longer possible or in the region of mid-latitude storms. Other
cases of mid-level convection tend to remove instabilities
over a few levels and do not produce much precipitation.

The timescale for the CAPE closure, which is used for the
deep and mid-level convection schemes, is essentially fixed
at a chosen value of one hour; however, if extremely high
large-scale vertical velocities are detected in the column then
the timescale is rapidly reduced to ensure numerical stability.

2.10 Atmospheric aerosols and chemistry

As discussed inWalters et al.(2011), the modelling of at-
mospheric aerosols and chemistry is considered as a sepa-
rate component of the full Earth system and remains outside
the scope of this document. The aerosol species represented
and their interaction with the atmospheric parametrisations
is, however, part of the Global Atmosphere component and
has therefore been included in the descriptions above. Sys-
tems including prognostic aerosol modelling do so using
the CLASSIC (Coupled Large-scale Aerosol Simulator for
Studies in Climate) aerosol scheme described inBellouin
et al. (2011). The treatment of tropospheric aerosols in sys-
tems which do not model these explicitly is supplemented
by the use of a three-dimensional monthly climatology for
each aerosol species, although currently these are only used
to model the direct aerosol effect. In addition to the treatment
of these tropospheric aerosols, we include a simple strato-
spheric aerosol climatology based onCusack et al.(1998).
We also include the production of stratospheric water vapour
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via a simple methane oxidation parametrisation (Untch and
Simmons, 1999).

2.11 Land surface and hydrology: Global Land 4.0

The exchange of fluxes between the land surface and the at-
mosphere is an important mechanism for heating and moist-
ening the atmospheric boundary layer. In addition, the ex-
change of CO2 and other greenhouse gases plays a significant
role in the climate system. The hydrological state of the land
surface contributes to impacts such as flooding and drought
as well as providing freshwater fluxes to the ocean, which in-
fluences ocean circulation. Therefore, a land surface model
needs to be able to represent this wide range of processes
over all surface types that are present on the Earth.

The Global Land configuration uses a community land sur-
face model, JULES (Best et al., 2011; Clark et al., 2011),
to model all of the processes at the land surface and in the
sub-surface soil. JULES is based on a combination of the
Met Office Surface Exchange Scheme (MOSES,Cox et al.,
1999) and the TRIFFID (Top-down Representation of Inter-
active Foliage and Flora Including Dynamics) dynamic vege-
tation model (Cox et al., 2000; Cox, 2001). A tile approach is
used to represent sub-grid scale heterogeneity (Essery et al.,
2003), with the surface of each land point subdivided into five
types of vegetation (broadleaf trees, needle-leaved trees, tem-
perate C3 grass, tropical C4 grass and shrubs) and four non-
vegetated surface types (urban areas, inland water, bare soil
and land ice). Vegetation canopies are represented in the sur-
face energy balance through the coupling to the underlying
soil. This canopy is coupled via radiative and turbulent ex-
change, whilst any bare soil component couples through con-
duction. JULES also uses a canopy radiation scheme to rep-
resent the penetration of light within the vegetation canopy
and its subsequent impact on photosynthesis (Mercado et al.,
2007). The canopy also interacts with the surface snow. For
most vegetation types, the snow is held on top of the canopy,
whilst for needle-leaved trees some of the snow is intercepted
by the canopy and the remainder is held beneath it. This im-
pacts the surface albedo, the snow sublimation and the snow
melt. The vegetation canopy code has been adapted for use
with the urban surface type by defining an “urban canopy”
with the thermal properties of concrete (Best, 2005). This
has been demonstrated to give improvements over represent-
ing an urban area as a rough bare soil surface. Similarly, this
canopy approach has also been adopted for the representation
of lakes. The original representation in MOSES was through
a soil surface that could evaporate at the potential rate (i.e.
a soggy soil), which has been shown to have incorrect sea-
sonal and diurnal cycles for the surface temperature (Rooney
and Jones, 2010). By defining an “inland water canopy” and
setting the thermal characteristics to those of a suitable depth
of water (taken to be 1 m), a better diurnal cycle for the sur-
face temperature is achieved.

Surface fluxes are calculated separately on each tile us-
ing surface similarity theory. In stable conditions we use
the similarity functions ofBeljaars and Holtslag(1991),
whilst in unstable conditions we take the functions fromDyer
and Hicks(1970). The effects on surface exchange of both
boundary layer gustiness (Godfrey and Beljaars, 1991) and
deep convective gustiness (Redelsperger et al., 2000) are in-
cluded. Temperatures at 1.5 m and winds at 10 m are interpo-
lated between the model’s grid levels using the same similar-
ity functions, but a parametrisation of transitional decoupling
in very light winds is included in the calculation of the 1.5 m
temperature.

Soil processes are represented using a 4-layer scheme
for the heat and water fluxes with hydraulic relationships
taken fromvan Genuchten(1980). These four soil layers
have thicknesses from the top down of 0.1, 0.25, 0.65 and
2.0 m. The impact of moisture on the thermal characteristics
of the soil is represented using a simplification ofJohansen
(1975), as described inDharssi et al.(2009). The energet-
ics of water movement within the soil is accounted for, as
is the latent heat exchange resulting from the phase change
of soil water from liquid to solid states. Sub-grid scale het-
erogeneity of soil moisture is represented using the Large-
Scale Hydrology approach (Gedney and Cox, 2003), which
is based on the topography-based rainfall-runoff model TOP-
MODEL (Beven and Kirkby, 1979). This enables the repre-
sentation of an interactive water table within the soil that can
be used to represent wetland areas, as well as increasing sur-
face runoff through heterogeneity in soil moisture driven by
topography.

A river routing scheme is used to route the total runoff
from inland grid points both out to the sea and to inland
basins, where it can flow back into the soil moisture. Ex-
cess water in inland basins is distributed evenly across all
sea outflow points. In coupled model simulations the re-
sulting freshwater outflow is passed to the ocean, where it
is an important component of the thermohaline circulation,
whilst in atmosphere/land-only simulations this ocean out-
flow is purely diagnostic. River routing calculations are per-
formed using the TRIP (Total Runoff Integrating Pathways)
model (Oki and Sud, 1998), which uses a simple advection
method (Oki, 1997) to route total runoff along prescribed
river channels on a 1◦ × 1◦ grid using a 3 h time step. Land
surface runoff accumulated over this time step is mapped
onto the river routing grid prior to the TRIP calculations, af-
ter which soil moisture increments and total outflow at river
mouths are mapped back to the atmospheric grid (Falloon
and Betts, 2006). A validation of the river routing scheme in
much older coupled model configurations is presented inFal-
loon et al.(2011). This river routing model is not currently
being used in limited-area or NWP implementations of the
Global Atmosphere/Land.
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Table 1. Source data sets used to create standard ancillary files used in GA4.0/GL4.0.

Ancillary field Source data Notes

Land mask/fraction System dependent
Mean/sub-grid orography GLOBE 30′′; Hastings et al.(1999) Fields filtered before use
Land usage IGBP;Global Soil Data Task(2000) Mapped to 9 tile types
Soil properties HWSD;Nachtergaele et al.(2008)
Leaf area index/canopy height MODIS collection 5 4 km data (Samanta et al.,

2012) mapped to 5 plant types
TOPMODEL topographic index (Verdin and Jensen, 1996)
SST/sea ice System/experiment dependent
Ozone SPARC-II;Cionni et al.(2011) Zonal mean field used
Aerosol emissions/fields: Only required for

prognostic aerosols
Main primary emissions CMIP5;Lamarque et al.(2010) Includes SO2, DMS, soot,

OCFF, biomass burning
Volcanic SO2 emissions Andres and Kasgnoc(1998)
Sulphur-cycle offline oxidants STOCHEM∗ (Derwent et al., 2003)
Ocean DMS concentrations Kettle et al.(1999)
Biogenic aerosol ancillary STOCHEM∗; Derwent et al.(2003)

CLASSIC aerosol ancillaries System/experiment dependent Used when prognostic fields
not available

TRIP river paths 1◦ data fromOki and Sud(1998) Adjusted at coastlines to ensure
correct outflow

∗ Note that STOCHEM denotes that these fields are derived from runs of the STOCHEM chemistry model.

2.12 Ancillary files and forcing data

In the MetUM, the characteristics of the lower boundary, the
values of climatological fields and the distribution of natu-
ral and anthropogenic emissions are specified using ancillary
files. Use of correct ancillary file inputs can play as important
a role in the performance of a system as the correct choice of
options in the parametrisations described above, but this is
often overlooked by both users and developers. For this rea-
son, we consider the source data and processing required to
create ancillaries as part of the definition of the Global At-
mosphere/Land configurations.

Table1 contains the main ancillaries used in GA4.0/GL4.0
as well as references to the source data from which they are
created.

3 Developments since Global Atmosphere/Land 3.0

In this section, we describe the main developments in the
Global Atmosphere and Global Land configurations since
GA3.0/GL3.0.

3.1 Dynamical formulation and discretisation

The formulation of the dynamical core in GA4.0 is largely
identical to that in GA3.0. One change that has been made,
however, is the replacement of the specific quantities for
moist prognostics (such as specific humidity) with mass mix-
ing ratios as described inDavies et al.(2005). This change

has been made in preparation for the future inclusion of the
“ENDGame” dynamical core (Wood et al., 2013), which is
formulated solely in terms of mass mixing ratios. These mass
mixing ratios are also used by the parallel physical parametri-
sations described in Sect.2.2, but are still converted into spe-
cific quantities for use in the sequential physics. The neces-
sary conversions take place within each model time step.

3.2 Solar and terrestrial radiation

The only change made to the radiation scheme in GA4.0 is
a correction to the treatment of shortwave fluxes in the cou-
pling to the sea ice component of coupled modelling systems
at grid points with fractional land cover. This correction en-
sures that the shortwave flux to sea ice points is accounted
for on every atmospheric model time step, rather than only
on the time steps in which the fluxes were calculated, which
was the case in GA3.0.

3.3 Large-scale precipitation

The main change to the large-scale precipitation scheme
since GA3.0 has been the introduction of an improved parti-
cle size distribution for rain (Abel and Boutle, 2012). In both
the GA3.0 and GA4.0 configurations, the single-moment rain
particle size distribution is defined as a function of diameter:

N(D) = N0D
α exp(−λD), (1)
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Table 2. Changes to the rain particle size distribution parameters
between GA3.0 and GA4.0.

Configuration x1 x2

GA3.0;Walters et al.(2011); Abel et al.(2010) 26.20 1.57
GA4.0;Abel and Boutle(2012) 0.22 2.20

whereN(D) is the number of particles of diameterD. The
shape parameter,α, is set to zero in both GA3.0 and GA4.0,
which is shown byAbel and Boutle(2012) to be a reasonable
assumption. Equation (1), therefore, reduces to a function of
the slope parameterλ and the intercept parameterN0. The
intercept parameter is defined as

N0 = x1λ
x2, (2)

wherex1 andx2 are dimensionless constants. The slope pa-
rameter is defined as a function of rain mixing ratioqr and
air densityρ using

λ =
πρwx10(4)

6ρqr

1
4−x2

, (3)

whereρw is the density of water (1000 kgm−3). The values
of x1 and x2 for GA3.0 and GA4.0 are shown in Table2.
The values chosen for GA3.0 were intended to allow a larger
number of smaller rain drops to be produced in light rain and
drizzle conditions. However,Abel and Boutle(2012) showed
that the GA3.0 values did not correctly capture the variability
in N0 observed in aircraft and lidar data, particularly near the
drizzle end of the spectrum. They proposed the new values
shown in Table2, which have been implemented in GA4.0.

Figure1 shows the impact of this change on the droplet
size distribution for three rain mixing ratios. For the smallest
mixing ratio, the intercept of the particle size distribution is
at least ten times greater in GA4.0 than GA3.0, whilst for the
highest mixing ratio the two lines are very similar.

Two other minor changes have been made since GA3.0.
The first is a correction to the freezing of rain. The prognos-
tic rain formulae introduced at GA3.0 allow small amounts
of supercooled rain to remain in the atmosphere at altitudes
above 10 km. We have applied a homogeneous freezing of
this rain to ice at temperatures less than or equal to−40◦C.
A heterogeneous freezing of rain is being developed, but
has not been implemented for GA4.0. Secondly, we make
a change to the sub-stepping. The microphysics scheme pro-
cesses each grid box in the column, starting from the top of
the atmosphere and finishing at the surface. In GA3.0 this
was performed by a number of iterations on each model level,
before proceeding to the next level down in the vertical. For
GA4.0, this has changed so that the microphysics iterations
are performed over the whole column; each iteration pro-
cesses every model level once and the next iteration starts
at the top of the atmosphere. The change to iterations loop-
ing over columns rather than over model levels was made
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Fig. 1. The difference between the GA3.0 particle size distribution
and the GA4.0 particle size distribution, taken fromAbel and Boutle
(2012) for three different values of the rain mixing ratio (qr).

as it was thought to be more physically realistic, effectively
giving the scheme a shorter time step than the rest of the Me-
tUM.

3.4 Large-scale cloud

By studying the prognostic cloud scheme’s cloud tendency
terms,Morcrette and Petch(2010) found a spurious feed-
back caused by an explicit link between the rate of sub-grid
homogenisation in the cloud erosion parametrisation and the
relative humidity. For this reason, an alternative way of cal-
culating the cloud erosion term has been developed for use
in GA4.0 (Morcrette, 2012). The new formulation relates the
rate of mixing to the cloud fraction, so that the maximum
mixing will occur when the sky is half covered in cloud. The
mixing tends to zero as the cloud fraction approaches zero or
one, where there are no cloud edges across which the mixing
of clear and cloudy air can occur. In summary, the new cloud
erosion parametrisation consists of calculating the change in
the prognostic grid-box-mean liquid water content,qcl, using

∂qcl

∂t

∣∣∣
Erosion

= αKCl(1− Cl)(qsat− qv), (4)

whereCl is the liquid cloud fraction,qsat andqv are the sat-
uration mixing ratio and water vapour mixing ratio respec-
tively, α is a geometric factor taking a value of 1/3 andK is
the erosion coefficient, which has a value of 3.0× 10−4 s−1

in GA4.0. The rate of sub-grid homogenisation of the mois-
ture probability density function, consistent with this change
in liquid water content, is found from Eq. (A11) inWilson
et al. (2008a). This is then used to calculate the change in
liquid cloud fraction using their Eq. (A12) as before.

The large-scale precipitation scheme calculates the rate
with which frozen condensate falls from one layer to the next.
In addition, the PC2 cloud scheme represents how the falling
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Fig. 2. Top-of-atmosphere reflected shortwave along a meridional
flight track from a cold-air outbreak case within the CONSTRAIN
field campaign. The solid line (Obs) is aircraft observations made
at about 11:00 UTC on 31 January 2010; the dotted line (Cntrl) is a
17 h forecast from the 1.5 km-resolution limited-area MetUM NWP
configuration (UKV) valid at the same time as the observations, and
the dashed line (Expt) is from an equivalent UKV forecast including
the shear-dominated boundary layer diagnosis.

ice will increase the ice cloud fraction in the layer it enters.
In the absence of shear, the ice cloud fraction is advected
downwards using the ice fall velocity. Any ice cloud frac-
tion falling into clear air is then rescaled in the horizontal by
assuming it has filled the grid box in the vertical.

In the presence of shear, the falling ice cloud fraction can
be displaced laterally as it falls, making it less likely to fall
into the vertically contiguous cloud below and more likely to
fall into clear air. InWilson et al.(2008a) and GA3.0, this
source term was calculated assuming that the vertical wind
shear had a globally constant value of 1.5× 10−4 s−1 and
did not alter with the size of the model grid box. In GA4.0,
the wind-shear term is calculated from the vertical shear of
the model’s horizontal wind, and the potential increase in
ice cloud fraction due to the lateral displacement of the ice
cloud as it falls is related to the size of the grid box (which
varies between systems using different horizontal resolutions
as well as with latitude in any one system due to the model’s
latitude–longitude grid).

This falling ice parametrisation assumes that, although ice
may fall out of a layer and increase the ice cloud fraction in
the layers below, the ice cloud fraction remains constant in
the layer the ice is falling from. These layers lose mass as
ice falls out, but their lateral extent remains constant. This
represents the ice cloud becoming optically thinner whilst
maintaining its lateral extent.

Wilson et al. (2008b) describe how the temperature at
which condensate in the convection scheme changes from
liquid to ice had been set to−10◦C when using PC2, which
allows the convection scheme to be a source of super-cooled
liquid water. InWilson et al.(2008b) and GA3.0, the phase
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Fig. 3. Entrainment rate profiles for deep convection (in height co-
ordinates) used in GA3.0, GA4.0 and that used inKlingaman and
Woolnough(2013) labelled 1.5× GA3.0.

of the detrained condensate would change abruptly from liq-
uid to ice as the temperature dropped below this threshold.
In GA4.0 this abrupt change has been replaced by a gradual
transition, linearly applied between temperatures of 0◦C and
−20◦C, which is physically more realistic.

3.5 Atmospheric boundary layer

A significant long-standing radiative bias in the model is a
north–south asymmetry in reflected SW, in which the planet
is too bright in the Northern Hemisphere and too dark over
the Southern Ocean.Bodas-Salcedo et al.(2012) undertook a
detailed diagnostic analysis to understand the origin of cloud
biases over the Southern Ocean. This showed that the model
produced too-little cloud in cold-air outbreaks. Data from a
cold-air outbreak case off northwest Scotland, investigated as
part of the CONSTRAIN field campaign, were used to fur-
ther understand the bias and develop a revision to the bound-
ary layer regime diagnosis in situations of strong wind shear.

They hypothesised that shear-generated turbulence could
extend mixing into regions of weak static stability, such as
across the base of a cumulus cloud layer. An additional dy-
namical constraint was therefore added that would suppress
the (thermodynamically diagnosed) triggering of the convec-
tion scheme. Instead, the boundary layer scheme’s non-local
diffusion profiles would be used to parametrise the mixing
right up to cloud top. This diagnosis is made by inspecting
the profile of the local Richardson number (Ri). If Ri < 0.25
both below cloud base and throughout the lower fraction of
the cloud layer, then a “shear-dominated boundary layer” is
diagnosed. The wind shear is assumed to disrupt the forma-
tion of cumulus clouds and we model a more appropriate,
well-mixed stratocumulus-topped boundary layer type. The
fraction of the cloud layer through which to continue the
Ri test is defined by the parameterf (Bodas-Salcedo et al.,
2012). Figure2 shows results from a test of this change in
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Table 3. Changes to the ratio of the thermal to the momentum
roughness lengths (z0h/z0m) for each surface type between GL3.0
and GL4.0.

Surface z0h/z0m z0h/z0m
type (GL3.0) (GL4.0)

Broadleaf trees 0.10 1.65
Needle-leaved trees 0.10 1.65
C3 grass 0.10 0.10
C4 grass 0.10 0.10
Shrubs 0.10 0.10
Urban 0.10 1× 10−7

Lake 0.10 0.25
Bare soil 0.10 0.02
Land ice 0.10 0.20
Sea ice 1.00 0.20

a 1.5 km-resolution limited-area MetUM forecast compared
to observations taken during the CONSTRAIN field cam-
paign (Field et al., 2013). At this resolution, which is much
higher than that used in any Global Atmosphere configura-
tions, the convection is assumed to be resolved and so the
convection parametrisation is switched off, but the bound-
ary layer diagnosis remains almost identical to that in the
global model. The control configuration shows a significant
underestimate of the liquid water path and reflected short-
wave flux, which coincides with a region of stratiform cloud
that appears in the model as a broken cloud layer with too-
little cloud cover. Including shear-dominated boundary layer
diagnosis (withf = 0.5) greatly decreases the frequency of
cumulus convection diagnosis in favour of well-mixed cloud-
capped layers and results in a significant enhancement to
the reflected SW flux. In Global Atmosphere configurations
(with parametrised convection), a series of sensitivity tests
suggested a value off = 0.3 would be more effective at
both typical NWP and climate resolutions, suggesting a sen-
sitivity to whether the cumulus transports were resolved or
parametrised (rather than resolution itself).

Changes have also been made to the stability functions for
momentum (fm) and sensible heat (fh) used in the Richard-
son number-dependent part of the boundary layer scheme.
On the unstable side, the “conventional” model ofBrown
(1996) has been implemented that has the following depen-
dence on the local Richardson number,Ri:

fm = (1− bLEMRi)1/2
; (5)

fh =
1

PrN
(1− bLEMRi)1/2 , (6)

where the constantbLEM = 1.43 and PrN is the neutral
Prandtl number. The previous functions gave significantly
larger mixing in an attempt to represent the effects of non-
local mixing in unstable boundary layers but this is no
longer necessary when the non-local scheme is used. At the
same time, a more realistic value forPrN of 0.7 has been

Table 4.Changes to the surface emissivity (ε) for each surface type
between GL3.0 and GL4.0.

Surface ε ε

type (GL3.0) (GL4.0)

Broadleaf trees 0.97 0.980
Needle-leaved trees 0.97 0.990
C3 grass 0.97 0.980
C4 grass 0.97 0.980
Shrubs 0.97 0.980
Urban 0.97 0.970
Lake 0.97 0.985
Bare soil 0.97 0.900
Land ice 0.97 0.990
Open sea 1.00 0.985
Sea ice 1.00 0.976

introduced (a value of unity was used before). Large-eddy
simulations (LES) of stable boundary layers and surface field
site observations also tend to show an increase in Prandtl
number with stability (e.g.Anderson, 2009). This is gen-
erally believed to represent the effects of gravity waves in
transporting momentum but not heat or other scalars (hence
the ratio of momentum to heat mixing increases). High-
resolution LES of idealised stable boundary layers based on
Beare et al.(2006) have motivated the formulation imple-
mented here ofPr = 0.7(1+ 2Ri). For model stability (and
to keep within observed limits)Pr is capped at a maximum
value of 5. The combined impact of both these changes on
the stability functions is small.

3.6 Convection

At GA4.0 the code version used for the convection scheme
was changed to allow greater flexibility for future develop-
ments. As part of this change the convective energy correc-
tion of Gregory and Rowntree(1990) was removed as its
formulation was considered incorrect, never having been re-
vised to take account of convective increments to cloud liquid
and cloud ice. It is hoped to include a new revised convective
energy correction in the future, which will be consistent with
the scheme.

GA4.0 includes a revision to the convective entrainment
and detrainment rates used in deep convective ascents. The
entrainment rate was increased at lower levels in an attempt
to gain some of the benefit seen in recent sensitivity studies,
in which the entrainment rate was increased throughout the
depth of the profile (Klingaman and Woolnough, 2013; Bush
et al., 2012). Increasing the entrainment rate by a factor of 1.5
was shown to improve the simulation of the Madden–Julian
Oscillation, tropical cyclones and the distribution of dry days
and wet days over tropical land, but tends to increase the up-
per tropical tropospheric cold bias and degrade upper-level
tropical winds. Figure3 shows the deep entrainment profile
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Fig. 4. Impact of the tiled emissivityǫ on (a) the mean clear-sky outgoing LW radiation and(b) the mean
screen-level temperature during JJA in a 10 yrN96 atmosphere/land-only climate simulation as well as
the screen-level temperature errors in(c) the control simulation and(d) the test simulation against the
CRUTEM3 climatology (Brohan et al., 2006).
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Fig. 4. Impact of the tiled emissivityε on (a) the mean clear-sky outgoing LW radiation and(b) the mean screen-level temperature during
JJA in a 10 yr N96 atmosphere/land-only climate simulation as well as the screen-level temperature errors in(c) the control simulation and
(d) the test simulation against the CRUTEM3 climatology (Brohan et al., 2006).

used in GA4.0 (in height coordinates), which was chosen to
match 1.5 times the GA3.0 entrainment rate at lower levels,
but decreases with height (in coordinates of pressureP di-
vided by the surface pressureP∗) by a factor of(P/P∗)

2

rather thanP/P∗ as was used in GA3.0. Whilst this did re-
strict the upper-level temperature and wind detriments seen
in previous studies, it was also found to have little impact on
the modes of variability that were improved in those studies.
The mixing detrainment rate coefficient was increased by a
factor of two to a value of 3.0, closer to the value of 6.0 sug-
gested by a recent CRM study (Stirling and Stratton, 2012).
Increasing mixing detrainment tends to increase the humidity
in the lower tropical troposphere.

Finally, we have made changes to the treatment of the
complex microphysical processes that occur in convective
clouds, which are represented in a very simple manner within
the convection scheme. The scheme defines a critical convec-
tive cloud condensate profile,Xmin, which is the minimum
amount of condensate that a convective parcel at a given level
must hold before precipitation will occur. Any condensate
above this threshold will be precipitated out of the parcel;
thereforeXmin also defines the maximum amount of con-
densate that the parcel can hold after precipitation. This is
an important quantity because it determines the precipitation
efficiency of the convection scheme, and because it controls

how much condensate, and hence also how much large-scale
cloud fraction, is detrained from the convective parcel into
the prognostic cloud variables. At GA4.0,Xmin is defined as

Xmin =


qcl,max if Kqenv

sat > qcl,max

Kqenv
sat if qcl,max ≥ Kqenv

sat ≥ qcl,min

qcl,min if Kqenv
sat < qcl,min

, (7)

whereK is a factor (set to 0.5) that scales the local satu-
rated specific humidityqenv

sat . Xmin is limited to be between
qcl,min, which has a value of 0.3 gkg−1, andqcl,max, which
has a value of 1.5 gkg−1.

Prior to GA4.0, a similar functional form was used for
Xmin, but two additional scalings were applied: it was in-
creased at low levels to prevent shallow convection from pre-
cipitating and it was increased below the freezing level over
land to reflect the higher concentration of cloud condensa-
tion nuclei. These additional scalings have been removed at
GA4.0 because this additional level of complexity was diffi-
cult to justify, considering the extremely simple nature of this
overall approach; this has been partially offset by increasing
qcl,max to the value quoted above.
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Fig. 5. Impact of the improved partitioning of snow on the mean clear-sky reflected SW radiation and
screen-level temperature during MAM in a 10 yrN96 atmosphere/land-only climate simulation using the
same format as Fig. 4.
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Fig. 5. Impact of the improved partitioning of snow on the mean clear-sky reflected SW radiation and screen-level temperature during MAM
in a 10 yr N96 atmosphere/land-only climate simulation using the same format as Fig.4.

3.7 Atmospheric aerosols and chemistry

The aerosol scheme was changed at GA4.0 to include the ef-
fect of seasonal vegetation dieback on dust emissions. This
is achieved by calculating the dust emissions using the same
method as before (seeWoodward, 2011, for details), but scal-
ing the emissions by a “dust emitting radiative bare soil frac-
tion” of each grid box rather than the “permanent bare soil
fraction”. The radiative bare soil fraction, which is used to
calculate the land surface model’s albedo, is derived for each
grid box from the MODIS collection 5 leaf area index (LAI)
product, whilst we define the dust-emitting part of this as the
total contribution from areas of permanent bare soil and sea-
sonal grasses, as well as 50 % of the contribution from sea-
sonal shrubs.

3.8 Land surface and hydrology: Global Land 4.0

The main aims during the development of GL4.0 were to im-
prove the model’s near-surface air temperature and to con-
solidate the differences between the previous GL3.0 “trunk”
configuration and the GL3.1 “branch” used in operational
global NWP forecasting (Walters et al., 2011). In GL3.0,
the momentum roughness length of bare soil was set to
3× 10−4m, whilst in GL3.1 it was 3.2× 10−3m. Observa-
tional estimates of the roughness length of bare soil sur-
faces suggest large geographical variations covering this
range (Greeley et al., 1997; Laurent et al., 2005), so we have
adopted an intermediate value of 1× 10−3m for GL4.0. A
momentum roughness length of 3× 10−4m over lakes was
used in both GL3.0 and GL3.1. Comparisons between the
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model and reanalyses suggest that GL3.0 suffers from a slow
bias in the near-surface wind speed around the Great Lakes,
so this value was reduced to 1× 10−4m, which is more con-
sistent with the values predicted from wind-speed-dependent
parametrisations over open water.

In order to improve the representation of near-surface tem-
perature gradients and surface fluxes, the ratios of the ther-
mal to the momentum roughness lengths (z0h/z0m) have also
been revised, to the values shown in Table3. GL3.0 assumed
identical values ofz0h andz0m over sea ice, which has been
shown to lead to excessive latent heat fluxes (Birch et al.,
2009) and is out of line with theoretical models and field
measurements (Andreas, 1987; Andreas et al., 2010). In the
longer term, we intend to investigate parametrisation of the
ratio in terms of the roughness Reynolds number, but for the
present the ratio has been reduced to a more typical value of
0.2 for both marginal and pack ice. Over land surfaces, the
ratio z0h/z0m was set to 0.1 for all surface types in GL3.0.
For land ice the ratio has been adjusted to 0.2, to be consis-
tent with sea ice. Comparison of the modelled surface skin
temperature with retrieved values over arid regions in GL3.1,
in conjunction with observations of near-surface air tem-
perature, suggested a significant underestimate of the near-
surface temperature gradient. To improve this and in com-
bination with the revision ofz0m, z0h/z0m for bare soil has
been decreased to 0.02. Over lakes, the ratio has been set to
0.25, to be consistent with the revised momentum roughness
length for lakes and the parametrisation of the ratio used over
open sea. For vegetated surfaces, it has been argued that the
ratio z0h/z0m should increase with canopy height (e.g.Chen
and Zhang, 2009). In GL4.0,z0h/z0m = 0.1 for low vegeta-
tion, as in GL3.0, but for trees the ratio has been increased to
1.65, followingMölder and Lindroth(1999), who argue that
the transfer of heat is more efficient than that of momentum
in the deep roughness sublayer above tall vegetation. Over
urban surfaces,z0h/z0m has been reduced to 10−7 for consis-
tency with high-resolution forecasting models.

In GL3.0, the surface emissivity was set to 0.97 over all
land surface tiles and to 1.0 over both open sea and sea ice.
In GL4.0, each surface type is assigned a different emissiv-
ity, as shown in Table4. These values are based on the data of
Snyder et al.(1998), but in the case of bare soil we have also
taken account of the emissivities used in the retrieval of land
surface temperature from the Spin Enhanced Visible and In-
frared Imager (SEVIRI) instrument over the Sahara3 (Trigo
et al., 2009). The emissivity of land tiles is adjusted in the
presence of snow, reaching a value of 0.99 at complete cov-
erage.

3Low emissivities over the Sahara are associated with high
quartz contents. An improved approach, which might be included
in the future, would be to relate the bare soil emissivity to the soil
mineralogy.

Table 5. Source data used to create ozone ancillaries in the fol-
lowing GA3.0/3.1 and GA4.0 systems: NWP: 1–6-day NWP fore-
casts; MOGREPS-15: the 15-day global component of the Met Of-
fice Global and Regional Ensemble Prediction System; GloSea: the
Met Office Global Seasonal forecast system; Clim: standard data set
used in GA3.0 climate runs; and CMIP5: GA3.0 climate runs set up
to use CMIP5 forcing data (Taylor et al., 2009).

System GA3.0 data set GA4.0 data set

NWP Li and Shine(1995) SPARC-II
MOGREPS-15 SPARC-I SPARC-II
GloSea/Clim Dall’Amico et al. (2010) SPARC-II
CMIP5 SPARC-II SPARC-II

Figure 4 shows the impact of the new emissivities on
the mean clear-sky outgoing LW radiation and screen-level
temperature during June–August (JJA) from a test of these
tiled emissivities in a 10 yr atmosphere/land-only climate
simulation at N96 resolution (approximately 135 km in the
mid-latitudes). The significant reduction in the emissivity of
bare soil causes a reduction in the emitted radiation over
the deserts. Consequently, the surface skin and near-surface
air temperatures are increased, which ameliorates a cold
bias over the Middle Eastern deserts that is prominent in
GA3.0/GL3.0.

In both GL3.0 and GL4.0, needle-leaved trees are repre-
sented using a canopy model that allows the snow cover to
be partitioned between the canopy and the ground. In GL4.0,
the parametrisation of the albedo of needle-leaved trees has
been revised to make it fully consistent with this partitioning,
so that the albedo is now dependent solely upon the canopy
snow store.

Figure 5 shows the impact of this improved partitioning
on the mean clear-sky reflected SW radiation and screen-
level temperatures during March–May (MAM) in a 10 yr
N96 atmosphere/land-only climate simulation. Removing the
impact of snow below the canopy from the calculation of the
surface albedo reduces the reflection of SW radiation over
wide areas of the northern continents. This leads to a warm-
ing in excess of 1K over western Canada, which reduces a
significant cold bias in this region.

Finally, a small algorithmic improvement has been made
in the calculation of soil moisture fluxes. Whereas the verti-
cal gradient of the soil suction, d9/dz, was previously eval-
uated directly as the finite difference19/1z, in GL4.0 it
has been rewritten as d9/dS × 1S/1z, whereS is the nor-
malised water content. The former derivative is evaluated an-
alytically and the latter as a finite difference. This calculation
of 1S/1z is fully consistent with the calculation of the hy-
draulic conductivity at the interface between soil layers and
results in better-behaved moisture fluxes in the presence of
strong soil moisture gradients.
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Fig. 6. Normalised assessment criteria (ratios of mean field root mean square errors) for a range of at-
mospheric fields from the GA4.0/GL4.0N96-AL clim simulation compared to a GA3.0/GL3.0 base-
line. Statistics shown are from the seasons December to February (DJF), March to May (MAM),
June to August (JJA) and September to November (SON) and for regions global, tropical land (land
points between 30◦ N and 30◦ S), tropical ocean (ocean points between 30◦N and 30◦ S), north
(30◦–90◦ N) and south (30◦–90◦ S). The observation datasets used are HadSLP2 pressure at mean
sea level (Allan and Ansell, 2006), GPCP precipitation (Adler et al., 2003), SSMI precipitable wa-
ter (Wentz and Spencer, 1998) and CRUTEM3 1.5m temperature (Brohan et al., 2006), whilst the re-
maining climatologies are from ERA-interim reanalyses (Berrisford et al., 2009). The whisker bars
are observational uncertainty, which is calculated by comparing these with alternative datasets; these
are ERA-40 pressure at mean sea level and precipitable water(Uppala et al., 2005), CMAP precipita-
tion (Xie and Arkin, 1997), Legates and Willmott (1990) 1.5 mtemperature and MERRA reanalyses for
everything else (Bosilovich, 2008).
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Fig. 6. Normalised assessment criteria (ratios of mean field root mean square errors) for a range of atmospheric fields from the GA4.0/GL4.0
N96-AL_clim simulation compared to a GA3.0/GL3.0 baseline. Statistics shown are from the seasons December to February (DJF), March
to May (MAM), June to August (JJA) and September to November (SON) and for regions global, tropical land (land points between 30◦ N
and 30◦ S), tropical ocean (ocean points between 30◦N and 30◦ S), north (30◦–90◦ N) and south (30◦–90◦ S). The observation data sets used
are HadSLP2 pressure at mean sea level (Allan and Ansell, 2006), GPCP precipitation (Adler et al., 2003), SSMI precipitable water (Wentz
and Spencer, 1998) and CRUTEM3 1.5 m temperature (Brohan et al., 2006), whilst the remaining climatologies are from ERA-Interim
reanalyses (Berrisford et al., 2009). The whisker bars represent observational uncertainty, which is calculated by comparing the verifying
data sets with alternative observations. These alternative data sets are ERA-40 pressure at mean sea level and precipitable water (Uppala et
al., 2005), CMAP precipitation (Xie and Arkin, 1997), Legates and Willmott (1990) 1.5 m temperature and MERRA reanalysis (Bosilovich,
2008) for the remaining fields.

3.9 Ancillary files and forcing data

In the formulation of GA3.0, one aspect of the configuration
that received less attention than others was the source data
sets and processing options used in the generation of ancil-
lary files. In GA3.0 most ancillary files were created consis-
tently between systems when appropriate, with a few minor
exceptions.

The only significant exception was the specification of at-
mospheric ozone (O3), which in all systems except Earth sys-
tem configurations is provided to the model as a time-varying
zonal mean field via an ancillary file. The source data for
these ancillaries, however, varied from system to system as
tabulated in Table5.

In GA4.0 we have moved to using the high-top version
of the SPARC-II O3 data set (Cionni et al., 2011), which
was the standard data set provided for use in CMIP5 sim-
ulations. Unless otherwise required by experimental design,

GA4.0 systems use an annually periodic ancillary, containing
monthly means generated from SPARC-II data in the years
1994–2005.

The only other significant changes to the ancillary source
data used in GA4.0 are (i) the move to deriving continuous
soil properties directly from the HWSD data set (Nachter-
gaele et al., 2008) rather than first mapping the spatial HWSD
data onto the coarse-, medium- and fine-grained soil classes
of Wilson and Henderson-Sellers(1985) and (ii) the update
of leaf area index data from MODIS Terra collection 4 to
MODIS Terra collection 5.

4 Preliminary model evaluation

We present an initial assessment of the GA4.0/GL4.0 con-
figurations against a GA3.0/GL3.0 control in the following
systems:
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Fig. 7. Climatological zonal mean temperature field during DJF fromyears 11–60 ofN96-AOIL clim.
(a) full field from GA4.0/GL4.0, (b) model difference (GA4.0/GL4.0 minus GA3.0/GL3.0),
(c) GA3.0/GL3.0 bias (GA3.0/GL3.0 minus verifying dataset) and (d) GA4.0/GL4.0 bias (GA4.0/GL4.0
minus verifying dataset). The verifying dataset is the ERA-interim reanalysis (Berrisford et al., 2009).
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Fig. 7. Climatological zonal mean temperature field during DJF from years 11–60 of N96-AOIL_clim.(a) Full field from GA4.0/GL4.0,
(b) model difference (GA4.0/GL4.0 minus GA3.0/GL3.0),(c) GA3.0/GL3.0 bias (GA3.0/GL3.0 minus verifying data set) and
(d) GA4.0/GL4.0 bias (GA4.0/GL4.0 minus verifying data set). The verifying data set is the ERA-Interim reanalysis (Berrisford et al.,
2009).

– N96-AL_clim: 25 yr (1982–2006) N96 resolu-
tion (approximately 135 km in the mid-latitudes)
L85(50t,35s)85 atmosphere/land-only climate sim-
ulation using reanalysed sea-surface temperature
(SST) and sea ice fields (Reynolds et al., 2007)
and time-varying greenhouse gas loadings/aerosol
emissions;

– N96-AOIL_clim: 100 yr N96 L85(50t,35s)85 atmo-
sphere/ocean/sea ice/land current climate simulation
using year 2000 greenhouse gas loadings/aerosol
emissions. In this coupled system, the ocean and sea
ice components use the NEMO ocean (Madec, 2008)
and Los Alamos sea ice (CICEHunke and Lipscombe,
2008) models respectively at approximately 1◦

× 1◦

horizontal resolution. The technical infrastructure of
this coupled modelling system is described inHewitt
et al.(2011);

– N320-AL_NWP:2× 1-month data assimilation tri-
als of an N320 resolution (approximately 40 km in
the mid-latitudes) L70(50t,20s)80 atmosphere/land-
only model initialised using the Met Office 4D-Var
data assimilation system (Rawlins et al., 2007) and
SST and sea ice fields from OSTIA (Operational

Sea-surface Temperature and sea Ice Analysis;Don-
lon et al., 2012). The trial periods used are 4 June–
14 July 2011 and 18 January 2012–18 February 2012,
with two main forecasts per day initialised at 00:00 and
12:00 UTC.

4.1 Global tropospheric assessment

Figure 6 summarises the impact of the changes described
on a basic set of global circulation parameters from the
N96-AL_clim simulation using normalised assessment cri-
teria. Points show the root mean square (RMS) error of a
meaned field in GA4.0/GL4.0 divided by the RMS error of
the same field in GA3.0/GL3.0, with colours used to sig-
nify the relative performance of the test configuration. Amber
symbols below the line (of which there are 9) show improved
fields with errors that are larger than the observational un-
certainty, whilst red symbols above the line (14) show fields
that are degraded. Green symbols represent fields where the
GA4.0/GL4.0 simulation error is within the range of obser-
vational uncertainty (whisker bars), characterised by compar-
ing multiple data sets; this can include fields that are defi-
nitely improved, where only the test configuration are within
uncertainty (in this case, 2), as well as those where both test
and control lie within the whisker bars. The most significant
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Fig. 8. Climatological mean precipitation rate during DJF fromN96-AL clim using the same format as
Fig. 7. The validating dataset is the GPCP climatology (Adler et al., 2003).
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Fig. 8. Climatological mean precipitation rate during DJF from N96-AL_clim using the same format as Fig.7. The validating data set is the
GPCP climatology (Adler et al., 2003).

improvements here are in the zonal mean temperature (all
year) and wind fields (December to February (DJF) only),
whilst the largest detriments are in precipitation over tropical
land. An equivalent plot for the N96-AOIL_clim simulation
(not shown) shows the same general trends.

The main improvement to the coupled model’s tropo-
spheric climatology is the reduction in the Northern Hemi-
sphere lower-tropospheric cold bias during DJF, which is
illustrated in Fig.7. This is due to improved near-surface
temperatures over sea ice caused by the non-linear combina-
tion of a number of the science changes. The N96-AL_clim
GA3.0/GL3.0 control does not exhibit such a large error in
this region, where the new configuration now shows greater
agreement between N96-AOIL_clim and N96-AL_clim.

The changes to convective cloud condensate and improved
representation of falling ice have increased the tropospheric
humidity, improving the relative humidity structure in the
tropics but increasing the moist bias in the southern mid-
latitudes.

4.2 Global precipitation assessment

The largest detriment in the N96-AL_clim model climatol-
ogy is an increase in precipitation over tropical land regions,
which has made existing wet biases worse, particularly dur-
ing DJF as illustrated in Fig.8.

We do see some improvement in precipitation biases over
the ocean, however, particularly over the maritime continent
in Fig. 8 and over the western Pacific warm pool in Fig.9,
which shows the equivalent fields from JJA.

The largest part of these precipitation changes has come
about due to changes to the convection scheme outlined in
Sect.3.6. This package of changes was designed to improve
the variability of tropical convection, but on balance this has
had a detrimental impact on the mean state. The balance be-
tween these is a common dilemma in the development of at-
mospheric global models (e.g. seeMapes and Neale, 2011)
and is an area of continuing research. This result, combined
with the increase in tropical precipitation over land seen in
GA3.0/GL3.0 (Walters et al., 2011), means that the improve-
ment of tropical precipitation is something that must be pri-
oritised during the development of future Global Atmosphere
configurations.

A deficit in summer rainfall over India has been a long-
standing bias in the MetUM, which is present across all
timescales. Compared to the magnitude of the bias, differ-
ences between GA3.0 and GA4.0 are small. The changes
made in GA4.0 were designed to encourage more convec-
tion to terminate lower down, whilst leaving the most intense
convection to extend higher. This appears to have been par-
tially successful over India, where there is a shift towards
more intense, but less frequent, deep convection and more
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Fig. 9. Climatological mean precipitation rate during JJA fromN96-AL clim using the same format as
Fig. 7.
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Fig. 9. Climatological mean precipitation rate during JJA from N96-AL_clim using the same format as Fig.7.

frequent mid-level and shallow convective rain. Over the
Indian Ocean, however, the more intense convection dom-
inates, resulting in a slightly increased wet bias here and
slightly larger dry bias over India. Hence, for the monsoon
region, the right balance of intensities appears to be critical
to avoid one region dominating over another.

One improvement in the model’s precipitation characteris-
tics that comes from the use of theAbel and Boutle(2012)
drizzle particle size distribution discussed in Sect.3.3is a re-
duction in the occurrence of spurious light rain. This was a
problem identified in pre-GA3.0 climate configurations and
NWP configurations of the global MetUM, which was im-
proved by the use of prognostic precipitation fields in GA3.0.

Figure 10 shows a 12 h N320-AL_NWP forecast of the
instantaneous precipitation rate and pressure at mean sea
level over the South Atlantic, initialised at 12:00 UTC on
10 December 2010. The plots show fields from a pre-GA3.0
physics package that was operational in the Met Office’s
NWP suite between July 2010 and March 2011, as well as
equivalent forecasts from GA3.0 and GA4.0; please note
the very low precipitation rates represented by the smallest
contour intervals. This shows the widespread diagnosis of
very light precipitation under the high-pressure system off
the west coast of Africa, which is phenomenologically unre-
alistic. This is significantly reduced in GA3.0, with further

smaller improvements in GA4.0 that essentially remove this
undesirable feature from the model. This change also leads
to an improved, increased, frequency of dry days in both
N96-AOIL_clim and N96-AL_clim.

4.3 Clouds and radiation assessment

Over most parts of the world, errors in both the longwave and
shortwave radiative impact of clouds have improved between
GA3.0 and GA4.0.

Figure11 shows that the clouds in N96-AL_clim are gen-
erally more reflective, whilst Fig.12 shows that they have a
larger impact on the outgoing longwave radiation. Both of
these improvements are due to increases in cloud amount for
a number of different cloud types resulting from the various
cloud changes described in Sect.3 such as the new cloud ero-
sion parametrisation and the shear-dominated boundary layer
change. One of the few areas where the cloud bias has in-
creased is the eastern North Atlantic/western Europe, where
not only does Fig.11provide evidence that there is too-much
cloud in long simulations, but this is supported by NWP ver-
ification of cloud cover over a similar region as presented in
Fig. 13.
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Fig. 10.A sample 24h forecast of pressure at mean sea level (contours) and instantaneous total precipi-
tation rate fromN320-AL NWP forecasts using a pre-GA3.0 atmospheric physics package (left), GA3.0
(centre) and GA4.0 (right).
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Fig. 10. A sample 24 h forecast of pressure at mean sea level (contours) and instantaneous total precipitation rate from N320-AL_NWP
forecasts using a pre-GA3.0 atmospheric physics package (left), GA3.0 (centre) and GA4.0 (right).
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Fig. 11.Annual mean shortwave cloud forcing fromN96-AL clim using the same format as Fig. 7. The
validating dataset is from the CERES-EBAF climatology (Loeb et al., 2009).
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Fig. 11. Annual mean shortwave cloud forcing from N96-AL_clim using the same format as Fig.7. The validating data set is from the
CERES-EBAF climatology (Loeb et al., 2009).

A contributing factor to this error is the north–south asym-
metry in the brightness of clouds, which continues to be
present in GA4.0; potential contributors to this asymmetry
are errors in aerosol loadings and properties, which will re-
ceive further attention in the future, particularly during the
planned implementation of the UKCA-mode aerosol scheme.

4.4 Middle-atmospheric assessment

The most significant impact of GA4.0 on the middle atmo-
sphere is a cooling in the stratosphere, which significantly
reduces an existing warm bias with a maximum at about
100 hPa in the tropics. This can be seen for N96-AOIL_clim
in DJF in the upper levels of Fig.7, but a similar signal is
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Fig. 12.Annual mean longwave cloud forcing fromN96-AL clim using the same format as Fig. 7. The
validating dataset is from the CERES-EBAF climatology (Loeb et al., 2009).
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Fig. 12. Annual mean longwave cloud forcing from N96-AL_clim using the same format as Fig.7. The validating data set is from the
CERES-EBAF climatology (Loeb et al., 2009).

also seen in the other seasons as well as in N96-AL_clim
(not shown). This improvement cannot be attributed to any
single change described in Sect.3, but comes from the com-
bination of a number of these changes. There is also an im-
provement in upper-level temperatures in NWP simulations,
which Fig.14 shows to be particularly large in the summer
hemisphere. Whilst this is due partly to the improvements
seen in N96-AOIL_clim, there is a larger contribution from
the replacement of theLi and Shine(1995) O3 data set with
the SPARC-II data set described in Sect.3.9.

4.5 Problems identified with GA4.0/GL4.0

4.5.1 Global coupled precipitation− evaporation

The magnitude of the global mean precipitation minus
evaporation residual has increased in the N96-AOIL_clim
run from ≈ 3× 10−4 mm day−1 in GA3.0/GL3.0 to
≈ 4× 10−3 mm day−1 in GA4.0/GL4.0. This imbalance
appears to have arisen from the change to using mixing
ratios in the dynamics and the parallel physics, suggesting
an error in some of the remaining conversions from spe-
cific quantities to mixing ratios. We have investigated and

improved this in the development of GA5.0, but this error
will lead to poor freshwater conservation, which makes
GA4.0 unsuitable for very long coupled climate simulations.

4.5.2 Aerosol deposition errors

In the CLASSIC aerosol scheme, surface resistance to dry
deposition is computed analogously to the resistance to sur-
face heat (and moisture) exchange. In GA4.0/GL4.0, the
change to the thermal roughness length for trees described
in Sect.3.8 removes the resistance from the laminar flow
layer such that, over forested tiles, aerosols are deposited too
easily. This has a particularly large impact on the biomass
burning aerosol burden, as the majority of this aerosol is er-
roneously deposited soon after its emission. A short-term fix
for this problem has been developed and built into GA5.0.
In the longer term, the planned replacement of the CLAS-
SIC aerosol scheme with UKCA-mode (Mann et al., 2010)
will include an alternative formulation for dry deposition, im-
prove aerosol modelling skill, and provide opportunities for
new science.
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Fig. 13.Mean cloud cover forecast minus observation statistics as afunction of forecast range (hours)
using a mixture of manual and automatic surface observations in the North Atlantic/Europe region during
the January–FebruaryN320-AL NWP trial. This covers a rectangular area in a rotated pole projection
that in standard coordinates is bounded by the points (25.5◦ N, 37◦ W), (26.5◦ N, 30.5◦ E), (57◦ N, 61◦ E)
and (55.5◦ N, 67.5◦ W).
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Fig. 13. Mean cloud cover forecast minus observation statistics as
a function of forecast range (hours) using a mixture of manual and
automatic surface observations in the North Atlantic/Europe region
during the January–February N320-AL_NWP trial. This covers a
rectangular area in a rotated pole projection that in standard coordi-
nates is bounded by the points (25.5◦ N, 37◦ W), (26.5◦ N, 30.5◦ E),
(57◦ N, 61◦ E) and (55.5◦ N, 67.5◦ W).

5 Summary and conclusions

The 25 yr journey that the Met Office has taken towards a
fully unified atmospheric modelling framework is described
in Brown et al. (2012). The development of GA4.0 (and
GL4.0) via the process described inWalters et al.(2011) rep-
resents another step in this direction, as this is the first time
that all scientific developments have been assessed across
such a wide range of systems and timescales at the same
time. Both GA4.0 and GL4.0 have consolidated a number
of scientific improvements into the GA and GL “trunks” and
have removed some outstanding differences between NWP
and climate implementations of the previous configurations.

An example of benefit from the increased scrutiny of the
GA development process is best provided by a change that
was not included in the final configuration: namely, the in-
clusion of water loading in the convection scheme. The pro-
posed change was to include the gravitational loading of con-
vective hydrometeors in the diagnosis and modelling of con-
vective ascents. Initial tests showed that this significantly im-
proved the climatology of the Indian Monsoon through the
suppression of the height of deep convection over the Indian
Ocean. The change was not included in the final configura-
tion, however, as it significantly degraded the predictive skill
of deterministic global NWP forecasts in the tropics. Subse-
quent investigations have shown that the initial formulation
of this change was over-simplistic. Whilst this is still a miss-
ing process that we wish to represent in the future, a more
accurate formulation is unlikely to have as large an impact
on either system, which justifies our decision to withdraw
this from early test configurations. This prevented us from
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Fig. 14. Profiles of mean temperature forecast minus observation
statistics from 5-day forecasts using all radiosonde observations in
(a) the Northern Hemisphere verification area (20◦–90◦ N) during
the June–July N320-AL_NWP trial and(b) the Southern Hemi-
sphere verification area (20◦–90◦ S) during the January–February
N320-AL_NWP trial.

spuriously improving the performance of the climate model
in one metric through the inclusion of an inaccurately formu-
lated process. In addition to this increased scrutiny, we have
also identified areas where the process can be improved. The
technical problems discussed in Sect.4.5were identified be-
fore we defined the final configuration, but too late in the de-
velopment cycle for suitable fixes to be included. This high-
lights the importance of more sophisticated assessment tools
for use throughout the development cycle; these have since
been adopted and are proving useful in the ongoing Global
Atmosphere development process.

In summary, the combined performance of GA4.0 and
GL4.0 is roughly comparable to that of their predecessors.
An initial assessment shows a reduced warm bias in the
stratosphere and improved cloud radiative effects across most
regions, although there is a degradation in the distribution of
precipitation over tropical land. Performance in NWP con-
figurations is still not sufficient to overtake the GA3.1/GL3.1
“branches” (Walters et al., 2011) used in both global deter-
ministic and ensemble forecast systems within the Met Of-
fice’s operational NWP suite. The configurations have been
used, however, in several scientific investigations and sensi-
tivity tests, and the developments made include several im-
portant improvements that will provide benefit when future
configurations are implemented. We also believe that the
lessons learnt in the development of GA4.0 will prove ben-
eficial in future development cycles, which will allow us to
continue developing the single scientific configuration and to
achieve our goal of implementing this with no, or very lim-
ited, system-specific tunings for use across all of our global
atmospheric prediction systems.
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Supplementary material related to this article is
available online athttp://www.geosci-model-dev.net/7/
361/2014/gmd-7-361-2014-supplement.pdf.
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