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Abstract. In this paper, a generic implementation approach

is presented, with the aim of transforming a deterministic

ocean model (like NEMO) into a probabilistic model. With

this approach, several kinds of stochastic parameterizations

are implemented to simulate the non-deterministic effect of

unresolved processes, unresolved scales and unresolved di-

versity. The method is illustrated with three applications,

showing that uncertainties can produce a major effect in the

circulation model, in the ecosystem model, and in the sea ice

model. These examples show that uncertainties can produce

an important effect in the simulations, strongly modifying

the dynamical behaviour of these three components of ocean

systems.

1 Introduction

The first requirement of an ocean model is the definition of

the system that the model is going to represent. As illustrated

in Fig. 1, this usually amounts to defining an appropriate sep-

aration between the system (A) and the environment (B). For

instance, in this study, we always use a stand-alone ocean

model, which means that the atmosphere is not included in

the system (A), but in the environment (B). A key property

of any ocean model is also the separation between resolved

scales (inA) and unresolved scales (in B), defining the spec-

tral window that the model is going to represent. In a similar

way, marine ecosystems are too complex to be entirely in-

cluded inA. They can only be represented by a limited num-

ber of variables Ci, i = 1, . . .,n, providing a synthetic pic-

ture of the ecosystem, while the remaining biogeochemical

diversity is included in B.

Even if the union of the two systems A and B could be

assumed deterministic, this is in general not true for system

A alone. The future evolution of A does not only depend on

its own dynamics and initial condition, but also on the inter-

actions betweenA and B. This means that the only two ways

of obtaining a deterministic model forA are either to assume

that the evolution of B is known (as is usually done for the

atmosphere in stand-alone ocean models) or to assume that

the effect of B can be parameterized as a function of what

happens in A (as is usually done for unresolved scales and

unresolved diversity). It is however important to recognize

that this is always an approximation and that B is often an

important source of uncertainty in the predictions made for

A.

To obtain a reliable predictive model for A (in the sense

given in Brier, 1950, and Toth et al., 2003), a consistent

description of this uncertainty should be embedded in the

model itself. This transforms the deterministic model into

a probabilistic model, which fully characterizes the quantity

of information that the model contains about A. Two impor-

tant advantages of this probabilistic approach are (i) to allow

objective statistical comparison between model and obser-

vations (by providing sufficient conditions to invalidate the

model; see for instance Candille and Talagrand, 2005), and

(ii) to provide a coherent description of model uncertainty

to data assimilation systems. The objective of the modeller

also changes: instead of designing a deterministic model as

close as possible to observations, a probabilistic model that
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Figure 1. Schematic of the separation between resolved and unre-

solved processes (systemsA and B). Even ifA∪B can be assumed

deterministic, system A alone is not deterministic in general, be-

cause of the interactions with system B.

is both reliable (not yet invalidated by observations) and as

informative as possible about A must be designed.

In practice, for a complex system, it is usually impossi-

ble to compute explicitly the probability distribution describ-

ing the forecast. In general, only a limited size sample of the

distribution can be obtained through an ensemble of model

simulations, as is routinely done in any ensemble data as-

similation system (see Evensen, 1994). Ensemble simula-

tions are produced by randomly sampling the various kinds

of uncertainty (in the dynamical laws, in the forcing, in the

parameters, in the initial conditions, etc.) in their respective

probability distribution (Monte Carlo simulations). To allow

objective comparison with observations or to correctly deal

with model uncertainties in data assimilation problems, non-

deterministic models are thus needed in many ocean applica-

tions. The most direct approach to introducing an appropriate

level of randomness in ocean models is to use stochastic pro-

cesses to mimic the effect of uncertainties. In the discussion

above (summarized in Fig. 1), a specific focus was given to

uncertainties resulting from the effect that unresolved pro-

cesses (in B) produce on the system (A). However, there is a

variety of other sources of uncertainty in ocean models (e.g.

numerical schemes, machine accuracy, etc.) that do not enter

this particular sketch, and that may also require a stochastic

approach (Palmer et al., 2014).

Stochastic parameterizations explicitly simulating model

uncertainty were first applied to ensemble weather forecast-

ing by Buizza et al. (1999) about 15 years ago. Since then,

stochastic parameterizations have emerged as a quickly de-

veloping area of research in meteorology (Palmer, 2001;

Palmer et al., 2005). In oceanography, however, most state-

of-the-art dynamical models are still deterministic. Up to

now, the development of stochastic dynamical equations

has been mainly focused on stochastic parameterization

of Reynolds stresses in idealized ocean modelling systems

(see Frederiksen et al., 2012a, and Kitsios et al., 2013, for

a review). Only a few exploratory studies have attempted

to explicitly simulate uncertainties in realistic dynamical

ocean models: this has been done for the ocean circulation

(Brankart, 2013), for the ocean ecosystem (Arhonditsis et al.,

2008), and for the sea ice dynamics (Juricke et al., 2013).

These preliminary studies nonetheless already show that un-

certainties can play a major role in dominant dynamical be-

haviours of marine systems.

In line with these studies, the objective of this paper is to

propose a generic implementation of these stochastic param-

eterizations, and to investigate several applications in which

the randomness of the ocean system may be an important is-

sue. This is synthetically implemented in the ocean model

(see Sect. 2) by adding one additional module providing ap-

propriate random processes to any non-deterministic com-

ponent of the system (circulation, ecosystem, sea ice). The

method is designed to be simple enough to allow a quick

check of the effect of uncertainties in the system, and flexi-

ble enough to apply to various sources of uncertainty (atmo-

sphere, unresolved scales, unresolved diversity, etc.). Three

applications are then illustrated in Sect. 3, showing that the

explicit simulation of uncertainty can be important in a wide

variety of ocean systems, by stimulating important non-

deterministic dynamical behaviours. The first application

(circulation model) is the same application as in Brankart

(2013), but this previous paper only presented the average

effect of the stochastic parameterization, whereas the focus

is here on the randomness that is produced in the large-

scale ocean circulation. The second application (ecosystem

model) is a first attempt to apply stochastic parameterizations

and to explicitly simulate randomness in a basin-scale ocean

ecosystem model. The third application (sea ice model) is an

attempt to reproduce the parameterization developed in Ju-

ricke et al. (2013) in our ocean model using the generic im-

plementation presented in Sect. 2, and to illustrate the ran-

domness that is generated in the interannual variability of sea

ice thickness.

2 Stochastic formulation of NEMO

The ocean model used in this study is NEMO (Nucleus for

a European Model of the Ocean), as described in Madec et al.

(2008). NEMO is the European modelling framework for

oceanographic research, operational oceanography, seasonal

forecast and climate studies. This model system embeds

various model components (see http://www.nemo-ocean.

eu/), including a circulation model (OPA, Océan PAral-

lélisé), ecosystem models, with various levels of complex-

ity (e.g. LOBSTER, LOCEAN Simulation Tool for Ecosys-

tem and Resources), and a sea ice model (LIM, Louvain-la-

Neuve Ice Model). The purpose of this section is to shortly

describe the three kinds of stochastic parameterizations that

have been implemented in NEMO, and to show that, from

a technical point of view, they can be unified in one sin-

gle new module in NEMO, feeding the various sources of
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randomness in the model. (More technical details about this

module can be found in the Appendix.)

2.1 Order n autoregressive processes

The starting point of our implementation of stochastic param-

eterizations in NEMO is to observe that many existing pa-

rameterizations are based on autoregressive processes, which

are used as a basic source of randomness to transform a de-

terministic model into a probabilistic model. A generic ap-

proach is thus to add one single new module in NEMO, gen-

erating processes with appropriate statistics to simulate each

kind of uncertainty in the model (see examples in Sect. 3).

In practice, at every model grid point, independent Gaus-

sian autoregressive processes ξ (i), i = 1, . . .,m are first gen-

erated using the same basic equation:

ξ
(i)
k+1 = a

(i)ξ
(i)
k + b

(i)w(i)+ c(i), (1)

where k is the index of the model time step; and a(i), b(i),

c(i) are parameters defining the mean (µ(i)), SD (σ (i)) and

correlation timescale (τ (i)) of each process:

– for order 1 processes (AR(1)), w(i) is a Gaussian white

noise, with zero mean and SD equal to 1, and the pa-

rameters a(i), b(i), and c(i) are given by
a(i) = ϕ

b(i) = σ (i)
√

1−ϕ2 with ϕ = exp
(
−1/τ (i)

)
c(i) = µ(i) (1−ϕ)

(2)

– for order n > 1 processes (AR(n)),w(i) is an order n−1

autoregressive process, with zero mean, and SD equal

to σ (i), correlation timescale equal to τ (i), and the pa-

rameters a(i), b(i), and c(i) are given by
a(i) = ϕ

b(i) = n−1
2(4n−3)

√
1−ϕ2 with ϕ = exp

(
−1/τ (i)

)
c(i) = µ(i) (1−ϕ)

(3)

In this way, higher-order processes can be easily gener-

ated recursively using the same piece of code implement-

ing Eq. (1), and using successively processes from order 0

to n− 1 as w(i). The parameters in Eq. (3) are computed so

that this recursive application of Eq. (1) leads to processes

with the required SD and correlation timescale, with the ad-

ditional condition that the n− 1 first derivatives of the au-

tocorrelation function are equal to zero at t = 0, so that the

resulting processes become smoother and smoother as n is

increased. AR(2) processes (with other specifications) have

already been applied in several studies (Berloff, 2005; Wilks,

2005), and will be used in this paper in the sea ice model ap-

plication (see Sect. 3.3).

Second, a spatial dependence between the processes can

easily be introduced by applying a spatial filter to the ξ (i).

This can be done either by applying a simple filter window

to the ξ (i) 2-D or 3-D matrices ξ̃ (i) = F[ξ (i)], or by solving

an elliptic equation: L[̃ξ (i)] = ξ (i). In both cases, the filter-

ing operator could be made flow dependent, or more gener-

ally, the filter characteristics could be modified according to

anything that is resolved by the ocean model (in system A in

Fig. 1). Technically, this only requires that the description of

the ocean model is made available to the filtering routines.

This filtering option (using a simple Laplacian filter) is used

in the sea ice application (see Sect. 3.3).

Third, the marginal distribution of the stochastic processes

can also be easily modified by applying a nonlinear change

of variable (anamorphosis transformation) to the ξ (i) before

using them in the model ξ̂ (i) = T [ξ (i)]. This idea is simi-

lar to what is done in ensemble data assimilation methods

to transform variables with non-Gaussian marginal distribu-

tion into Gaussian variables (Bertino et al., 2003; Béal et al.,

2010; Brankart et al., 2012). For instance, this method can be

very useful if the description of uncertainties in the model re-

quires positive random numbers. In this case, anamorphosis

transformation can be applied to transform the Gaussian ξ (i)

into positive ξ̂ (i) with lognormal or gamma distribution. This

anamorphosis option (using a gamma distribution) is used in

the sea ice application (see Sect. 3.3).

Overall, this method provides quite a simple and generic

way of generating a wide class of stochastic processes. How-

ever, this also means that new model parameters are needed

to specify each of these stochastic processes. As in any pa-

rameterization of lacking physics, a very important issue is

then to tune these new parameters using either first princi-

ples, model simulations, or real-world observations. This key

problem of assessing the parameters involved in Eq. (1) can-

not be addressed in the present paper, and we can only pro-

vide a very brief overview of the nature of the problem. Many

existing studies (e.g. Frederiksen et al., 2012b; Achatz et al.,

2013; Grooms and Majda, 2013) already addressed the prob-

lem of choosing the coefficients of the AR(n) processes to

simulate the Reynolds stresses in atmospheric and oceanic

flows. Considerable progress has been made for this impor-

tant problem, but not all unresolved processes have received

so much attention, and it is often still difficult to figure out

how to derive the parameters of the AR(n) processes.

Referring to the sketch presented in Fig. 1, the general idea

to tune the parameters is to obtain reliable probabilistic in-

formation on what happens in system B, and to reduce this

information to a simple statistical model (e.g. the autoregres-

sive model described above). More precisely, the probability

distribution simulating the effect of B should also be condi-

tioned on what happens in system A. For instance, it can be

very important that the probability distribution for the state

of the atmosphere (e.g. surface winds) be conditioned on the

state of the ocean model (e.g. mesoscale eddies), to simu-

late the interaction between A and B. Similarly, the proba-

bility distribution for unresolved scales or unresolved diver-

sity usually depends on what happens in systemA. This need

to correctly simulate conditional probability distributions ex-
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plains why the tuning of the parameters is not easy, and why

an extensive database to learn the statistical behaviour of the

coupling between A and B is often necessary. In practice,

this learning information can be obtained either from ob-

servations of the two systems or from other models explic-

itly simulating the coupling between A and B. For instance,

high-resolution observations or high-resolution models can

be used to tune a statistical model for unresolved scales; a

model of the atmospheric boundary layer can be used to learn

the statistical dependence of the state of the atmosphere on

the ocean conditions; a generic biogeochemical model in-

volving a large number of species can be used to understand

the statistical effect that unresolved diversity can produce in

a simple ecosystem model.

The identification of an appropriate statistical model is

thus an important intermediate step that is far from straight-

forward, and for which it is difficult to provide very precise

guidelines. Despite these difficulties, our point of view is

that the tuning of the system is usually even more problem-

atic with a deterministic parameterization of unresolved pro-

cesses, since no deterministic simulation could exactly fit the

real behaviour of the system. By explicitly simulating uncer-

tainties, we can describe the actual random behaviour of the

system (see Fig. 1); ensemble simulations can be objectively

compared to observations (using probabilistic methods, see

Brier, 1950; Toth et al., 2003; Candille and Talagrand, 2005);

and the model (including the stochastic parameters) can be

rejected as soon as the ensemble is not reliable. Unknown

parameters could also be tuned by solving inverse problems,

until ensemble reliability is achieved.

2.2 Stochastic perturbed parameterized tendency

A first way of explicitly simulating uncertainties in mete-

orological weather forecast was introduced about 15 years

ago in the ECMWF ensemble forecasting system (Buizza

et al., 1999). Their basic idea was to separate the model ten-

dency (M) into non-parameterized (NP) and parameterized

(P) tendencies (M=NP+P). The non-parameterized ten-

dency (NP) contains all processes that are fully resolved by

the model, and can be assumed free of uncertainties. The pa-

rameterized tendency (P) contains the parameterization of

the effect of unresolved processes (system B in Fig. 1), which

is essentially uncertain. The stochastic parameterization is

then introduced by multiplying the parameterized tendency

(P) by a random noise, explicitly simulating the uncertain-

ties in P . The basic motivation was to produce ensemble

forecasts with enhanced dispersion to improve their reliabil-

ity (i.e. their consistency with available observations). This

SPPT (for stochastic perturbed parameterized tendency) pa-

rameterization is still used today in the ECMWF ensemble

forecasting system (Palmer et al., 2009).

This kind of stochastic parameterization is also mean-

ingful in ocean models, and it can be directly applied in

the model using the generic implementation described in

Sect. 2.1. This can be done by using one or several of the ξ (i)

given by Eq. (1) as multiplicative noise for the various terms

of the parameterized tendency:

dx

dt
=NP(x,u,p, t)+

m∑
i=1

P(i)(x,u,p, t) ξ (i)(t)

with

m∑
i=1

P(i) = P (4)

where t is time; x, the model state vector; u, the model forc-

ing; and p, the vector of model parameters. In this case, the

mean of the ξ (i) must be set to 1, assuming that the model

parameterized tendencies are unbiased, and the other statis-

tical parameters (SD, time and space correlation structure,

marginal distribution) are free to be adjusted to any reason-

able assumption about the uncertainties. In ocean models,

this stochastic parameterization can be applied to any param-

eterization of unresolved processes (see Fig. 1), as for in-

stance the diffusion operators, simulating the effect of unre-

solved scales, the air–sea turbulent fluxes, the parameteriza-

tion of the various functions of the ecosystem dynamics, usu-

ally describing the unresolved biologic diversity, etc. An ex-

ample of this SPPT parameterization is given in the ecosys-

tem application (see Sect. 3.2).

2.3 Stochastic parameterization of unresolved

fluctuations

Another way of explicitly simulating uncertainties in ocean

models is to directly represent the effect of unresolved scales

in the model equations using stochastic processes. Unre-

solved scales can indeed produce a large-scale effect as a re-

sult of the nonlinearity of the model equations. Important

nonlinear terms in ocean models are for instance the advec-

tion term, the seawater equation of state, the functions de-

scribing the behaviour of the ecosystem, etc. Concerning the

advection term, the effect of unresolved scales is usually pa-

rameterized as an additional diffusion, while for the other

terms it is most often ignored. However, in many cases, a di-

rect way of simulating this effect would be to generate an

ensemble of random fluctuations δx(i) with the same statis-

tical properties as the unresolved scales, and to average the

model operator over the ensemble:

dx

dt
=

1

m

m∑
i=1

M
(
x+ δx(i),u,p, t

)
with

m∑
i=1

δx(i) = 0. (5)

This corresponds to an averaging of the model equations over

a set of fluctuations δx(i) representing the unresolved scales.

The zero mean fluctuations δx(i) can produce an average ef-

fect (corresponding to an interaction between A and B in

Fig. 1) as soon as the model M is nonlinear. In this param-

eterization, the number of independent fluctuations (m) and

the statistics for each of them should be chosen to simulate

the properties of the unresolved scales as accurately as pos-

sible.
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Obviously, the main difficulty with this method is to gen-

erate fluctuations δx(i) with the right statistics to faithfully

correspond to the statistics of unresolved processes. As a first

very simple approach, this can be done using one or sev-

eral of the ξ (i) given by Eq. (1), either by assuming that the

statistics of δx(i) can be directly approximated by the sim-

ple statistical structure of autoregressive processes ξ (i), or by

assuming that δx(i) can be computed as a joint function of

the model state x and the autoregressive processes ξ (i). For

example, if the fluctuations can be assumed proportional to

the large-scale gradient ∇x of the state vector, the fluctua-

tions δx(i) could be computed as the scalar product of ∇x

with random walks ξ (i):

δx(i) = ξ (i) · ∇x. (6)

This particular case corresponds to the stochastic param-

eterization proposed in Brankart (2013) to simulate the ef-

fect of unresolved scales in the computation of the horizontal

density gradient because of the nonlinearity of the seawa-

ter equation of state. Examples of this parameterization are

given in the circulation model application (Sect. 3.1) and in

the ecosystem application (Sect. 3.2).

Before concluding this section, it is important to remember

that the above discussion only provides one possible frame-

work for simulating the effect of unresolved fluctuations, and

that other approaches can be imagined. For instance, a spe-

cific stochastic parameterization is already routinely applied

at ECMWF to simulate the backscatter of kinetic energy

from unresolved scales to the smaller scales that are resolved

by the model (Shutts, 2005). This scheme has been devel-

oped for atmospheric applications but might also be appli-

cable to ocean models. On the other hand, the external forc-

ing u (e.g. atmospheric data, river runoff, open-sea boundary

conditions) can also be a major source of uncertainty in the

model, which can be explicitly simulated using a formulation

similar to Eq. (5):

dx

dt
=

1

m

m∑
i=1

M(x,u+ δu(i),p, t), (7)

where the fluctuations δu(i) must be tuned to correctly repro-

duce the effect of uncertainties in the forcing. Introducing

appropriate perturbations of the atmospheric data can for in-

stance be useful to include them in the control vector of ocean

data assimilation systems (Skandrani et al., 2009; Meinvielle

et al., 2013).

2.4 Stochastic parameterization of unresolved diversity

Another general source of uncertainty in ocean models is the

simplification of the system by aggregation of several sys-

tem components using one single state variable and one sin-

gle set of parameters. For instance, marine ecosystems al-

ways contain a wide diversity of species, which cannot be

described separately by the model, and which must be aggre-

gated in a limited number of state variables. In a similar way,

sea ice can display a wide variety of dynamical behaviours,

which cannot always be resolved by ocean models. As un-

resolved scales, unresolved diversity generates uncertainties

in the evolution of the system, which can be explicitly simu-

lated using a similar approach:

dx

dt
=

1

m

m∑
i=1

M
(
x,u,p+ δp(i), t

)
, (8)

where δp(i) are random parameter fluctuations representing

the various possible dynamical behaviours that are simulta-

neously present in the system.

The application of this method requires a statistical de-

scription of the uncertainties in the parameters; and again,

as a first approach, this can be parameterized using one or

several of the ξ (i) given by Eq. (1). As a particular case,

this method includes the stochastic parameterization pro-

posed in Juricke et al. (2013) to explicitly simulate uncer-

tainties in ice strength in a finite element ocean model. It was

thus very easy to apply the same scheme in the ice compo-

nent of NEMO, as an example of this parameterization (see

Sect. 3.3).

3 Impact on model simulations

The purpose of this section is now to illustrate the impact of

the stochastic parameterizations presented in Sect. 2 in vari-

ous components of NEMO: in the ocean circulation compo-

nent in Sect. 3.1, in the ocean ecosystem in Sect. 3.2, and in

the sea ice dynamics in Sect. 3.3. The focus of the discussion

will be on the probabilistic behaviour of the system (A) as

a result of the uncertainties (the interaction with B in Fig. 1).

All applications have been performed using the same generic

code implementing the stochastic formulation of NEMO de-

scribed in Sect. 2.

3.1 Stochastic circulation model

As a result of the nonlinearity of the seawater equation of

state, unresolved potential temperature (T ) and salinity (S)

fluctuations (in system B) have a direct impact on the large-

scale density gradient (in systemA), and thus on the horizon-

tal pressure gradient through the thermal wind equation. As

shown in Brankart (2013), this effect can be simulated using

the scheme described in Sect. 2.3, by applying Eq. (5) to the

equation of state:

www.geosci-model-dev.net/8/1285/2015/ Geosci. Model Dev., 8, 1285–1297, 2015
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Table 1. Parameters of autoregressive processes for all applications described in this paper. The number of processes is the number of

autoregressive processes used in each stochastic parameterization (sometimes multiplied by 3 to produce one process for each component of

the random walks). The mean, SD and correlation timescale are the parameters µ(i), σ (i) and τ (i) used in Eqs. (2) and (3). For the stochastic

parameterization of the equation of state (circulation model), the SD values are multiplied by sin φ for ORCA2, and by sin 2φ for NATL025,

where φ is latitude.

Circulation model Ecosystem Sea ice

unresolved unresolved unresolved

ORCA2 NATL025 diversity scales diversity

Number of processes 6× 3 1× 3 6 1× 3 1

Order of processes 1 1 1 1 2

Mean value 0 0 1 0 0

SD
σxy = 4.2 σxy = 1.4

0.5
σxy = 3

1
σz = 1 σz = 0.7 σz = 1

Correlation timescale 12 days 10 days 3 days 12 days 30 days

Spatial filtering No No No No Laplacian

Anamorphosis No No No No gamma

ρ stoch(T ,S)=
1

m

m∑
i=1

ρ
(
T + δT (i),S+ δS(i)

)
with

m∑
i=1

δT (i) = 0 ,

m∑
i=1

δS(i) = 0, (9)

where δT (i) and δS(i) explicitly simulate the unresolved fluc-

tuations of potential temperature and salinity. These fluctua-

tions are generated using random walks following Eq. (6),

with parameters for the ξ (i) given in Table 1 (i.e. the same

parameterization as in Brankart, 2013). This stochastic pa-

rameterization simulates the exchange of potential energy be-

tween resolved and unresolved scales, which results from the

nonlinearity of the equation of state (see Brankart, 2013, for

more details). As for the Reynolds stresses, this should be

strongly constrained by physical principles, but we will stick

here to the parameters proposed in Brankart (2013), which

were derived from a comparison with higher-resolution re-

analysis data.

It is interesting to note (as a complement to what is ex-

plained in Brankart, 2013) that there is a close similarity be-

tween this stochastic correction of the large-scale density and

the semi-prognostic method proposed in Greatbatch et al.

(2004) and Greatbatch and Zhai (2006). In both cases, in-

deed the only correction applied to the model occurs in the

thermal wind equation through a direct correction of density,

while the conservation equation driving the evolution of po-

tential temperature, salinity and horizontal velocity are all

kept unchanged. We can thus be certain that the stochastic

parameterization displays the same nice conservation prop-

erties as the semi-prognostic method; in particular, there is

no direct modification of the T and S properties of the water

masses, no enhanced diapycnal mixing and thus no compro-

mise with the fact that the ocean interior should primarily

flow close to the neutral tangent plane. The modification of

the thermohaline structure of the ocean is only produced in-

directly through a modification of the main currents.

The first impact of the stochastic T and S fluctuations

is indeed on the mean circulation simulated by the model.

This mean effect in a low-resolution global configuration

of NEMO (the ORCA2 configuration, see Madec and Im-

bard, 1996, for more detail) has been described in detail in

Brankart (2013). In summary, the density correction is im-

portant (and quite systematically negative because of the con-

vexity of the equation of state) along the main fronts separat-

ing the subtropical and subpolar gyres. The mean pathway

of the mean current is thus modified, significantly reducing

the biases of the deterministic model. In particular, the Gulf

Stream pathway no longer overshoots and the structure of

the northwestern corner becomes more realistic. The impact

on the mean circulation is similar to what can be obtained

with the semi-prognostic method (Greatbatch et al., 2004), in

which the density correction is diagnosed from observations,

whereas the stochastic model behaves as an autonomous dy-

namical system.

The second effect of the stochastic T and S fluctuations

is to generate random variability in the system. Because of

the nonlinearity of the equation of state, the small scales

constantly modify the structure of the large-scale density,

and thus the pathway of the large-scale circulation. There

is a constant flux of information from system B (small

scales) to system A (large scales), which is represented in

the stochastic model by the random processes ξ (i), and which

is totally absent in the deterministic model. This effect is il-

lustrated in Fig. 2, which displays the pattern of sea surface

height (SSH) in several key regions of the Atlantic: the north-

western corner (top panels), the Brazil–Malvinas Confluence

Zone (middle panels), and the Agulhas Current retroflection

(bottom panels). In the non-stochastic simulation, in the ab-

sence of interannual variability of the atmospheric forcing (as

in Brankart, 2013), the interannual variability is extremely
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Figure 2. Sample of sea surface height patterns (in meters), illustrating the intrinsic interannual variability generated by the stochastic

parameterization of the equation of state in a low-resolution global ocean model configuration (ORCA2): northwestern corner of the North

Atlantic drift (top panels), Brazil–Malvinas Confluence Zone (middle panels), and Agulhas Current retroflection (bottom panels). For each

region, the left panel represents the non-stochastic simulation, and the other panels are 3 different years of the stochastic simulation.

weak (see Penduff et al., 2011 for a precise quantification):

this is why only 1 typical year is shown, since all years would

appear identical. In the stochastic simulation however, not

only the mean SSH pattern is modified (as shown in Brankart,

2013), the interannual variability is also strongly enhanced,

and thus becomes more compatible with the intrinsic large-

scale SSH variability that is obtained from higher-resolution

models or from satellite altimetric measurements (as diag-

nosed in Penduff et al., 2011). This intrinsic variability (pro-

duced in the absence of any interannual variability in the

atmospheric forcing) is a good proxy to the dispersion that

would be observed in a truly probabilistic ensemble fore-

cast. In a high-resolution model, this dispersion in the large-

scale behaviour can only result from the interaction with the

mesoscale (as explained in Penduff et al., 2011). In the low-

resolution ORCA2 configuration, this unpredictable and in-

trinsically variable behaviour of the large scales is here (at

least partially) restored by a stochastic parameterization of

the effect of the mesoscale (which is in system B) on the

large-scale density. It must be mentioned however that such

a small size sample is not sufficient to provide accurate quan-

titative information on the magnitude of this effect. To give

more precise quantitative results, further tuning and valida-

tion of the stochastic parameterization are required.

To further explore the effect of these uncertainties, we are

currently applying the same stochastic parameterization to

a 1/4◦ resolution model configuration of the North Atlantic

(NATL025). The results (obtained with the parameters listed

in Table 1) indicate that the stochastic parameterization tends

to produce a mean effect on the Gulf Stream pathway, and

to decorrelate the mesoscale patterns produced in different

members of the ensemble. The first questions that we would

like to address with this kind of simulation are whether it is

possible to better tune the stochastic parameterization using

reference data, whether the ensemble dispersion can explain

a substantial part of the misfit with altimetric observations,

and thus whether this kind of ensemble can be used to assim-

ilate SSH measurements in NATL025. And then, as a longer-

term perspective, maybe the stochastic processes ξ (i) can be

used as a control vector for data assimilation, which would

therefore display the same nice conservation properties as the

semi-prognostic method (Greatbatch et al., 2004).
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3.2 Stochastic ecosystem model

There are many sources of uncertainty in marine ecosys-

tem models. To simplify the discussion, only two classes of

uncertainty will be considered here: uncertainties resulting

from unresolved biologic diversity and uncertainties result-

ing from unresolved scales in biogeochemical tracers (see

Fig. 1). On the one hand, the most common simplification in

biogeochemical models (Le Quéré et al., 2005) is to aggre-

gate the biogeochemical components of the ocean in a lim-

ited number of categories (defining systemA in Fig. 1). This

reduces the number of state variables and parameters, and in-

troduces uncertainties in the model equations since the vari-

ous components included in one single category (unresolved

diversity, in system B) do not usually display the same dy-

namical behaviour. To simulate this first class of uncertainty,

we will use the SPPT scheme described in Sect. 2.2 and mul-

tiply the “source minus sink” terms (SMSk) of the ecosystem

model by a multiplicative noise:

SMS stoch
k (Cl)= SMS ref

k (Cl)× ξ
(k), (10)

where Cl are the biogeochemical tracer concentrations, and

ξ (k) are autoregressive processes obtained from Eq. (1), with

parameters given in Table 1. To simulate unresolved diver-

sity, the scheme described in Sect. 2.4 would probably have

been more natural, but in view of the large number of pa-

rameters in the ecosystem model, the SPPT scheme is much

easier to implement as a first approach. On the other hand,

to simulate uncertainties resulting from unresolved scales,

we will use the scheme described in Sect. 2.3, by applying

Eq. (5) to the SMS terms:

SMS stoch
k (Cl)=

1

m

m∑
i=1

SMSref
k

(
Cl + δC

(i)
l

)
with

m∑
i=1

δC
(i)
l = 0, (11)

where δC
(i)
l explicitly simulate the unresolved fluctuations

of biogeochemical tracer concentrations. These fluctuations

are generated using random walks following Eq. (6), with

parameters for the ξ (i) given in Table 1. (Since little is known

about uncertainties in the ecosystem model, we just used here

reasonable values for the parameters.)

As a first approach, the impact of these two stochastic pa-

rameterizations has been studied in a low-resolution global

ocean model, based on the ORCA2 configuration coupled

to the LOBSTER ecosystem model (using exactly the same

model settings as in the previous section). The ecosystem

model (see Lévy et al., 2005 for more details) is a simple

model including only six compartments (Ck, k = 1, . . ., 6):

phytoplankton, zooplankton, nitrate, ammonium, dissolved

organic matter, and detritus. The behaviour of this model is

here illustrated in Fig. 3 by the surface phytoplankton in the

North Atlantic for 15 June (in the second year of simulation).

As compared to the deterministic simulation (top left panel),

the stochastic simulation with the SPPT scheme (top right

panel) does not modify very strongly the general behaviour

of the system (despite the 50 % SD multiplicative noise), but

substantially increases the patchiness of the surface phyto-

plankton concentration. This suggests the conjecture that un-

certainties (in particular, unresolved diversity) may partly ex-

plain the patchiness of satellite ocean colour images. Con-

versely, the stochastic simulation of unresolved scales (bot-

tom left panel) does not increase patchiness, but can signif-

icantly affect the local behaviour of the system, sometimes

increasing or decreasing the production (whether the second

derivative of the SMS term is positive or negative). At first

sight, these two sources of uncertainty are thus insufficient

to explain the considerable misfit between model simulation

and ocean colour data.

As an additional experiment, the two stochastic parameter-

izations have then been used together (bottom right panel),

by simply generating a sufficient number of autoregressive

processes (corresponding to the two columns together in Ta-

ble 1) to feed the two schemes. This result shows that there

is a strong interaction between the two schemes, leading to

a deep modification of the general behaviour of the system,

and to enhanced patchiness as compared to the SPPT scheme

alone. In our view, this directly leads to the idea that uncer-

tainties may be an important ingredient to understand the dy-

namical behaviours of marine ecosystems, and to make the

model distribution consistent with ocean colour observations

(in magnitude and pattern). It must be noted however that

these experiments only represent a first attempt to explic-

itly simulate uncertainties in the ecosystem component of

NEMO, and that further studies are needed before any mean-

ingful quantitative result can be obtained.

3.3 Stochastic sea ice model

One of the main difficulties of sea ice models is to correctly

simulate the wide diversity of ice dynamical behaviours.

Among ice characteristics, the most sensitive parameter is

certainly the ice strength P ∗. In simple ocean models (as in

LIM2 in NEMO), P ∗ is assumed constant, whereas, in more

complex models (as in LIM3 in NEMO), the variations of P ∗

can be explicitly resolved as a function of the various types

of ice simultaneously present at every model grid point. The

impact of uncertainties in P ∗ has already been studied in the

work of Juricke et al. (2013) using a finite element ocean

model (FESOM), coupled to a simple sea ice model similar

to LIM2. The purpose of this section is to reproduce their pa-

rameterization in NEMO/LIM2 using the generic technical

approach described in Sect. 2. This can be done very easily,

almost without any additional implementation effort, using

the scheme described by Eq. (8) with m= 1 and

P ∗+ δP ∗ = P ∗× ξ, (12)
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Figure 3. Surface phytoplankton concentration (in mmol N m−3)

for 15 June as obtained with various stochastic parameterizations

of uncertainties in the ecosystem model: no stochastic parameteri-

zation (top left panel), stochastic simulation of unresolved diversity

(top right panel), stochastic simulation of unresolved scales (bot-

tom left panel), and stochastic simulation of unresolved diversity

and unresolved scales (bottom right panel).

where ξ is one of the autoregressive processes given by

Eq. (1), with parameters given in Table 1. The parameters are

chosen to be close to the stochastic parameterization in Ju-

ricke et al. (2013). Specificities are the use of order 2 instead

of order 1 autoregressive processes, and the use of a gamma

marginal distribution instead of another kind of positive dis-

tribution in Juricke et al. (2013).

This stochastic parameterization has been applied to a low-

resolution global ocean configuration of NEMO, again with-

out interannual variability in the atmospheric forcing (using

the same model settings as in Brankart, 2013). The behaviour

of the model is here illustrated in Fig. 4 by the ice thickness

in the Arctic at the end of March (when the ice extension is

close to its maximum). As compared to the deterministic sim-

ulation (top left panel), the first impact of the stochastic pa-

rameterization is to systematically increase ice thicknesses,

especially in the regions of old ice (north of Greenland and

western Canada), and to slightly decrease the ice extension.

This mean effect results from the nonlinearity of the model

response to P ∗: during the periods of small P ∗, the ice thick-

ness has the opportunity to increase, and this increase is not

counterbalanced by a symmetric decrease of thickness dur-

ing the periods of large P ∗. This behaviour is very similar

to what is described in Juricke et al. (2013), and cannot be

reproduced by a simple uniform modification of P ∗.

Figure 4. Sample of ice thickness patterns (in meters) in winter (end

of March), illustrating the intrinsic interannual variability generated

by the stochastic parameterization of ice strength in a low-resolution

global ocean model (ORCA2). The top left panel represents the non-

stochastic simulation, and the other panels are 3 different years of

the stochastic simulation.

On the other hand, the stochastic fluctuations of P ∗ also

generate random variability in the system. As for SSH in

Sect. 3.1, the interannual variability of the ice thickness pat-

tern is extremely weak in ORCA2 without interannual vari-

ability of the atmospheric forcing (which is why only 1 typi-

cal year is shown in Fig. 4). In the stochastic simulation how-

ever, not only is the mean ice thickness pattern modified (as

for SSH in Fig. 2), but the interannual variability (which is

again a good proxy to ensemble dispersion as explained in

Sect. 3.1) is also strongly enhanced. What is expected from

these results is thus that the explicit simulation of uncertain-

ties can provide us with an adequate basis for probabilistic

comparison with sea ice observations and help us in produc-

ing reliable ensemble forecasts for sea ice data assimilation

problems. Consequently, it might also be that this stochas-

tic approach represents a worthwhile alternative to explicit

resolutions of sea ice diversity (as in LIM3).
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4 Conclusions

In this paper, a simple and generic implementation approach

has been presented, with the purpose of transforming a de-

terministic ocean model (like NEMO) into a probabilistic

model. With this method, it is possible to easily implement

various kinds of stochastic parameterizations mimicking the

non-deterministic effect of unresolved processes, unresolved

scales, unresolved diversity, etc. It has been shown indeed

that ocean systems can often display a random behaviour,

which needs to be explicitly represented in ocean models.

Ensemble simulations are then required to sample all possi-

ble behaviours of the system. Getting a reliable overview of

all dynamical possibilities is necessary to objectively com-

pare models to observations, and to correctly apply the model

constraint in ocean data assimilation problems.

Technically, what is proposed here is a very simple al-

gorithmic solution that is easy to adapt to many kinds of

models, and that is generic enough to deal with many dif-

ferent sources of uncertainty. This is obviously not intended

to be the final theoretical or technical solution for simulat-

ing uncertainties. The algorithms and framework proposed in

this study only provide a first-guess solution, which is sim-

ple enough to make a first quick evaluation of the effect of

a given source of uncertainty, and flexible enough to easily

evolve as a better understanding of the problem is progres-

sively obtained.

This technique has been applied to several applications,

showing that randomness is ubiquitous in ocean systems: in

the large-scale circulation (e.g. because of the effect of unre-

solved scales through the nonlinear equation of state), in the

ecosystem model (e.g. because of the effect of unresolved

scales and unresolved biogeochemical diversity), and in the

sea ice dynamics (e.g. because of the unresolved diversity

of sea ice characteristics). In each of these applications, un-

certainty can be viewed as an essential dynamical character-

istic of the system, which can modify our understanding of

the ocean behaviour. As for any complex system, construct-

ing ocean models using optimal (but imperfect) components

can often be worse (less robust) than using unreliable com-

ponents dealing explicitly with their respective inaccuracy.

The ocean is like dice rolling on the table of a casino: we are

unable to grasp all subtleties of their movements, and we can

only sample from all possible outcomes of the game using

probabilistic models.
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Appendix A: Implementation issues

All examples of stochastic parameterizations described in

this paper have been performed with the same generic tool

that we have implemented in NEMO. The purpose of this

appendix is to describe this tool, and to show that it could be

easily adapted to work in any other modelling system.

The computer code is made up of one single FORTRAN

module, with three public routines to be called by the model

(in our case, NEMO).

– The first routine (sto_par, see Algorithm 1) is a di-

rect implementation of Eq. (1), applied at each model

grid point (in 2-D or 3-D), and called at each model

time step (k) to update every autoregressive process

(i = 1, . . ., m). This routine also includes a filtering op-

erator, applied to w(i), to introduce a spatial correlation

between the stochastic processes.

– The second routine (sto_par_init, see Algorithm 2) is an

initialization routine mainly dedicated to the computa-

tion of parameters a(i),b(i), and c(i) for each autoregres-

sive process, as a function of the statistical properties

required by the model user (mean, SD, time correlation,

order of the process, etc.). This routine also includes the

initialization (seeding) of the random number generator.

– The third routine (sto_rst_write) writes a “restart file”

with the current value of all autoregressive processes

to allow restarting of a simulation from where it has

been interrupted. This file also contains the current

state of the random number generator. In case of

a restart, this file is then read by the initialization routine

(sto_par_init), so that the simulation can continue

exactly as if it was not interrupted.

Algorithm 1 sto_par

for all (map i = 1, . . ., m of autoregressive processes) do

Save map from previous time step: ξ−← ξi
if (process order is equal to 1) then

Draw new map of random numbers w from N (0,1):
ξi← w

Apply spatial filtering operator Fi to ξi : ξi← Fi [ξi ]
Apply precomputed factor fi to keep SD equal to 1:

ξi← fi × ξi
else

Use previous process (one order lower) instead of white

noise: ξi← ξi−1

end if

Multiply by parameter bi and add parameter ci : ξi← bi×

ξi + ci
Update map of autoregressive processes: ξi← ai×ξ−+ξi

end for

Algorithm 2 sto_par_init

Initialize number of maps of autoregressive processes to 0:

m← 0

for all (stochastic parameterization k = 1, . . ., p) do

Set mk , the number of maps of autoregressive processes re-

quired for this parameterization

Increase m by mk times the process order ok : m←m+

mk × ok
end for

for all (map i = 1, . . ., m of autoregressive processes) do

Set order of autoregressive processes

Set mean (µi ), standard deviation (σi ) and correlation

timescale (τi ) of autoregressive processes

Compute parameters ai ,bi ,ci as a function of µi ,σi ,τi
Define filtering operator Fi
Compute factor fi as a function of Fi

end for

Initialize seeds for random number generator

for all (map i = 1, . . ., m of autoregressive processes) do

Draw new map of random numbersw fromN (0,1): ξi←

w

Apply spatial filtering operator Fi to ξi : ξi← Fi [ξi ]
Apply precomputed factor fi to keep standard deviation

equal to 1: ξi← fi × ξi
Initialize autoregressive processes to µ+σ×w: ξi← µ+

σξi
end for

if (restart file) then

Read maps of autoregressive processes and seeds for the ran-

dom number generator form restart file (thus overriding the

initial seed)

end if

This module has been used to produce the three examples

of stochastic parameterization given in the paper, with the

parameters given in Table 1. The same set of basic routines

has thus been applied to simulate the random walks of the

stochastic equation of state in Sect. 3.1, the random pertur-

bation of the ecosystem model in Sect. 3.2, and the random

sea ice dynamics in Sect. 3.3. Moreover, as can be seen from

Algorithms 1 and 2, these parameterizations can easily be

applied all together or separately.
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