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Abstract. Multi-generational gas-phase oxidation of organic

vapors can influence the abundance, composition and proper-

ties of secondary organic aerosol (SOA). Only recently have

SOA models been developed that explicitly represent multi-

generational SOA formation. In this work, we integrated the

statistical oxidation model (SOM) into SAPRC-11 to simu-

late the multi-generational oxidation and gas/particle parti-

tioning of SOA in the regional UCD/CIT (University of Cal-

ifornia, Davis/California Institute of Technology) air quality

model. In the SOM, evolution of organic vapors by reaction

with the hydroxyl radical is defined by (1) the number of

oxygen atoms added per reaction, (2) the decrease in volatil-

ity upon addition of an oxygen atom and (3) the probability

that a given reaction leads to fragmentation of the organic

molecule. These SOM parameter values were fit to labora-

tory smog chamber data for each precursor/compound class.

SOM was installed in the UCD/CIT model, which simulated

air quality over 2-week periods in the South Coast Air Basin

of California and the eastern United States. For the regions

and episodes tested, the two-product SOA model and SOM

produce similar SOA concentrations but a modestly different

SOA chemical composition. Predictions of the oxygen-to-

carbon ratio qualitatively agree with those measured globally

using aerosol mass spectrometers. Overall, the implementa-

tion of the SOM in a 3-D model provides a comprehensive

framework to simulate the atmospheric evolution of organic

aerosol.

1 Introduction

Fine-mode organic particulate matter or organic aerosol

(OA) accounts for roughly half of the dry ambient aerosol

mass yet it remains one of its least understood constituents

(Jimenez et al., 2009). Ambient OA exists as a complex mix-

ture of thousands of compounds with very different physical

and chemical properties that arise from a host of sources and

reaction pathways (Goldstein and Galbally, 2007). This OA

and the organic vapors in equilibrium with it together form

a dynamic system in which their mass, chemical composi-

tion and environmental properties are constantly evolving as

a result of gas-, surface- and particle-phase reactions cou-

pled to condensation and evaporation. The complexity and

dynamic behavior have made it difficult to identify and model

the dominant pathways that control the atmospheric burden

of OA, which limits our ability to quantify its climate- and

health-relevant properties.

OA is either directly emitted as primary organic aerosol

(POA) or formed in the atmosphere from the oxidation of

volatile organic compounds (VOC) as secondary organic

aerosol (SOA). Most box (0-D) and large-scale (3-D) mod-

els represent SOA production from the gas-phase oxidation

of certain VOCs (large alkanes, aromatics, isoprene and ter-

penes) to yield 2–4 low-volatility products that partition into

the particle phase (Odum et al., 1996; Carlton et al., 2010;

Lane et al., 2008). Laboratory chamber data provide the ba-

sic information on which these SOA formation models are

built. It is widely recognized that gas-phase VOC oxidation

products (or more generically organic vapors) can undergo

multi-generational oxidation, given sufficient time in the at-

Published by Copernicus Publications on behalf of the European Geosciences Union.



2554 S. H. Jathar et al.: Multi-generational oxidation model

mosphere, which may substantially alter the mass and prop-

erties of SOA. For example, chamber studies using surro-

gate molecules – aldehydes to represent gas-phase oxidation

products of alkanes (Chacon-Madrid et al., 2010) and bio-

genic VOCs (Chacon-Madrid et al., 2013) and phenols to

represent those from aromatics (Yee et al., 2013) – have high-

lighted the potential of VOC oxidation products to undergo

multi-generational oxidation to form SOA. In chamber ex-

periments conducted at four different facilities, Donahue et

al. (2012b) showed that semi-volatile organic vapors, formed

from the ozonolysis of α-pinene, subsequently reacted with

the hydroxyl radical (OH) to enhance SOA mass concentra-

tions. While it is likely that virtually all oxidation products

from SOA precursors subsequently react, what is less clear

is the relevance of multi-generational oxidation of different

classes of SOA precursors to the concentrations and proper-

ties of ambient OA under typical atmospheric conditions.

Laboratory chamber studies, on account of their reaction

times and typical oxidant levels, are dominated by products

from the first few generations of VOC oxidation; a typical

chamber experiment captures from one-half to 1 day of at-

mospheric oxidation and does not fully replicate the typical

atmospheric lifetime of reactive organic compounds. How-

ever, since second- and later-generation products are often

likely to have lower vapor pressures and thus greater SOA

formation potential, SOA formation may be influenced by

later-generation products even at short oxidation lifetimes.

A few simple schemes have attempted to account for this

multi-generational oxidation within air quality models. Most

often, multi-generational oxidation has been implemented by

allowing for the parameterized surrogate semi-volatile prod-

uct species to undergo further “ageing” reactions. For exam-

ple, Robinson et al. (2007) assumed that primary organic va-

pors (semi-volatile and intermediate volatility organic com-

pounds; SVOCs and IVOCs) sequentially react with OH to

form products that are an order of magnitude lower in volatil-

ity than their precursor. Pye and Seinfeld (2010) represented

the same pathway through a single-step reaction that re-

duced the volatility of the vapors by 2 orders of magnitude.

Lane et al. (2008) and Baek et al. (2011) modeled ageing

of semi-volatile SOA vapors by assuming that each reaction

with the OH radical resulted in progressively lower volatility

products. While such schemes have the potential to improve

model–measurement comparisons, they have at least three

major drawbacks. First, they do not consider the role of frag-

mentation, which has been shown to be quite important for

oxygenated SOA precursors (Chacon-Madrid and Donahue,

2011) and can lead to decreases in SOA concentrations. Sec-

ond, they assume that the oxidation reactions proceed simi-

larly for products from different classes of SOA precursors,

i.e., multi-generational oxidation of alkane, aromatic, or bio-

genic SOA is the same. Finally, current schemes have not

been tested against or constrained by measurements of multi-

generational products (or classes of products) under realistic

ambient conditions.

Multi-generational VOC oxidation, in theory, can be ex-

plicitly modeled using detailed gas-phase chemical mech-

anisms such as the MCM (Master Chemical Mechanism;

Jenkin et al., 2003; Saunders et al., 2003) or GECKO-A

(Generator of Explicit Chemistry and Kinetics of Organics

in the Atmosphere; Aumont et al., 2005; Camredon et al.,

2007) and have been put to use to develop a better under-

standing of the reaction chemistry leading to SOA forma-

tion (Yee et al., 2012; Aumont et al., 2012; Valorso et al.,

2011). However, these mechanisms track thousands to mil-

lions of chemical species and are computationally impracti-

cal for modeling multi-generational oxidation in 3-D mod-

els. Recently, there has been the development of two frame-

works of intermediate complexity that allow for the treatment

of multi-generational oxidation (and other aerosol processes)

during SOA formation: the two-dimensional volatility basis

set (2D-VBS) that uses vapor pressure and the O :C (oxy-

gen to carbon) ratio as the independent variables (Donahue

et al., 2011; Donahue et al., 2012a) and the statistical oxida-

tion model (SOM) that uses the number of carbon atoms and

oxygen atoms per molecule as independent variables (Cappa

and Wilson, 2012). Both have provisions to treat fragmenta-

tion of the reactants as a function of their oxygen content and

can be parameterized from chamber measurements (Cappa et

al., 2013; Zhao et al., 2015). Both frameworks require track-

ing on the order of hundreds of model species, which is more

computationally expensive than models with less detail, but

still sufficiently modest to be realistically implemented in 3-

D models today.

This work describes the first implementation of the SOM

model of Cappa and Wilson (2012) in a 3-D air quality

model. Details are provided regarding (a) the SOM param-

eterization using recent low and high NOx chamber data for

six different classes of SOA precursors, (b) the integration of

SOM with the gas-phase chemical mechanism SAPRC-11,

and (c) the coupling of SOM with the UCD/CIT (Univer-

sity of California, Davis/California Institute of Technology)

model to make air quality predictions over 2-week periods

in the South Coast Air Basin (SoCAB) of California and the

eastern United States (US). General results from the simula-

tions are discussed and briefly compared with results from a

current-generation SOA model.

2 Model description

2.1 3-D air quality model

The UCD/CIT air quality model is a regional chemical

transport model (CTM) (Kleeman and Cass, 2001) that has

been extensively used for predicting regional aerosol con-

centrations, including SOA (Chen et al., 2010; Kleeman

et al., 2007). The UCD/CIT model simulates the emis-

sions, transport, gas-phase chemistry, aerosol physics and

chemistry (dynamic gas/particle partitioning, coagulation,
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thermodynamics and deposition) in the lower troposphere.

The UCD/CIT model employs the condensed form of the

SAPRC-11 gas-phase chemical mechanism to simulate gas-

phase chemistry (Carter and Heo, 2013) and ISORROPIA

to model inorganic aerosol thermodynamics (Nenes et al.,

1998). Aerosols are represented using an eight-bin moving

sectional approach to encompass a size range of 10 nm–

10 µm.

The model simulated air quality in two domains: (1) the

state of California at a grid resolution of 24 km× 24 km fol-

lowed by a nested simulation over SoCAB at a grid resolution

of 8 km× 8 km and (2) the eastern half of the US, roughly

east of the great continental divide, at a grid resolution of

36 km× 36 km. Vertically, the model domain extends up to

5 km, which is divided into 16 layers. The UCD/CIT model

was run for California from 20 July to 2 August 2005 and for

the eastern US from 20 August to 2 September 2006.

2.2 Emissions

Anthropogenic VOC and primary particulate emissions for

California are based on the California Regional PM10/PM2.5

Air Quality Study (CRPAQS) inventory of 2000 but scaled

to 2005 by adjusting emissions in 2000 by fuel consump-

tion activity (CARB, 2011); emissions for area sources, point

sources, and off-road sources are not changed from their year

2000 levels. FINN (Fire Inventory for National Center for At-

mospheric Research) (Wiedinmyer et al., 2011) and MEGAN

(Model of Emissions of Gases and Aerosols from Nature)

(Guenther et al., 2006) are used to calculate wildfire and bio-

genic emissions, respectively, in California. Anthropogenic

and wildfire VOC and primary particulate emissions for the

eastern US are based on the 2005 National Emissions Inven-

tory (NEI) and biogenic emissions are estimated using BEIS

(Biogenic Emissions Inventory System) version 3. More de-

tails pertaining to the emissions can be found in Jathar et

al. (2015)

The chemical mechanism SAPRC-11 is used to represent

the gas-phase chemistry, from which the following model

species are considered to form SOA: ALK5 (long alka-

nes), BENZENE (benzene), ARO1 and ARO2 (other aro-

matics), ISOPRENE (isoprene), TRP1 (monoterpenes) and

SQT (sesquiterpenes). Except for alkanes, emissions of these

model species are directly used by the SOM.

The carbon number and structure of an alkane influences

its SOA mass yield; for the same structure the SOA po-

tential increases with carbon number (Lim and Ziemann,

2009; Presto et al., 2010), while for the same carbon num-

ber cyclic alkanes form the most SOA followed by linear

and then branched alkanes (Lim and Ziemann, 2009; Tkacik

et al., 2012). However, in 3-D models that employ SAPRC-

11, a single model VOC species, ALK5, is used to describe

the SOA formation from alkanes roughly larger than a car-

bon number of 6. In order to more accurately represent the

SOA formation from alkanes and specifically the carbon

chain-length dependence, ALK5 is split by carbon number

into seven separate species that represent alkane emissions

ranging from 6 to 13 carbon atoms (i.e., ALK_Cxx, where

xx = 06–13). Specific details about how the alkane emis-

sions are built from CRPAQS and NEI and incorporated into

SAPRC-11 can be found in the Appendix. It should be noted

that the split ALK_Cxx emissions generally decrease with

increasing carbon number.

2.3 Meteorology and initial/boundary conditions

The Weather Research and Forecasting (WRF) v3.4 model

(www.wrf-model.org) is used to generate hourly meteorolog-

ical fields for both episodes. The National Center for Envi-

ronmental Protection’s (NCEP) North American Mesoscale

(NAM) analysis data are used to set the initial and bound-

ary conditions for WRF. Results from the global model

MOZART-4/NCEP (Model for OZone and Related chemi-

cal Tracers 4) are used to set gas- and particle-phase initial

and hourly-varying boundary conditions; more details can be

found in Emmons et al. (2010).

2.4 Base SOA model

The “Base” SOA model is equivalent to that used in the

Community Multiscale Air Quality (CMAQ) model version

4.7 (Carlton et al., 2010). This Base model is representative

of current-generation SOA models. Here, the SOA precur-

sors in SAPRC-11 oxidize in the gas phase to form fixed

semi-volatile or non-volatile products that partition into the

particle phase (Odum et al., 1996). SOA formation from

aromatics is dependent on the abundance of NOx , form-

ing different product species upon reaction depending on

the NOx condition. Aromatic peroxy radicals (RO2) react

with HO2 under low NOx conditions to form non-volatile

SOA while they reacted with NO under high NOx con-

ditions to form semi-volatile SOA. In addition, the Base

model treats the acid enhancement of isoprene SOA (Sur-

ratt et al., 2007) and irreversible particle-phase oligomer-

ization (Kalberer et al., 2004), which converts semi-volatile

condensed-phase species into non-volatile species. We do not

consider SOA formation from IVOCs or via aqueous-phase

processing. SOA is assumed to absorptively partition into all

OA, including POA. The SOA model species are allowed to

dynamically partition to the particle phase as per Kleeman

and Cass (2001) (and corrected according to Aw and Klee-

man, 2003):

∂Cnm

∂t
= 4πDg,m

RnNn

4βn+ 1

(
C

gas
m −

Cnm

KpmCOA

)
, (1)

where Cnm is the particle concentration (in µg m−3) of the

SOA model species m and for particle size bin n, Dg,m is

the gas-phase diffusion coefficient (in m2 s−1), Rn is the

particle radius (in m), Nn is the particle number concentra-

tion (in m−3), βnm corrects for non-continuum effects (βnm =

www.geosci-model-dev.net/8/2553/2015/ Geosci. Model Dev., 8, 2553–2567, 2015

www.wrf-model.org


2556 S. H. Jathar et al.: Multi-generational oxidation model

4Dg,m

αmc̄mRn
), c̄ is the mean molecular speed of the gas molecules

in (m s−1), αm is the accommodation coefficient, C
gas
m is the

gas concentration (in µg m−3) of the SOA model species,

Kpm is the gas/particle partitioning coefficient (in m3 µg−1)

and COA is the total OA concentration (in µg m−3). Here, we

use an accommodation coefficient of 0.1, which corresponds

to an equilibration timescale of less than ∼ 10 min (McVay

et al., 2014). Changes in Kp with temperature are modeled

using the Clausius–Clapeyron equation:

Kp (T )=Kp (Tref)
T

Tref

[
1Hvap

R

(
1

T
−

1

Tref

)]
, (2)

where Tref is the reference temperature (298 K),1Hvap is the

enthalpy of vaporization and R is the universal gas constant.

We assume a constant 1Hvap of 30 kJ mole−1 for all SOM

model species for consistency with the treatment of species

in the Base model. This may somewhat underestimate the ac-

tual sensitivity to temperature of individual species (Epstein

et al., 2010).

2.5 Statistical oxidation model (SOM)

2.5.1 SOM overview

SOM was used to model the multi-generational, gas-phase

oxidation of SOA precursors and their subsequent products

along with gas-particle partitioning of all species (Cappa

and Wilson, 2012). SOM uses a two-dimensional carbon–

oxygen grid to track the evolution and properties of gas- and

particle-phase organic precursors and products. Each cell in

the grid represents a model organic species with a molec-

ular weight defined by the formula CNC
H2×NC+2−NO

ONO
.

SOM assumes that the oxygen is bonded to carbon via a

single covalent bond and hence the hydrogen number is the

same as the species’ remaining valence; we assume that the

SOM species have a straight chain carbon backbone. A SOM

species reflects the average properties (e.g., vapor pressure,

reactivity) of all actual species with the same number of car-

bon (NC) and oxygen (NO) atoms that are produced from

a given precursor class (e.g., aromatics, alkanes). All SOM

species are assumed to be reactive towards OH radicals in

the gas phase. These reactions lead to either functionaliza-

tion or fragmentation, which results in movement through

the carbon–oxygen grid. Chamber data are used to fit six

precursor-specific adjustable parameters for each precursor

class: four parameters that define the molar yields of the

four functionalized, oxidized products, one parameter that

determines the probability of functionalization or fragmen-

tation, and one parameter that describes the relationship be-

tween NC, NO and vapor pressure. Each class of precursor

species (e.g., aromatics, alkanes) has its own uniquely de-

fined “grid” that describes its gas-phase photochemical oxi-

dation and SOA formation. In the following sections, we de-

scribe more details about the SOM and its implementation in

the UCD/CIT model.
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Figure 1: Schematic that demonstrates how the carbon-oxygen grid of the SOM captures the OH-driven 
multigenerational oxidation of gas-phase organics. Here, a hydrocarbon with 8 carbon atoms (C8H18O0; 
bordered orange cell) reacts with the OH radical and functionalizes to form 4 products with 1, 2, 3 and 4 
oxygen atoms (yellow cells). One of the products (C8H15O3, bordered yellow cell) further functionalizes to 
form 4 new products (green cells) or fragments while adding oxygen to form a host of products (blue 
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of the SOM captures the OH-driven multi-generational oxidation of

gas-phase organics. Here, a hydrocarbon with eight carbon atoms

(C8H18O0; bordered orange cell) reacts with the OH radical and

functionalizes to form four products with one, two, three and four

oxygen atoms (yellow cells). One of the products (C8H15O3, bor-

dered yellow cell) further functionalizes to form four new products

(green cells) or fragments while adding oxygen to form a host of

products (blue cells).

2.5.2 Multi-generational gas-phase oxidation and

gas/particle partitioning

Figure 1 shows a schematic of the carbon–oxygen grid and

illustrates the oxidation of a typical SOA precursor and the

movement of the product species in the SOM grid. For exam-

ple, a saturated alkane with eight carbon atoms (ALK_C08 or

C8H18O0 or n-octane; orange cell) reacts with OH to directly

form one of four functionalized products with 1–4 oxygen

atoms attached to the carbon backbone (yellow cells). In par-

allel, an oxygenated species (e.g., C8H15O3) reacts to form

directly functionalized products (C8H15O4−7) and two frag-

ment species.

The rate coefficients for the reaction of SOA precur-

sors with OH are the same as those in SAPRC-11 (e.g., at

298 K ARO1 has a reaction rate coefficient of 6× 10−12 cm3

molecule−1 s−1). The reaction rate coefficients of non-

precursor SOM species are functions of temperature (T ) and

carbon and oxygen number (Zhang et al., 2014):

kO (NC,NO,T )

= A1

+A2×N
A3

C × T
2
×

exp
(
−1× Ea

8.314×T

)
×

[
1+ b1

σ
√

2π

exp
(
−

1(ln(NO+0.01)−ln(b2))
2

2σ 2

)]
,

(3)

σ (NC ≤ 15)= 0.0214×NC+ 0.523; σ (NC > 15)
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=−0.115×NC+ 2.69, (4)

b1 =−0.258×NC + 5.89, (5)

b2 (NC ≤ 15)= 0.0314×NC+ 0.987 ;b2 (NC > 15)

= 0.25×NC− 2.18, (6)

where A1 =−15.1, A2 =−3.94, and A3 =−0.797. It is as-

sumed that the kOH values for SOM species are the same in

all precursor class grids, i.e., are not precursor specific and

thus describe the typical reactivities of oxidized hydrocar-

bon species. The particular dependence of kOH on NC and

NO was determined through comparison with results from

the chemically explicit GECKO model (Aumont et al., 2005;

Camredon et al., 2007).

Each compound has a probability of fragmenting, Pfrag,

or functionalizing, Pfunc, and Pfunc+Pfrag = 1, and func-

tionalization has a probability of adding 1–4 oxygen atoms,

piO, i = 1,4, p1O+p2O+p3O+p4O = 1. The molar yield

of each directly functionalized product, e.g., p1, is therefore

pi = Pfunc×piO, so the overall production of directly func-

tionalized products can be written using n-octane, as an ex-

ample,

C8H18O0+OH→ p1
qC8H17O1+p2

qC8H16O2+

p3
qC8H15O3+p4

qC8H14O4. (7)

Precursor-specific values of p1O–p4O and Pfunc are deter-

mined by fitting of the SOM to laboratory measurements.

In the SOM, the probability of fragmentation of a given

SOM species, Pfrag, is dependent on the number of carbon

and oxygen atoms and is parameterized as

Pfrag =

(
NO

NC

,

)mfrag

(8)

where mfrag is a fit parameter. Note that the fragmentation

probability of species with zero oxygen atoms is zero in this

formulation. In Fig. 1, functionalized (green cells) and frag-

mented (blue cells) products from the oxidation of the model

species C8H15O3 are shown. In this case, the probability of

fragmentation is
(

3
8

)mfrag

. When fragmentation occurs, two

molecules are produced for which the total number of car-

bon atoms, summed over the two molecules, is conserved,

but for which the total number of oxygen atoms is increased

by two, with one oxygen being added to each fragment.

Based on these criteria, all possible fragment species that can

be formed from fragmentation of a given SOM species are

identified. It is assumed that the formation of every species

is equally probable such that the probability of forming a

given fragment is Pfrag(NC, NO)/Nfragments(NC, NO), where

Nfragments(NC, NO) is the SOM species-specific number of

possible fragments (note that this criterion differs from the

original SOM parameterization in Cappa and Wilson (2012),

where it was assumed that the individual fragments are gen-

erated with random probabilities). We should note that the

representation of the reaction chemistry in the SOM, in con-

trast to an explicit gas-phase mechanism like SAPRC, MCM

or GECKO, is significantly simplified to capture the average

chemistry. Furthermore, each oxidation step in the SOM is an

aggregation of numerous individual reaction steps, i.e., inter-

mediate radical species are not explicitly simulated. For ex-

ample, in reality each oxidation reaction is initiated through

hydrogen abstraction to yield peroxy/alkoxy radicals. These

radicals can go on to react (with HO2, RO2 or NO) or un-

dergo isomerization to form low-volatility products such as

organic nitrates, peroxides and hydroxy carbonyls, or can

decompose leading to production of oxygenated fragments.

These intermediate steps are not explicitly simulated, only

the formation of the resulting stable product species.

The volatility of the model SOM species, and hence its

propensity to partition to the particle phase, is defined by its

NC and NO. The volatility is represented by the gas/particle

partitioning coefficient (Kp) (Pankow, 1994) and parameter-

ized as

Kpi,j,k =
1

10(−0.0337×MWj,k+11.56−NO×1LVPi)
, (9)

where Kpi,j,k is the partitioning coefficient (in m3 µg−1) for

precursor-specific grid i, carbon number j , and oxygen num-

ber k; MWj,k is the molecular weight of the hydrocarbon

backbone (in g mole−1, accounting only for carbon and hy-

drogen atoms) and 1LVPi is the decrease in volatility of

the model species per addition of oxygen atom for grid i.

This last term, 1LVPi , reflects the average change in vapor

pressure due to the functional group added upon oxidation

(e.g., alcohol, ketone) and is determined by fitting the SOM

to chamber data. Differences in values of 1LVPi between

different SOA precursors reflect differences in chemical re-

action pathways between these precursors (Cappa and Wil-

son, 2012; Cappa et al., 2013). The SOM model species are

allowed to dynamically partition to the particle phase as per

Eq. (1).

In summary, as a VOC undergoes multi-generational ox-

idation, the evolution of its oxidation products in the SOM

grid is defined by six parameters: (i–iv) p1–p4, the yields

of the four products that add one, two, three, and four oxy-

gen atoms, respectively, (v) mfrag, the parameter that charac-

terizes the fragmentation probability, Pfrag, and (vi) 1LVP,

the decrease in vapor pressure (or volatility) of the species

per addition of an oxygen atom. Each of these parameters is

determined through fitting of chamber experiments and then

used in the regional model simulations.

While the SOM framework can be adapted to explicitly

model other production and loss processes (e.g., oligomer-

ization (Yatavelli et al., 2012), heterogeneous reactions (Shi-

raiwa et al., 2013)) in the atmosphere, in this work we con-

sider only the multi-generational gas-phase oxidation of SOA

precursors and their subsequent products. As with all existing

SOA parameterizations that are used in 3-D models, inherent

in the parameterization are the effects of condensed-phase

www.geosci-model-dev.net/8/2553/2015/ Geosci. Model Dev., 8, 2553–2567, 2015
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(and other unaccounted for) processes. As improved under-

standing of the kinetics and reaction chemistry of key hetero-

geneous and condensed-phase processes is developed they

will be incorporated into the SOM framework The Base sim-

ulations include both acid-catalyzed isoprene SOA formation

and irreversible oligomerization, while the SOM simulations

include neither process. The gas-phase chemistry of the non-

SOA forming VOCs is modeled using the gas-phase chemi-

cal mechanism, SAPRC-11. As noted above, only SOA for-

mation from traditional VOC precursors is considered here,

so as to be consistent with typical applications of CMAQ.

However, the SOM framework is general and can incorporate

SOA formation from non-traditional SOA precursors, such

as SVOC and IVOC. As these SVOC and IVOC species are

likely to resemble long-chain alkanes, they can be directly

added to the “long alkanes” SOM grid, described in the next

section.

2.5.3 SOM grids and parameterizations

We use six SOM grids to represent the formation and evo-

lution of SOA with a separate grid for each class of SOA

precursors: long alkanes (ALK_C06–ALK_C13), benzene,

high-yield aromatics (ARO1), low-yield aromatics (ARO2),

isoprene and mono and sesquiterpenes (TRP1 and SESQ).

Table 1 lists the SOM parameters for each precursor class.

Note that all SAPRC ALK_Cxx species are simulated to-

gether using a common grid. The SOM is parameterized for

each grid, or precursor class, using data from experiments

conducted in the Caltech environmental (“smog”) chamber;

the last column in Table 1 lists the references for the data. The

parameters determined for n-dodecane are applied to C6–C13

alkanes since it was previously shown that the SOM frame-

work captures the observed carbon chain-length dependence

of SOA yields (Lim and Ziemann, 2009) for alkanes with

good fidelity when a single set of parameters are used (Cappa

and Wilson, 2012). The parameters determined for α-pinene

were also used for all sesquiterpenes, since these parameters

were able to predict similar levels of SOA as those measured

for a range of sesquiterpenes (Griffin et al., 1999).

Two sets of six parameters were determined for all six

grids by separately fitting experiments that were conducted

under low NOx (high yield) and high NOx (low yield) con-

ditions; the SOM parameters are listed in Table 1. The NOx-

dependence of SOA formation is consequently treated in a

binary manner because the SOM in its current configura-

tion does not allow for continuous variation in the depen-

dence of SOA on NOx . More details about the fitting process

and the experimental chamber data can be found in Cappa

et al. (2013) and Zhang et al. (2014). Briefly, measurements

of VOC decay during the chamber experiment were used

to estimate OH concentrations that were then used to rep-

resent the oxidation of the SOM model species. Values of

the six parameters were determined with the built-in curve

fitting tool in IGOR Pro 6.3 (Wavemetrics, Lake Oswego,

OR) by treating the SOM as a user-defined function. The

best fit was determined as that which gave the best agree-

ment between simulated and observed SOA concentrations

as a function of time and where OA concentrations had been

corrected for particle wall losses. The curve fitting tool used

the Levenberg–Marquardt algorithm to minimize the Chi-

square parameter. While important, the fitting did not con-

sider the influence of organic gas/vapor losses to the cham-

ber walls (Zhang et al., 2014) and hence the fitted parame-

ters represent the minimum potential of the precursor to form

SOA; the influence of gas/vapor wall losses on the SOM pa-

rameters and consequently on regional SOA concentrations

will be explored in a follow-up study. The fitting was under-

taken assuming a monodisperse particle size distribution that

matched the aerosol surface area in the chamber experiment

and an accommodation coefficient of 1. Using an accommo-

dation coefficient of 1 or 0.1 did not dramatically change the

fitted parameters since the timescale to achieve gas/particle

equilibrium is less than a few minutes for these conditions

and much faster than the timescale of SOA formation in these

experiments (Zhang et al., 2014; McVay et al., 2014).

It should be noted that the experimental data used here to

determine the SOM fit parameters are not the same data as

used in developing the parameters in the Base model (Carl-

ton et al., 2010). This difference in data sets can be expected

to lead to some differences in the resulting simulated SOA

concentrations. The use of an alternative data set here, with

typically newer data, is justified by the higher time resolu-

tion on the precursor decay, often longer reaction times, and

better quantification of chamber particle wall losses.

2.5.4 Implementation

The multi-generational gas-phase oxidation reactions of

the SOM were directly added to the gas-phase mecha-

nism of SAPRC-11 using the SAPRC mechanism compiler

maintained by UC Davis. This allowed us to control the

number of the SOM grids and the parameterizations for

each SOM grid; the mechanism compiler is publicly avail-

able at http://webwolf.engr.ucdavis.edu/data/mechanism_

compiler/mechanism_generator_v1.html. The compiler ac-

cepts a .RXN SAPRC mechanism file (Carter, 2015) as input

and generates a Fortran file that solves the right hand side of

the differential equation for all gas-phase species including

the SOM model species (see Eq. 10 below). Links to the For-

tran output files (one for SOM (low yield) and one for SOM

(high yield)) used in this work are also provided at the URL

mentioned above. The rules described above that define the

fate (production and loss) of any given SOM species have

been incorporated into the automated mechanism compiler.

The formation of each grid species is governed by

d[CXOZ] ,

dt
=−k

X,Z
OH [OH][CXOZ] ,
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Table 1. SAPRC-11 model species, corresponding SOM grids, surrogate molecules, SOM parameters, O :C, and data source.

SAPRC-11 species SOM Grid Surrogate to

determine

SOM fits

NOx 1LVP Pfunc mfrag O :C (end

of experi-

ment)

Reference

ALK_C06–ALK_C13 long alkanes n-dodecane Low 1.54 0.717 0.278 0.0028 0.0022 0.122 0.34 Loza et al. (2014)

High 1.39 0.927 0.0101 0.018 0.0445 0.098 0.36

Benzene benzene benzene low 2.01 0.769 0.001 0.0505 0.18 2.01 0.71 Ng et al. (2007)

high 1.7 0.0792 0.001 0.919 0.001 0.535 0.97

ARO1 high-yield toluene low 1.84 0.561 0.001 0.001 0.438 0.01 0.61 Zhang et al. (2014)

aromatics high 1.24 0.0029 0.001 0.001 1.01 0.222 1.02

ARO2 low-yield m-xylene low 1.76 0.735 0.001 0.002 0.262 0.01 0.54 Ng et al. (2007)

aromatics high 1.68 0.936 0.001 0.0021 0.0609 0.01 0.55

Isoprene isoprene isoprene low 2.26 0.973 0.001 0.001 0.026 0.01 0.81 Chhabra et al. (2011)

high 1.94 0.952 0.0011 0.0304 0.0163 0.0632 0.9

TRP1/SESQ terpenes α-pinene low 1.87 0.001 0.869 0.0776 0.0525 0.01 0.4 Chhabra et al. (2011),

high 1.62 0.068 0.633 0.275 0.0244 0.0353 0.5 Griffin et al. (1999)

+ [OH]

4∑
k=1

k
X,Z−k
OH P

X,Z−k
func pO,k

[
CXOZ−k

]
(10)

+ [OH]

jmax∑
j=1

kmax−Z∑
k=0

k
X+j,Z−1+k

OH

P
X,Z−1+k
frag

N
X,Z
fragments

[
CXOZ−1+k

]
,

where X is the number of carbon atoms, Z is the number of

oxygen atoms (≥ 0), jmax is the maximum number of carbon

atoms in a grid and kmax is the maximum number of oxy-

gen atoms in a grid (specified here as seven). In the equation,

we deliberately omit hydrogen from the representation of the

SOM model species for clarity and also because the hydro-

gen number is not explicitly tracked in the SOM but rather

determined by the remaining valence. The maximum number

of oxygen atoms considered is restricted by physical limita-

tions. For compounds with large NC, the addition of oxygen

by a gas-phase reaction is constrained by the low volatility of

the SOM species partitioning most of the compound into the

condensed phase. For smallNC, large values ofNO give large

NO/NC, which dictates extensive fragmentation. Tests using

SOM in the box model formulation indicate that kmax = 7 is

a reasonable threshold such that changing kmax by one oxy-

gen does not affect the results. Compounds with X carbon

atoms that would theoretically have more than kmax oxygen

atoms based on the rules governing the SOM are placed into

the grid cell associated with the CXOkmax species.

A separate operator was added to UCD/CIT to calculate

dynamic gas/particle partitioning of the SOM model species.

The numerical solutions for the gas-phase chemistry and

gas/particle partitioning at each time step were performed us-

ing operator splitting. In all, 324 gas-phase species and 2592

(i.e., 324 species across eight size bins) particle-phase SOM

model species were added to the UCD/CIT model for the

simulations reported here.

2.6 Simulations and computational considerations

We performed one simulation with the Base SOA model and

two simulations with the SOM SOA model, one using param-

eters determined from fitting high NOx (low yield) experi-

ments and one using low NOx (high yield) parameters. The

SOM simulations will be referred to as SOM (low yield) or

SOM (high yield). All simulations were performed for both

domains: SoCAB and the eastern US. The simulations were

performed on a computer cluster operated and maintained at

the University of California, Davis. Each simulation was per-

formed using Intel Core i5-3570s for a total of 40 core pro-

cessors and shared memory of 40 GB. The simulations were

performed for 19 days with the first 5 days used for spin up.

For the SoCAB, each simulated day required approximately

4 h of elapsed time so a 19-day episode was simulated in less

than 4 days. For the eastern US, each simulated day required

approximately 9 h of elapsed time so a 19-day episode was

simulated in about 8 days.

3 Results

3.1 SOA concentrations and precursor-resolved

composition

We plot the domain-wide, 14-day averaged SOA concentra-

tions from the SOM (low yield) and SOM (high yield) sim-

ulations for SoCAB in Fig. 2a and b and for the eastern US

in Fig. 3a and b. In SoCAB, the predicted SOA concentra-

tions varied between 0.3 and 1 µg m−3 for the SOM (low

yield) simulation. Higher concentrations of SOA were pre-

dicted on the coast northwest of the Los Angeles metropoli-

tan area due to the partitioning of near-coast biogenic SOA

into the marine POA emitted in the surf zone. In the eastern

US, SOA concentrations from the SOM (low yield) simula-

tion were highest in the southeast US (∼ 2 µg m−3) and col-

located with large emissions of biogenic VOCs. In both do-
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Figure 2. (a, b) 2-week averaged concentrations of SOA (in

µg m−3) and (c, d) 2-week averaged ratio of O :C for southern Cal-

ifornia. (a, c) are predictions from the SOM (low yield) simulations

and (b, d) are predictions from the SOM (high yield) simulations.

mains, the SOA concentrations from the SOM (high yield)

simulations were approximately 2–2.5 times higher than the

SOA from the SOM (low yield) simulations. Spatially, the

distribution of the SOA mass in the SOM (low yield) simula-

tions resembled the distribution in the SOM (high yield) sim-

ulations. In Figs. S1 and S2 in the Supplement, the domain-

wide, 14-day averaged precursor-resolved SOA concentra-

tions from the SOM simulations for SoCAB and the east-

ern US are shown for comparison. In SoCAB, especially in

the Los Angeles metropolitan area, more than 80 % of the

OA is (non-volatile) POA with comparably small contribu-

tions from aromatic and monoterpene SOA. Here, the POA

was mostly a result of mobile and meat cooking emissions.

In the eastern US, while there were POA hotspots around

large metropolitan areas (e.g., Houston, TX and Chicago, IL)

and along the coast (emissions of marine POA in the surf

zone), about half to three-quarters of the OA was SOA. This

SOA, especially in the southeast US, comes primarily from

monoterpene and sesquiterpene oxidation.

Figure 4 shows the 2-week averaged, precursor-resolved

SOA concentrations from the two SOM simulations and the

Base simulations at two sites in SoCAB (Los Angeles: ur-

ban and Riverside: urban outflow) and at two sites in the

eastern US (Atlanta: urban and Smoky Mountains: remote).

While there are a few compositional differences, model pre-

dictions of total semi-volatile SOA concentrations at all four

sites are similar between the SOM (low-yield) and Base sim-

ulation; here, semi-volatile SOA excludes acid-catalyzed iso-

prene SOA and all oligomers formed in the Base model. Sim-

ilar results could arise from compensating effects of using

SOA parameterizations based on newer chamber data than

those used in the Base model, the lack of oligomerization re-

actions and differences in the precursor-specific sensitivity of

multi-generational oxidation on SOA mass concentrations.

The role of multi-generational oxidation on SOA mass can

be explicitly tested only if the Base model is parameterized

using the newer chamber data. Since the aim of this paper is

to present the implementation of the SOM in a 3-D air qual-

Figure 3. (a, b) 2-week averaged concentrations of SOA (in

µg m−3) and (c–d) 2-week averaged ratio of O :C for the eastern

US. (a, c) are predictions from the SOM (low yield) simulations

and (b, d) are predictions from the SOM (high yield) simulations.

ity model, this and other hypotheses regarding the specific

role of multi-generational oxidation will be examined in a

follow-up paper.

Regardless, the Base model predictions of total semi-

volatile SOA concentrations at urban Los Angeles, River-

side and Atlanta are similar to those from the SOM (low

yield) simulation (that was parameterized using high NOx
chamber data), most likely because urban areas have higher

NOx levels and, correspondingly, lower levels of SOA for-

mation. While the total SOA concentrations were similar, the

precursor-resolved composition of SOA (and possibly other

important properties of SOA such as volatility) was modestly

different between the Base and SOM (low yield) simulations.

Alkane SOA concentrations decreased by an order of mag-

nitude at all sites between the Base and SOM simulations,

whether high or low yield. This implies that the SOA pa-

rameterization used for alkanes in the Base simulation (sin-

gle model species, ALK5, assumed to have the same SOA

potential as n-dodecane) might be overpredicting SOA for-

mation from alkanes. This is perhaps not surprising, given

that ALK5 emissions are heavily weighted towards smaller

alkanes, while the assumed SOA potential corresponds to a

longer chain alkane. Compared to the Base simulations, the

relative contribution of aromatic, monoterpene and sesquiter-

pene SOA increased while that of alkane and isoprene SOA

decreased in the SOM simulations. Furthermore, the Base

simulations suggest that about 30–40 % of the SOA in ur-

ban areas and slightly more than 50 % of the SOA in remote

areas exist as oligomerized products. Presumably, the SOA

concentrations in the SOM simulations would have increased

if oligomerization reactions had been included, although this

hypothesis remains to be tested explicitly.

At all locations, the SOA composition is different between

the SOM (low yield) and SOM (high yield) simulations. The
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Figure 4. The 2-week averaged SOA concentrations at (a) Los An-

geles, (b) Riverside, (c) Atlanta and (d) Smoky Mountains for the

Base and SOM simulations resolved by the SOA precursor.

differences in SoCAB are driven by the relatively larger en-

hancements in aromatic SOA compared to enhancements in

SOA from other precursors. For example, aromatic SOA as

a fraction of total SOA increased from 24 to 42 % in central

Los Angeles between the SOM (low yield) simulation and

the SOM (high yield) simulation. Similarly, the differences

in SOA composition in the eastern US are driven by the rel-

atively larger enhancements in isoprene SOA compared to

enhancements in SOA from other precursors. For example,

isoprene SOA as a fraction of total SOA increased from 7 to

17 % in Atlanta between the SOM (low yield) simulation and

the SOM (high yield) simulation.

Predictions from the SOM model were compared to mea-

surements made by the aerosol mass spectrometer (AMS)

during the Study of Organic Aerosols at Riverside (SOAR) in

the summer of 2005 (Docherty et al., 2011, 2008). Over the

2-week simulation, the SOM model underpredicted total OA

by 40 % at this location. This suggests that important atmo-

spheric processes and/or emissions sources upwind of River-

side are omitted from the model framework. The SOM model

predicted an average SOA concentration of 0.50 µg m−3 (av-

erage of low yield and high yield), which is 10 % of to-

tal OA. The campaign-averaged (30-day) oxygenated OA

(OOA) concentration measured by the AMS (sum of the

semi-volatile OOA, medium-volatility OOA and compos-

ite low-volatility OOA) was 7.1 µg m−3 (80 % of total OA).

Since the model-predicted OA at Riverside is dominated by

POA (∼ 90 %), the O :C is controlled by the O :C of the

emitted POA (∼ 0.1–0.2) and is lower than the campaign-

averaged O :C of 0.31 inferred from the AMS data. The un-

derprediction (in SOA concentrations and O :C) is typical of

predictions in regional (Carlton et al., 2010) and global mod-

els (Farina et al., 2010) and arises mostly from an incomplete

understanding of the sources and pathways of OA. Numer-

ous factors may contribute to the underprediction of O :C at

Riverside, including missing emission sources for SOA pre-

cursors, semi-volatile and reactive behavior of POA (Robin-

son et al., 2007), SOA formation from unspeciated emissions

(Jathar et al., 2014), aqueous production of SOA in cloud, fog

and aerosol water (McNeill, 2015) and multi-generational

ageing (Donahue et al., 2012b). The SOM model provides

a framework to test these production pathways of OA as our

understanding about these processes matures.

3.2 SOA in carbon–oxygen space

The number of carbon and oxygen atoms of the SOA model

species are explicitly tracked in the SOM and hence the O :C

ratio of the SOA can be calculated. The 2-week averaged ra-

tio of oxygen to carbon (O :C) of SOA from the SOM sim-

ulations is shown in Fig. 2c and d for SoCAB and in Fig. 3c

and d for the eastern US. In both domains where the SOA

concentrations were higher (> 0.5 µg m−3 in SoCAB and

> 2 µg m−3 in the eastern US) and dominated by biogenic

VOCs (northwest and south of the Los Angeles metropoli-

tan area in SoCAB and the southeast US) the O :C of SOA

ranged between 0.4 and 0.5. In these regions, monoterpenes

and sesquiterpenes account for a majority of the SOA mass

and hence control the average O :C of SOA (see Table 1 that

lists average O :C of SOA predicted by the SOM for the in-

dividual surrogate species). The O :C of SOA in the Los An-

geles metropolitan area was higher (0.6–0.7) on account of

a larger fraction of the SOA coming from aromatic oxida-

tion. In very general terms, aromatic precursors have smaller

NC than mono- and sesquiterpenes, so the average O :C of

the SOA from aromatics tends to be larger because a greater

number of oxygen atoms must be added for the vapor pres-

sures to become sufficiently low for substantial partitioning

to the condensed phase (Cappa and Wilson, 2012; Tkacik et

al., 2012). The O :C of SOA was also higher (0.5–0.8) in re-

gions where the SOA concentrations were lower, probably as

a result of sustained multi-generational oxidation tied with

longer-range transport and dilution. Broadly, the O :C pre-

dictions for the SOA are in line with the O :C for worldwide

ambient oxygenated OA measured using aerosol mass spec-

trometers (0.4–1.0) (Jimenez et al., 2009). Spatially, there are

few differences in the O :C between the SOM (low yield)

and SOM (high yield) simulations over both domains. In So-

CAB, the O :C decreased by 10 % in the urban areas and

www.geosci-model-dev.net/8/2553/2015/ Geosci. Model Dev., 8, 2553–2567, 2015
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Figure 5. Predicted distribution of the SOA mass (in µg m−3) in carbon and oxygen space for Los Angeles (a, b), and Atlanta (c, d) from

the SOM (low yield) and SOM (high yield) simulations. Note the different color scales.

increased by 3–5 % in the forested regions between the SOM

(low yield) and SOM (high yield) simulations. In the east-

ern US, the SOM (high yield) simulations predict a slightly

higher O :C than the SOM (low yield) simulations; approx-

imately 5–10 % higher in the southeast US. The relatively

minor changes in O :C of SOA, despite modest changes in

the SOA composition, suggest that there could be compen-

sating effects, i.e., differences in SOA composition are offset

by differences in the O :C of the SOA arising from low yield

versus high yield pathways.

Recently, high-resolution time-of-flight chemical ioniza-

tion mass spectrometry (HRToF-CIMS) has been used to

resolve the composition of SOA in carbon and oxidation

state space (for ambient OA that is dominated by carbon,

hydrogen and oxygen, oxidation state = 2×O :C − H :C)

(Chhabra et al., 2015; Aljawhary et al., 2013). The SOM en-

ables us to visualize the product distribution of SOA in car-

bon and oxygen space and allows for a direct comparison

with the measurements. While there are no measurements

for the episodes simulated in this work, we can anticipate

one area where such model-measurement comparisons in

carbon–oxygen space could help our understanding of SOA.

Figure 5 shows the SOA product distribution (expressed

in µg m−3) for Los Angeles and Atlanta in carbon–oxygen

space. Here, the product distributions in the SOM grid from

the SOM (low yield) simulations resemble each other at both

locations. In these simulations, the majority of the SOA mass

is spread between carbon numbers 3 and 10 and oxygen num-

bers 3 and 7 and the remainder at carbon number 15 and oxy-

gen numbers 2–4 (associated with sesquiterpenes). While the

product distributions from the SOM (high yield) simulations

resemble each other too, they occupy a different space in the

SOM grid. Here, the SOA mass is narrowly distributed in the

oxygen number rows 4 and 5 and carbon number column 10

(associated with monoterpenes). Compared to the SOA mass

in the SOM (low yield) simulations, the SOA mass at car-

bon number 15 (associated with sesquiterpenes) in the SOM

(high yield) simulations is relatively lower. It is likely that

the differences in product distributions between the SOM

low and high yield simulations that represent SOA forma-

tion under high and low NOx , respectively, when combined

with carbon–oxygen measurements might help us decipher

the role of NOx on SOA formation.

4 Summary and future work

The SOM of Cappa and Wilson (2012) is a comprehensive

framework to model the atmospheric evolution of OA. In

this work, we integrated the SOM with the gas-phase chem-

ical mechanism SAPRC-11 (Carter and Heo, 2013) in the

UCD/CIT air quality model and used it to model the multi-

generational oxidation and gas/particle partitioning of SOA

in the SoCAB and the eastern US. Preliminary results suggest

that multi-generational oxidation modestly affects the chem-

ical composition of SOA and hence possibly alters its en-

vironmental properties (volatility, deposition, toxicity, etc.).

The SOM allows for an explicit calculation of the O :C and

model predictions of O :C of the SOA appear to qualitatively

agree with the O :Cs measured for ambient OA. With the

SOM we are also able to quantify the distribution of the SOA

mass in carbon and oxygen space and find that the predicted

product distribution is different under the two simulated NOx
levels.

This work has focused on describing the implementation

of the SOM in a 3-D air quality model. The SOM offers a

more realistic representation of the atmospheric evolution of
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SOA and provides a framework to incorporate many other

processes, in addition to multi-generational oxidation, that

are central to the OA system. In a follow-up study, we in-

tend to use the SOM to systematically investigate the role of

multi-generational oxidation (in conjunction with other im-

portant processes such as oligomerization and artifacts asso-

ciated with vapor wall losses during chamber experiments)

on the mass, composition and properties of SOA.
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Appendix A

An alkane emissions inventory where the emissions are

binned by carbon number has been developed. Typically,

gas-phase organic emissions (including those for alkanes)

are calculated by multiplying the total VOC emissions

rate (e.g., t day−1) by a normalized VOC profile. The

emissions are calculated for each source classification

code (SCC) using a SCC-specific VOC profile for all

grid cells at every hour. The emissions pre-processor

developed at UCD directly uses SAPRC model-species-

specific VOC profiles (e.g., ALK1= 0.1, ALK2= 0.03,

and ALK3= 0.01) and hence does not contain carbon-

number specific information to build alkane emissions

by carbon number. To do so, we used the California Air

Resources Board’s speciated database (http://www.arb.ca.

gov/ei/speciate/vv10001/profphp/orgspecvv10001_list.php)

to rebuild source-resolved, normalized VOC profiles that

now included eight new alkane species (C6–C13) to replace

the ALK5 species. Only ALK5 is considered since that is

the only model species to include alkanes with significant

SOA-forming potential. These updated VOC profiles were

then used to build gridded emissions for C6–C13 alkanes;

alkanes larger than C13 were lumped into the C13 model

species because they accounted for less than 0.5 % of the

C6+ alkane emissions. While these emissions could easily

have been resolved by alkane structure (linear, branched

and cyclic), we did not do so because recent work has

suggested that profiles used for emissions inventory building

are relatively incomplete in determining emissions of higher

carbon-number branched and cyclic alkanes (Gentner et

al., 2012). Since the SOA yields for branched and cyclic

alkanes are, respectively, lower and higher than those for

linear alkanes, we assume that by lumping them together for

each carbon number the effective SOA yield is closer to that

of a linear alkane. At this point in time, the carbon-number

resolved alkane emissions have been developed only for

SoCAB. For the eastern US, where a similar speciated

database is not available, we use findings from the work

of Pye and Pouliot (2012) to determine a linear alkane

that could represent SOA formation from ALK5. Pye and

Pouliot (2012) determined that national emissions of alkanes

higher than a carbon number of six would produced the

same amount of SOA as 53 % of n-dodecane equivalent

emissions. Correcting for differences in SOA mass yields,

we assume that the ALK5 behaves like a C10 linear alkane.

Geosci. Model Dev., 8, 2553–2567, 2015 www.geosci-model-dev.net/8/2553/2015/
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