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Abstract. Priming of soil carbon decomposition encom-

passes different processes through which the decomposition

of native (already present) soil organic matter is amplified

through the addition of new organic matter, with new inputs

typically being more labile than the native soil organic mat-

ter. Evidence for priming comes from laboratory and field

experiments, but to date there is no estimate of its impact at

global scale and under the current anthropogenic perturba-

tion of the carbon cycle. Current soil carbon decomposition

models do not include priming mechanisms, thereby intro-

ducing uncertainty when extrapolating short-term local ob-

servations to ecosystem and regional to global scale. In this

study we present a simple conceptual model of decompo-

sition priming, called PRIM, able to reproduce laboratory

(incubation) and field (litter manipulation) priming experi-

ments. Parameters for this model were first optimized against

data from 20 soil incubation experiments using a Bayesian

framework. The optimized parameter values were evaluated

against another set of soil incubation data independent from

the ones used for calibration and the PRIM model reproduced

the soil incubations data better than the original, CENTURY-

type soil decomposition model, whose decomposition equa-

tions are based only on first-order kinetics. We then com-

pared the PRIM model and the standard first-order decay

model incorporated into the global land biosphere model OR-

CHIDEE (Organising Carbon and Hydrology In Dynamic

Ecosystems). A test of both models was performed at ecosys-

tem scale using litter manipulation experiments from five

sites. Although both versions were equally able to reproduce

observed decay rates of litter, only ORCHIDEE–PRIM could

simulate the observed priming (R2
= 0.54) in cases where

litter was added or removed. This result suggests that a con-

ceptually simple and numerically tractable representation of

priming adapted to global models is able to capture the sign

and magnitude of the priming of litter and soil organic matter.

1 Introduction

Soils are the largest reservoir of organic carbon (C) on land,

holding 3 times as much as plant biomass globally (MEA,

2005). The dynamics of long-term soil organic matter for-

mation (Schmidt et al., 2011) and its decomposition on

timescales of future climate change (Jones et al., 2003) both

remain poorly understood. The lack of a mechanistic under-

standing of soil carbon dynamics on timescales going from

years to centuries induces important differences in the future

projections of the global land carbon storage among global

land biosphere models (Todd-Brown et al., 2013).

Different conceptual models have been proposed to ex-

plain empirical data on soil carbon decomposition, mainly

incubation experiments (Wutzler and Reichstein, 2008; Man-

zoni and Porporato, 2009). Those conceptual models are usu-

ally calibrated to fit data (i.e. measurements of stock evolu-

tion or fluxes) from experiments on soil incubation, and on

timescales going from hours to days (Panikov and Sizova,
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1996; Blagodatsky and Richter, 1998). It was shown by Wut-

zler and Reichstein (2008) that conceptual decomposition

models accounting for interactions between labile and more

recalcitrant microbial-related carbon, often called priming ef-

fects, could better fit data from incubation experiments ac-

quired over periods of about 100 days.

The conceptual models of soil carbon decomposition en-

capsulated in global land biosphere models usually ignore in-

teractions between labile and recalcitrant carbon. All global

land biosphere model parts of the Earth system models

(ESMs) used for IPCC climate projections are based on

donor-pool dominant transfer and first-order decay (Luo et

al., 2016). Many of those global land biosphere models have

soil carbon modules derived from the CENTURY (Parton et

al., 1988) and RothC (Coleman and Jenkinson, 1999) mod-

els, in which the first-order decay rates of different pools are

modulated by soil temperature and moisture, as well as by

soil texture (Friedlingstein et al., 2006).

Although the conceptual models with priming showed a

more realistic behaviour than first-order decay models when

applied to short-term incubation data, one may still wonder if

priming significantly influences the dynamics of soil carbon

on timescales ranging from years to decades, and at large

spatial scales. On the one hand, incorporating priming in a

global land biosphere model has the disadvantage of intro-

ducing new parameters that are difficult to constrain and of

generating a more complex – but unproven – dynamical be-

haviour than the first-order decay models. On the other hand,

if the performances of first-order decay models are not sat-

isfactory at the large scale, structural changes of soil carbon

models are needed and must be carefully tested.

The current situation with first-order decay dynamics in

global land biosphere is that out of the 11 Earth system

models used for the IPCC-AR5 (Intergovernmental Panel

on Climate Change Fifth Assessment Report) CMIP5 (Cou-

pled Model Intercomparison Project) simulations and bench-

marked by Todd-Brown et al. (2013) against a global soil

organic carbon (SOC) map; only six succeeded in repre-

senting the total mean C stocks at the global scale, but all

failed to reproduce the spatial heterogeneity of SOC stocks

as well as the SOC distribution under different vegetation

cover (Todd-Brown et al., 2013). Possible causes of model

failure include not only errors in model structure but also er-

rors in the different parameters controlling soil carbon dy-

namics. The optimization of the parameters of a first-order

decay model against a global SOC map could only partly re-

duce regional discrepancies with observations, with the op-

timized model explaining only 41 % of the global variability

of SOC (Hararuk et al., 2014). On the other hand, the use

of a structurally different model that accounted for microbial

biomass was shown to produce a rather realistic large-scale

SOC variability, but very different soil carbon dynamics in

response to future climate change (Wieder et al., 2013). This

illustrates that model structure matters a lot for the simula-

tion of the current distribution of soil carbon and its future

evolution in response to climate and CO2 changes.

Discrepancies between global land biosphere model pre-

dictions and observations are partially due to models lacking

key mechanisms controlling SOC dynamics (Schmidt et al.,

2011). One example is the interactions with the N (nitrogen)

cycle. The majority of the ESMs used for the IPCC-AR5

CMIP5 Earth System simulations did not represent explic-

itly the nitrogen cycle, but the two ESMs with an explicit

nitrogen cycle also did not result in a better simulations of

current SOC (Todd-Brown et al., 2013). Another example is

the role of microorganisms. The first-order kinetics used in

most models obviates the role that microbial decomposers

are known to play in controlling SOC mineralization (Cleve-

land et al., 2007; Garcia-Pausas and Paterson, 2011), but

their activities is controlled by physical and chemical drivers

(Kemmit et al., 2008). Therefore, ESMs have significant gaps

in reproducing the mechanisms related to microbial dynam-

ics such as priming (see definition below), which is the object

of this study.

Soil C priming is defined as a modification of SOC de-

composition rates when fresh organic C (FOC) is added

(Kuzyakov et al., 2000). Priming is almost ubiquitously ob-

served in ecosystem studies where organic matter inputs

are altered in laboratory incubations (reviewed by Blago-

datskaya and Kuzyakov, 2008) or directly on the field (Boone

et al., 1998; Borken and Muhs, 2002; Chemidlin-Prévost-

Bouré et al., 2010; Subke et al., 2004; Sulzman et al., 2005;

Xiao et al., 2015). Priming can occasionally be negative but

most commonly has a stimulative effect on the decompo-

sition of organic matter that decomposes. Several mecha-

nisms may be involved in controlling priming (Fontaine et

al., 2003; Blagodatskaya and Kuzyakov, 2008; Guenet et al.,

2010b), and conceptual models of priming can have a sub-

stantial number of parameters making their parameterization

quite complex at large scales (Wutzler and Reichstein, 2013).

Wutzler and Reichstein (2008) proposed conceptual mod-

els summarized into different equations to introduce priming

without using too many parameters, but in all cases an ex-

plicit representation of microbial biomass was required. Re-

cently, Guenet et al. (2013a) modified the equation proposed

by Wutzler and Reichstein (2008) to represent priming with-

out an explicit representation of microbial biomass, assuming

that microbial biomass is always at equilibrium with FOC.

This assumption is suitable for being incorporated into ESMs

since it adds only one more free parameter compared to the

first-order kinetic models. This priming scheme was incorpo-

rated into the global land biosphere model ORCHIDEE (Or-

ganising Carbon and Hydrology In Dynamic Ecosystems),

with the priming parameters statistically calibrated to repro-

duce the same equilibrium state (in terms of C stocks, af-

ter spin-up of the model) than the standard version based on

CENTURY (Guenet et al., 2013b). Despite its calibration en-

suring the same initial state of SOC for England and Wales,

the version of ORCHIDEE with priming resulted in a loss of
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Figure 1. Summarizing scheme of the methods.

SOC during the late 20th century, in better agreement with

inventory data (Bellamy et al., 2005) than the standard ver-

sion, which produced a continuous SOC gain. In that study,

however, the parameters of the priming model were not based

on observations but tuned instead to equilibrium SOC values.

The objectives of this study are, therefore,

– to derive optimal parameter values of a priming model

(PRIM) with C inputs forced by data by using a

Bayesian method (Tarantola, 1987) with priors and data

from 20 different soil incubations;

– to introduce the calibrated PRIM model into the OR-

CHIDEE ecosystem model version AR5 and evaluate

the new version ORCHIDEE–PRIM against indepen-

dent in situ litter manipulation experiments at ecosys-

tem scale;

– to assess if the priming model significantly improves the

simulation of SOC mineralization compared to the stan-

dard first-order decay model used in ORCHIDEE, on

timescales of months to years.

2 Materials and methods

The material and methods section is summarized in Fig. 1.

2.1 Models presentation

2.1.1 Soil carbon priming model PRIM

To represent priming, we used the ORCHIDEE soil decom-

position module, which is based on the carbon-related mod-

ules of CENTURY (Parton et al., 1988). It has three car-

bon pools (active, slow, and passive) and two litter pools

(metabolic and structural). SOC decomposition is modulated

by soil temperature and moisture functions. Active SOC de-

composition is further modulated by a clay function. These

functions are the same as in CENTURY but they are driven

by soil physical variables calculated at a daily time step by

the soil physics of ORCHIDEE (Krinner et al., 2005). The

transfers among pools are described using the CENTURY

equations with similar parameters (Parton et al., 1988). In

the PRIM model, we replaced the CENTURY decomposi-

tion equations by those developed by Guenet et al. (2013a)

to simulate a priming effect:

dSOCActive

dt
= I − kSOCActive

×SOC

×

(
1− e−c×(Litter_C)

)
× θ × τ × γ, (1)

dSOCSlow

dt
= I − kSOCSlow

×SOC

×

(
1− e−c×(Litter_C+SOCActive)

)
× θ × τ, (2)

dSOCPassive

dt
= I − kSOCPassive

×SOC

×

(
1− e−c×(Litter_C+SOCActive+SOCSlow)

)
× θ × τ, (3)

where I is the input of C into the pool considered, kSOC the

SOC decomposition rate for the active, the slow, and the pas-

sive pool, and Litter_C the sum of all the litter pools of the

model. θ , τ , and γ are the soil moisture function, the temper-

ature function, and the clay function modulating decomposi-
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tion, respectively. c is a parameter controlling the impact of

the FOC pool on the SOC mineralization rate. Here, we con-

sidered that FOC represents all the carbon from pools more

labile than the pool being affected as shown in Eqs. (1)–(3).

Therefore, FOC is only litter for the active SOC pool, but for

the slow SOC pool, FOC is the sum of the litter and the ac-

tive SOC pool. Finally, for the passive SOC pool, FOC is the

litter and the active and slow carbon pools. The decomposi-

tion of the first donor litter pool is described using first-order

kinetics (Eq. 4):

dLitter_C

dt
= I − kLitter_C×Litter_C× θ × τ. (4)

In the Wutzler and Reichstein (2008) equation, the SOC min-

eralization was described by

dSOC

dt
= I − kSOC×SOC×

(
1− e−c×MB

)
, (5)

where MB is the microbial biomass. Unlike Wutzler and Re-

ichstein (2008), our model does not explicitly simulate MB

but assumes that MB equilibrates with FOC; thus, the re-

lationship between MB and FOC is linear. Consequently,

we represent priming using a direct relationship between

FOC and SOC mineralization. Finally, the moisture, temper-

ature, and clay functions are described by Eqs. (6), (7), and

(8), respectively, with soil_moisture in m3 H2O m−3 of soil,

soil_temperature in Kelvin and clay in % wt:

θ =max
(

0.25, min
(

1,−1.1× soil_moisture2

+2.4× soil_moisture+ 0.29)
)
, (6)

τ =exp
(

0.69× (soil_temperature− 303)/10
)
, (7)

γ =1− 0.75× clay. (8)

The flux of decomposed carbon of the ith pool is then

split into different fluxes following Eqs. (9) and (10) between

respired carbon (respi) and recycled carbon (recy).

respi =

1−
∑
pools

fi,pools

× decomposed_carboni, (9)

Ci→j = fi,j × decomposed_carboni, (10)

where decomposed_carbon is the second terms of Eqs. (1) to

(5), fi,j a set of parameters controlling the flux from pool i to

the pool j and Ci→j being the flux from the pool i to j . The

values of the f parameters are similar to Parton et al. (1988).

2.1.2 ORCHIDEE and ORCHIDEE–PRIM

ORCHIDEE is a process-based global land biosphere model

that calculates the fluxes of CO2, H2O, and heat between

the terrestrial land and the atmosphere. The time step of the

model is in half-hourly, and the variations of H2O and C

pools are calculated on a daily basis. The model has been

evaluated at different scales (sites, regions, globes) and un-

der different climates from the tropics to northern boreal

zones (Krinner et al., 2005; Ciais et al., 2005; Santaren et al.,

2007; Piao et al., 2006). ORCHIDEE results from the cou-

pling of three different sub-models. The first one is called

SVAT SECHIBA (Schématisation des EChangesHydriques

à l’Interface entre la Biosphère et l’Atmosphère) and de-

scribes soil water budget and turbulent fluxes of energy and

water between the atmosphere and the biosphere (Ducoudré

et al., 1993; de Rosnay and Polcher, 1998). The second one

is derived from the dynamic global vegetation model Lund–

Postdam–Jena (LPJ) (Sitch et al., 2008) and deals with veg-

etation dynamics (fire, sapling establishment, light compe-

tition, tree mortality, and climatic criteria for the introduc-

tion or elimination of plant functional types). The last, called

STOMATE (Saclay–Toulouse–Orsay Model for the Analysis

of Terrestrial Ecosystems) deals with phenology and carbon

dynamics of the terrestrial biosphere. Twelve plant functional

types (PFT) are used to classify the vegetation. Each PFT dy-

namic is controlled by similar set of governing equations but

using different parameter values. Only the leafy season onset

and offset, are PFT specific (Krinner et al., 2005).

The simulation of SOC in ORCHIDEE version is based on

CENTURY (Parton et al., 1988) as described above. No ver-

tical description of the SOC is included in the ORCHIDEE

version used here. In ORCHIDEE–PRIM we replaced CEN-

TURY by the PRIM model described in Sect. 2.1.1.

2.2 Data description

2.2.1 Incubation experiments to calibrate the priming

model

We optimized the PRIM parameters and the ORCHIDEE soil

module parameters using data from soil incubation exper-

iments where FOC was added and the priming effect was

measured by comparing a control study without FOC with a

perturbation study with FOC (Table 1). The data come from

20 incubations (from nine studies) of duration going from 1

week to 10 months. The incubated soil samples have very

different characteristics (Table 1) and came from different

ecosystems (grassland, cropland, broadleaf forest, needleleaf

forest, savannah). However, the great majority of the data

used to optimize the model were obtained from temperate

soils. In the incubation experiments, added FOC was labelled

with 13C or 14C and therefore the respired CO2 fluxes com-

ing from either SOC already present before the FOC amend-

ments or from the FOC induced priming of SOC pools was

estimated separately. We used only incubations performed

during at least 7 days to eliminate all studies that potentially

observed apparent priming effects. Apparent priming is a re-

placement of the 12C in microbial biomass with labelled car-

bon isotopes, a short-term artefact due to the amendment of

labelled material to an unlabelled soil (Blagodatskaya and

Geosci. Model Dev., 9, 841–855, 2016 www.geosci-model-dev.net/9/841/2016/
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Kuzyakov, 2008). Moreover, we used only studies that re-

ported cumulative-respired CO2 fluxes in order to optimize

the priming parameters against the extra CO2 fluxes obtained

at the end of the experiment and not those resulting from

short-term priming dynamics, since cumulative mineraliza-

tion integrates the different processes occurring during in-

cubation. Finally, several treatments might be performed in

the studies used to optimize the model (different soils, dif-

ferent types and amount of FOC). On the one hand, when

the treatments performed differed on aspects reproducible by

the model (amounts of FOC added, different clay content in

the soils used, etc.) we considered all the treatments. On the

other hand, we averaged the results of the different treatments

to perform the optimization except in case where the treat-

ments clearly impact the results without the possibility to re-

produce the experimental design with the model (addition of

mineral N for instance).

We also use the control incubations without FOC amend-

ments to evaluate both models. We extracted data from the

figures of original publications (Table 1) using GraphClick

version 3.0. Several input variables are needed to run the soil

model, as described in Sect. 2.1.1. When data were not avail-

able from the surveyed publications, we obtained them from

the databases normally used for running ORCHIDEE, ex-

cept for the C : N ratio of FOC and for clay content where

data came from Rodale et al. (1960) and from USDA (https:

//soilseries.sc.egov.usda.gov/), respectively. The three carbon

pools of CENTURY are not measurable (Six et al., 2002),

so we cannot estimate how much C in each pool is present

in the incubated samples. To calculate the distribution of C

among the three pools of the model, we ran ORCHIDEE un-

til equilibrium was reached at the sites where soil samples

were taken and calculated the percentage of each pool.

2.2.2 Incubation data used for evaluation of the

priming model

A first evaluation of the soil carbon model with and without

priming is performed at the scale of soil samples against in-

dependent data from the large database of soil incubations

(300 in total) published by Moyano et al. (2012). Within this

database we selected the experiments where all the inputs

necessary to run the two soil carbon models were available

(clay, content, moisture, temperature, SOC content at the be-

ginning of the incubation) and where cumulative mineraliza-

tion or mineralization rates associated with the time step be-

tween two measurements were reported. We removed all the

studies without information on the location since geograph-

ical coordinates are necessary to run ORCHIDEE and thus

estimate the initial fraction of each pool. We selected only

data coming from experiments without important soil ma-

nipulation (e.g. compaction, litter amendments). The model

evaluation was performed against a set of 164 independent

incubation experiments.

2.2.3 Ecosystem-level data used for evaluation of the

priming model

A second evaluation of the ORCHIDEE–PRIM model

was performed at ecosystem scale against observations of

four litter manipulation experiments (Boone et al., 1998;

Chemidlin-Prévost-Bouré et al., 2010; Subke et al., 2004;

Sulzman et al., 2005) and one compost amendment exper-

iment (Borken and Muhs, 2002). In the litter experiments,

two treatments and a control are generally performed. The

treatments are total exclusion of above ground litter using

nets to prevent fresh litter from falling onto the soil, often

transplanting the collected fresh litter to create a second treat-

ment with doubled aboveground litter inputs (Boone et al.,

1998; Chemidlin-Prévost-Bouré et al., 2010; Sulzman et al.,

2005). For the compost amendment experiment by Borken

and Muhs (2002), 1.4 kg C m−2 (and a zero-addition con-

trol) of compost was added to the soil. These studies are pre-

sented in Table 3. When information about soil clay content

was not available in the original study, we extracted it from

Zobler (1986). The data measured at field scale are not only

the soil CO2 efflux including the heterotrophic respiration but

also root respiration in the same flux without clear separation

of the two components.

2.3 Optimization procedure

For PRIM, the six parameters optimized are turnover rate

(kSOC) and priming parameters c for each of the three pools

(Table 2). For the ORCHIDEE soil module, only the three

kSOC values are optimized. The same parameters are op-

timized against the priming incubations data set described

in Sect. 2.2.1. Since optimizations were performed using

soil incubations data obtained at optimal temperature and

soil moisture, we did not optimize the parameters related to

Eqs. (6) and (7) because the range of observations was quite

limited. Optimization was performed in the framework of

the Bayesian inversion method with priors (Tarantola, 1987)

as described by Santaren et al. (2007) assimilating all data

streams in the same cost function. Assuming that all uncer-

tainties follow Gaussian distributions (parameter error, mea-

surement error, model error), the optimized parameters corre-

spond to a set minimizing the following quadratic cost func-

tion:

J (x)=
1

2

[
(y−H(x))tR−1 (y−H(x))

+(x− xb)
tP−1
b (x− xb)

]
. (11)

The cost function defined by Eq. (11) contains both the

mismatch between model outputs and observed data, and the

mismatch between optimized parameters and the prior val-

ues. The mismatch is weighted by errors of each quantity. x is

the of unknown parameters vector, xb the prior values, y the

observations vector, and H(x) the model outputs. Pb is the

prior parameter error variances/covariances, and R contains

Geosci. Model Dev., 9, 841–855, 2016 www.geosci-model-dev.net/9/841/2016/
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Table 2. Model parameters summary for PRIM and the ORCHIDEE soil module.

Model Meaning SOC Prior Posterior modes±SD Posterior modes±SD

parameter pools range (prior modes) for PRIM (prior modes) for the

ORCHIDEE soil module

kSOC Turnover rate Active 10−3–0.5 0.30± 0.15 (0.31) 0.43± 0.22 (0.43)

of SOM (d) Slow 0.5–5 1.12± 0.01 (4.51) 0.50± 0.09 (2.39)

Passive 5–500 462.0± 233.8 (467.55) 40.17± 22.19 (44.39)

c Influence of the FOM Active 2× 10−4–500 493.7± 246.8 (493.7) n/a

carbon pool in the SOM Slow 2× 10−4–500 194.0± 97.0 (194.0) n/a

mineralization (priming Passive 2× 10−4-500 136.5± 68.3 (136.5) n/a

parameter)

the observational error variances/covariances, which repre-

sents both measurement uncertainty and model uncertainty.

To minimize the cost function, we used a gradient-based

iterative algorithm, called L-BFGS-B (limited-memory

Broyden–Fletcher–Goldfarb–Shanno algorithm) (Zhu et al.,

1995). A range of values for all the parameters is prescribed

by calling L-BFGS-B. At each iteration, the cost function

J (x) gradient is calculated, with respect to the six param-

eters. When J (x) is minimized, using a classic finite differ-

ence method, we further calculated the posterior error covari-

ance matrix on the parameters Pa from the prior error covari-

ance matrices and the Jacobian of the model at the minimum

of the cost function, using the linearity assumption (Taran-

tola, 1987). When error correlations are close to 1 it suggests

that the observations do not permit one to clearly separate the

effect of two parameters.

The model H(x) is non-linear and therefore the approach

to minimize the cost function is sensitive to potential local

minima. We get around this by performing 30 optimizations

with different sets of prior parameters randomly distributed

within their variation range. We then used the case provid-

ing the lowest cost function. This approach drastically re-

duces the sensitivity to potential local minima as illustrated

in Santaren et al. (2014).

We defined the prior ranges of decomposition rates using

literature data (Parton et al., 1988; Gignoux et al., 2001).

However, only two studies already estimated the c parameter

before (Guenet et al., 2013a, b), its prior value is therefore

considered as non-informative and we set a large error on the

prior (50 %). As for the variance of the model–data mismatch

term in the cost function of Eq. (11), note that with our for-

malism this error should include both the model error (for

instance the model capability to represent the measurement)

and the measurement error. Given that the error on the mea-

surements was difficult to estimate precisely for each study,

we fixed it to 5 % of the mean observed CO2 flux assuming

that all incubation data were independent. At its minimum,

J (x) should be close to half the number of observations (re-

duced χ2 of one). We assumed that all errors (the observa-

tions and on the a priori parameters) are uncorrelated.

2.4 Simulations protocol

2.4.1 Simulation protocol for the soil priming model

PRIM

Simulations were performed for each incubation experiment

presented in Sect. 2.2.1 (Table 1) as well as for the evalua-

tion sites in Sect. 2.2.2. The simulations of the stand-alone

PRIM carbon model (i.e. unplugged from the ORCHIDEE

full ecosystem model) were run at a daily time step using

FOC inputs from Table 1 or from the Moyano et al. (2012)

database. No spin-up was performed. We started the simula-

tion by prescribing to the soil carbon models with and with-

out priming an initial amount of SOC equal to that measured

in the study considered, distributed among active, slow, and

passive pools as explained in Sect. 2.2.1. At each time step

we increment the cumulative heterotrophic respiration com-

ing from SOC mineralization, so that this cumulative sim-

ulated CO2 flux can be compared to data from the end of

the incubation experiment. Simulations were performed us-

ing R 3.0.2.

2.4.2 Simulation protocol for ORCHIDEE–PRIM and

ORCHIDEE

We ran ORCHIDEE and ORCHIDEE–PRIM at each litter

manipulation site presented in Table 3 using 6-hourly climate

data obtained from the combination of two existing data sets:

the Climate Research Unit (CRU) (Mitchell et al., 2004) and

the National Centers for Environmental Prediction (NCEP)

(Kalnay et al., 1996). Both models were run using the first

10 years of the climate forcing (1901–1909) repeated in a

loop, and an atmospheric CO2 value corresponding to the

year 1901. When the simulated relative yearly change of

the SOC stock was less than 0.01 %, we considered that a

SOC equilibrium was reached. Once pre-industrial equilib-

rium was reached in each grid point, we ran transient sim-

ulations from 1901 until the beginning of the manipulation

experiment assuming no land use change driven by recon-

structed climate and observed CO2. Then when the simu-

lation reached the year at which the litter manipulation ex-

www.geosci-model-dev.net/9/841/2016/ Geosci. Model Dev., 9, 841–855, 2016
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Table 3. Description of the studies used to evaluate the model.

Study Treatments Ecosystems Sites names Treatment CO2 Soil clay Soil silt Soil sand

performed (coordinates) performed monitored content content content

in between (%) (%) (%)

Boone et al. No litter/ Deciduous Harvard forest, January June 1994– 25∗ 30∗ 45∗

(1998) double litter/ forest Petersham, 1990 June 1995

control Massachusetts, USA

(42◦30′ N, 72◦12′W)

Borken and Compost Needleleaf Solling, Norway August September 1997– 3 23 74

Muhs (2002) amendment/ forest (51◦46′ N, 9◦34′ E) 1997 December 1999

control

Chemidlin- No litter/ Deciduous Barbeau National March May 2006– 19.3 38.8 41.9

Prévost-Bouré double litter/ forest Forest, France 2006 March 2007

et al. (2010) control (48◦29′ N, 02◦47′ E)

Subke et al. Double litter/ Needleleaf Wetzstein, April April 2002 70∗ 18∗ 12∗

(2004) control forest Thüringisches 2002 (3 weeks

Schiefergebirge, after treatment)–

Germany October 2002

(50◦30′ N, 11◦10′ E)

Sulzman et al. No litter/ Needleleaf H. J. Andrews January July 2001– 25∗ 30∗ 45∗

(2005) double litter/ forest Experimental Forest, 1997 December 2003

control Oregon, USA

(44◦15′ N, 122◦10′W)

∗ Estimated values.

periment began, we modified the input of aboveground litter

in the same proportion as in the actual manipulation experi-

ments. Finally, we ran the model for each treatment during a

period corresponding to duration of each experiment.

2.5 Model evaluation

The model evaluation was performed in two steps. First,

we evaluated separately PRIM and the standard first-order

decay model with their optimized parameters, as stand-

alone decomposition models, i.e. unplugged from the OR-

CHIDEE ecosystem model. To evaluate the stand-alone soil

models, we used incubation data coming from Moyano et

al. (2012) as described in Sect. 2.2.2. Second, we evaluated

ORCHIDEE and ORCHIDEE–PRIM against litter manipu-

lation experiments (see Sect. 2.2.3).

To compare model outputs with data we used different

metrics. First a linear-mixed effect model with an intercept

value forced to zero using model outputs as the variable to

explain, and data as the fixed effect and the study where

data came from as the random effect. This approach aimed to

take into account the fact that incubations performed within

the same study are not independent because they were per-

formed and analysed by the same team. The linear-mixed

effect model gives the slope of the relationship as output.

A slope close to 1 indicates that the model reproduces the

data well. Then, we used the normalized standard deviation

(NSD) or ratio of model to observed standard deviations;

NSD= 1 means that the model perfectly reproduces the ob-

served standard deviations across experiments:

NSD=

√
1
n
×

n∑
i=1

(xi − x)
2

√
1
n
×

n∑
i=1

(oi − o)
2

, (12)

where x refers to the model value, o to the observed value,

and n the number of samples. Finally, we compared model

performance using the Bayesian information criterion (BIC)

taking into account that the PRIM soil model has three more

priming parameters (one per pool) than the standard model:

BIC= log(MSD)× n+ log(n)×p, (13)

where MSD is the mean squared deviation derived from

Eq. (14), n the number of data used to evaluate the model,

and p the number of parameters of the soil model.

MSD=

∑
(m− o)2

n
, (14)

where o is the observed values, m the values calculated by

the model, and n the number of observations. The lowest is

the BIC the better the model is.
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Table 4. Correlation between optimized parameters for (a) PRIM and (b) the ORCHIDEE soil module.

(a) ksoc c

Active Slow Passive Active Slow Passive

ksoc Active 1.00 1.1× 10−4 2.4× 10−5 7.3× 10−5 6.7× 10−4 3.2× 10−4

Slow 1.1× 10−4 1.00 −2.1× 10−2 3.1× 10−5 8.5× 10−5
−3.8× 10−4

Passive 2.4× 10−5
−2.1× 10−2 1.00 −8.2× 10−5 7.6× 10−4 5.3× 10−4

c Active 7.3× 10−5 3.1× 10−5
−8.2× 10−5 1.00 −1.2× 10−5 2.9× 10−4

Slow 6.7× 10−4 8.5× 10−5 7.6× 10−4
−1.2× 10−5 1.00 9.6× 10−4

Passive 3.2× 10−4
−3.8× 10−4 5.3× 10−4 2.9× 10−4 9.6× 10−4 1.00

(b) ksoc

Active Slow Passive

ksoc Active 1.00 7.2× 10−5 3.8× 10−5

Slow 7.2× 10−5 1.00 −1.5× 10−2

Passive 3.8× 10−5
−1.5× 10−2 1.00

3 Results

3.1 Optimized parameters of the priming model

The parameters obtained after optimization using incu-

bation data described in Sect. 2.2.1 are given in Ta-

ble 2. The turnover times ranged from a few months

(0.30± 0.15 year) for the active pool to 462.0± 233.8 years

for the passive pool, the slow pool being intermediate with

1.12± 0.01 years. The priming parameters indicated a de-

creasing sensitivity with increasing turnover time. The pa-

rameter c values were 493.7± 246.8, 194.0± 97.0, and

136.5± 68.3 for the active, slow, and passive pools, respec-

tively. Errors correspond to the estimates from the linear as-

sumption at the minimum of J (x). For both, the correlation

between parameters was low (Table 4) suggesting that the

data set used to optimize the parameters covers a large range

of situations. We used soil respiration data obtained after in-

cubations of very different time lengths (few days to few

months) disentangling the effect of each parameter.

After optimization, both models with and without prim-

ing parameterization were able to reproduce the cumulative

mineralization measured in the different incubations where

FOC was added well (Fig. 2, top panel). The slope of the

linear regression between optimized model output and incu-

bation measurements was 1.13 for PRIM and 0.93 for the

ORCHIDEE soil module. The NSD value (1.80 and 1.52 for

PRIM and the standard soil module, respectively) showed

that the models overestimated the variance after optimiza-

tion. When both models were evaluated against the same in-

cubation experiments but without the addition of FOM, the

PRIM model slightly overestimated accumulated mineraliza-

tion (Fig. 2 middle panel), as indicated by the value of the

slope (1.05). Nevertheless, it performed better than the stan-

dard soil module, which underestimated the soil mineraliza-

tion as indicated by the value of the slope (0.72). The PRIM

soil model reproduced quite well the observed priming effect

(Sect. 2.2.1) as shown in Fig. 2 (lower panel) with a slope

value (1.07). PRIM largely overestimated, however, the vari-

ance of data as indicated by the NSD value (3.14). As ex-

pected, the standard soil module was totally unable to repro-

duce priming (Fig. 2, lower panel).

3.2 Standard soil module vs. PRIM against incubations

data

To evaluate the performance of PRIM, we tested it against

data from soil incubation experiments independent from

those used for optimization (see Sect. 2.2.2). We did the

same with the standard soil module (Fig. 3). The standard

soil module tended to overestimate accumulated mineraliza-

tion as indicated by a slope value of 1.32 and to underes-

timate the cross-experiments variance by more than 50 %

(NSD= 0.44). PRIM performed slightly better, but underes-

timated accumulated mineralization (slope 0.80). The opti-

mized PRIM underestimated the variance by 29 %, but the

NSD value (0.71) was closer to 1 compared to the standard

model. Using the BIC index, which takes into account the

higher number of parameters of PRIM, this model still per-

formed better (BIC values of 546.2 vs. 347.4 for standard and

PRIM, respectively).

3.3 ORCHIDEE vs. ORCHIDEE–PRIM comparison

using in situ data sets

When tested at ecosystem-level against litter manipulation

experiments, four studies multiplied by three treatments

and one study with two treatments. Both ORCHIDEE and

ORCHIDEE–PRIM performed generally well to reproduce

the soil CO2 efflux (Fig. 4). Generally, both versions showed

www.geosci-model-dev.net/9/841/2016/ Geosci. Model Dev., 9, 841–855, 2016
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Figure 2. Scatter plot between data and the PRIM model outputs for the incubations with FOC amendment (a), without FOC amendment (b)

and for priming effect (c). The data sets used here are the similar to those used for optimization (a) or are the control incubations (b) and are

described in Sect. 2.2.1. Red lines indicate the 1 : 1 line. Different symbol indicate different studies.

similar performance as indicated by the values of slopes and

NSD presented in Table 5. The mean slopes are 0.98 for

ORCHIDEE–PRIM against 0.97 for ORCHIDEE, and the

mean NSD are 1.26 and 1.27, respectively. It must be noted

that slope values were generally lower for the treatments ex-

cluding litter compared to control and double litter inputs

(Table 5). No particular differences of the NSD values were

observed between the different litter input regimes. Never-

theless, the BIC index was always higher for ORCHIDEE–

PRIM because three more parameters were used by this ver-

sion compared to ORCHIDEE.

ORCHIDEE–PRIM was able to reproduce the priming ob-

served defined as the difference of CO2 efflux coming from

SOC only with or without litter (Fig. 5), but tended to under-

estimate its intensity as indicated by the slope value lower

than 1 (0.55). The variance between experiments calculated

for priming was overestimated as shown by the NSD value

of 1.29. It must be noted that priming was not calculated

for ORCHIDEE since the structure of its soil decomposition

model does not include a priming mechanisms.

4 Discussion

4.1 PRIM in the context of other soil priming

conceptual models

Priming is a complex phenomenon controlled by several

mechanisms, such as N mining by microbial communities

with different growth strategies, competition between micro-

bial groups for substrate, energy limitations (Kuzyakov et al.,

2000; Fontaine et al., 2003; Guenet et al., 2010b). Priming

may have important consequences on the feedbacks between

climate and C cycle (Schmidt et al., 2011) and it is there-

fore crucial to better quantify the C fluxes due to priming,

especially at large scale (i.e. continental to global). Several

models have been developed to describe soil C mineraliza-

tion with a representation of priming (Gignoux et al., 2001;

Fontaine and Barot, 2005; Neill and Gignoux, 2006; Moor-

head and Sinsabaugh, 2006; Wutzler and Reichstein, 2008;

Neill and Guenet, 2010; Blagodatsky et al., 2010) and such

models generally succeeded at reproducing short-term data,

mainly incubation. However, to our knowledge, they have

never been tested in a range of contrasted situations (different
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B. Guenet et al.: Priming effect in global land biosphere model 851

0
5

10
15

C
um

ul
at

iv
e 

m
in

er
al

iz
at

io
n 

(O
R

C
H

ID
E

E
 s

oi
l m

od
ul

e)
(g
C
-C
O
2.
kg

−1
 d

rie
d 

so
il)

(a) 

Slope = 1.32 
NSD = 0.44 

Pearson's corr. = 0.78 
BIC = 546.2 

0 5 10 15

0
5

10
15

C
um

ul
at

iv
e 

m
in

er
al

iz
at

io
n 

(P
R

IM
) 

(g
C
-C
O
2.
kg

−1
 d

rie
d 

so
il)

Cumulative mineralization measured
(gC-CO2.kg

−1
 dried soil)

(b) 

Slope = 0.80 
NSD = 0.71 

Pearson's corr. = 0.78 
BIC = 347.4 

Figure 3. Scatter plot between independent data from optimiza-

tion (data set describes in Sect. 2.2.2) and the soil module of OR-

CHIDEE outputs (a) or between data and the PRIM model out-

puts (b). Red lines indicate the 1 : 1 line.

0 2 4 6 8

0
4

8 (a) 

ORCHIDEE

0 1 2 3 4 5 6

0
2

4
6

(b) 

0 2 4 6 8

0
2
4
6
8

(c) 

S
oi

l C
O
2 

flu
xe

s 
m

od
el

le
d

(g
C
-C
O
2.
m
−2
.d
ay

−1  )

1 3 5 7

1
3

5
7 (d) 

0 2 4 6

0
2

4
6 (e) 

0 2 4 6 8

(a) 

ORCHIDEE-PRIM

0 1 2 3 4 5 6

(b) 

0 2 4 6 8

(c) 

1 3 5 7

(d) 

0 2 4 6

(e) 

Soil CO2  fluxes measured
(gC-CO2.m

−2.day−1 )

Figure 4. Soil CO2 efflux calculated by ORCHIDEE on the left side

and by ORCHIDEE–PRIM on the right side for the data coming

from Boone et al. (1998) (a), from Borken and Muhs (2002) (b),

from Chemidlin-Prévost-Bourré et al. (2010) (c), from Subke et

al. (2004) (d), and from Sulzman et al. (2005) (e). Red lines indicate

the 1 : 1 line, black, dashed, and dotted lines correspond to control,

litter exclusion, and litter amendment situations, respectively.

T
a
b

le
5
.

M
o

d
el

p
er

fo
rm

an
ce

s
fo

r
ea

ch
ev

al
u

at
io

n
si

te
.

B
o

o
n

e
et

al
.

(1
9

9
8

)
B

o
rk

en
an

d
M

u
h

s
(2

0
0

2
)

C
h

em
id

li
n

-P
ré

v
o

st
-B

o
u

ré
et

al
.

S
u

b
k
e

et
al

.
(2

0
0

4
)

S
u

lz
m

an
et

al
.

(2
0

0
5

)

(2
0

1
0

)

A
ll

N
o

C
o

n
tr

o
l

D
o

u
b

le
A

ll
C

o
m

p
o

st
C

o
n

tr
o

l
A

ll
N

o
C

o
n

tr
o

l
D

o
u

b
le

A
ll

N
o

C
o

n
tr

o
l

A
ll

N
o

C
o

n
tr

o
l

D
o

u
b

le

d
at

a
li

tt
er

li
tt

er
d

at
a

d
at

a
li

tt
er

li
tt

er
d

at
a

li
tt

er
d

at
a

li
tt

er
li

tt
er

O
R

C
H

ID
E

E
sl

o
p

e
0

.5
6

0
.4

5
0

.6
5

0
.6

6
0

.6
5

1
.6

8
1

.3
3

0
.5

5
1

.6
5

1
.2

3
1

.1
1

0
.4

8
0

.7
2

1
.0

7
0

.6
0

0
.7

7
0

.8
0

0
.5

1

N
S

D
1

.4
3

1
.8

6
1

.3
7

1
.4

8
0

.7
7

0
.7

9
0

.8
7

1
.0

3
0

.7
0

0
.9

7
1

.5
6

1
.8

5
1

.6
5

1
.4

1
1

.5
3

1
.1

0
1

.0
8

1
.6

8

B
IC

1
0

3
.4

5
7

.9
4

9
.3

5
3

.8
1

1
6

.8
8

4
.0

7
4

.9
7

3
.1

3
9

.4
2

9
.1

5
2

.2
4

5
.9

3
8

.3
2

4
.3

1
0

9
.9

3
9

.9
4

2
.4

7
8

.3

O
R

C
H

ID
E

E
–

P
R

IM
sl

o
p

e
0

.5
5

0
.4

5
0

.6
5

0
.6

1
0

.6
7

1
.7

1
1

.3
3

0
.5

4
1

.6
4

1
.2

3
1

.2
6

0
.4

8
0

.7
1

1
.0

7
0

.5
8

0
.7

6
0

.8
0

0
.5

0

N
S

D
1

.5
3

1
.8

5
1

.3
7

1
.5

9
0

.7
7

0
.7

9
0

.8
6

0
.8

6
0

.7
0

0
.9

7
1

.3
0

1
.8

6
1

.6
6

1
.4

1
1

.5
5

1
.1

0
1

.0
9

1
.7

6

B
IC

1
1

6
.3

6
4

.9
5

6
.5

6
3

.4
6

1
3

1
.1

9
5

.9
8

5
.

0
9

6
.1

4
6

.2
3

6
.3

6
5

.1
5

4
.3

4
4

.6
3

0
.5

1
2

4
.1

4
8

.2
5

1
.3

8
8

.1

www.geosci-model-dev.net/9/841/2016/ Geosci. Model Dev., 9, 841–855, 2016



852 B. Guenet et al.: Priming effect in global land biosphere model

0 20 40 60 80 100 120

0
20

40
60

80
10
0

12
0

Slope = 0.55 
NSD = 1.29 

Pearson's corr. = 0.54 

Measured priming
(% of soil respiration without aboveground litter)

M
od

el
le

d 
pr

im
in

g
(%

 o
f s

oi
l r

es
pi

ra
tio

n 
w

ith
ou

t a
bo

ve
gr

ou
nd

 li
tte

r)

Figure 5. Scatter plot between the priming effect measured and the

priming effect calculated by ORCHIDEE–PRIM. Red line indicates

the 1 : 1 line and different symbols indicate different studies.

soil types, different FOC amount and chemical composition,

different temperature and soil moisture, etc.). Here, we used

most of the available incubation data respecting the criteria

described in the material and method section. Moreover, pre-

vious priming models all needed a high number of parame-

ters compared to PRIM. For these two reasons, the concep-

tual soil models accounting for soil priming were thus far not

included in global land biosphere models (Wutzler and Re-

ichstein, 2008) and very few studies of soil priming at global

scale have been performed (Foereid et al., 2014). Here, using

a simple scheme with only three more additional parameters

than the standard soil module of ORCHIDEE, we were able

to reproduce priming but also soil mineralization data com-

ing from very different incubation studies performed with

different soils at different temperature and moisture, with

different time length, etc. The PRIM soil model, which is

a microbial steady-state model, might not be able to repro-

duce short-term response to abrupt change of FOC inputs but

with negligible bias over the long term (Wutzler and Reich-

stein, 2013). However, it might have similar performances

than more complex models to reproduce long-term trends

of FOC inputs (Wutzler and Reichstein, 2013). PRIM per-

formed better than the standard soil module to reproduce soil

incubation data used to optimize, but it must be noted that

the BIC values indicate that the improvement observed with

PRIM may be simply due to a higher number of parameters.

Nevertheless, when using independent soil incubations data

from the one used to optimize the model, the improvement is

quite clear with BIC values much lower with PRIM than with

the standard soil module (347.4 and 546.2, respectively). Fur-

thermore, PRIM was not able to fully catch the observed

variability of priming. As discussed above, priming is a com-

plex phenomenon resulting from the interactions of different

mechanisms that we summarized in a very simple equation.

Therefore, PRIM is probably good in representing general

trends but not all the complexity of the phenomenon. Never-

theless, the use of the PRIM soil model seems justified since

it increases only slightly the number of parameter of a global

land biosphere model and since the parameter values were

obtained after optimization on data coming from incubations

performed in a range of soils and conditions (different soil

types, different ecosystems, different temperatures, different

moisture, different amount and type of FOC amended, etc.).

4.2 ORCHIDEE vs. ORCHIDEE–PRIM, Cross-sites

evaluation

ORCHIDEE–PRIM exhibited similar performance than OR-

CHIDEE when simulating litter manipulation experiments.

It must be noted that both versions share the same scheme

for primary production (controlling soil C input by litter),

soil temperature, and moisture function. The similar perfor-

mance obtained by the two versions may be due to a model

bias for these quantities as well as poorly constrained site

histories and climate forcing errors. Since primary produc-

tion is the main driver of the C input into the soil, the soil

CO2 efflux calculated by the models was largely driven by

the capacity of the model to reproduce the observed primary

production. In particular, both models largely underestimated

the soil CO2 efflux when litter was removed (Table 5), but

obtained good results when litter was kept or when litter

was added. This suggests that both models performed quite

well when reproducing soil CO2 efflux, but this was due to

bias compensation, meaning that the fraction of CO2 coming

from soil mineralization and root respiration was underesti-

mated and the fraction of CO2 coming from litter mineral-

ization was overestimated. Moreover, the modification of the

litter cover may change the soil humidity and temperature

and these effects were not represented in the models.

Finally, the use of a microbial steady-state model like

ORCHIDEE–PRIM present some advantages compared to

explicit microbial models. Wieder et al. (2013) identified sev-

eral challenges related to the incorporation of explicit mi-

crobial models in ESMs. In particular, it needs many more

parameters than the classical approach. With ORCHIDEE–

PRIM this difficulty is resolved since we only add three more

parameters.

5 Conclusion

With regard to the various processes that may lead to

priming, the satisfactory performance of ORCHIDEE–PRIM

compared to observations from both laboratory incubation

and field litter manipulation experiments suggests that the

Geosci. Model Dev., 9, 841–855, 2016 www.geosci-model-dev.net/9/841/2016/
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simple PRIM conceptual model simulates well the mag-

nitude of observed priming. Consequently, ORCHIDEE–

PRIM has the potential to quantify the impact of priming on

the soil C cycle at large scales. Nevertheless, ORCHIDEE–

PRIM underestimates the priming intensity as shown by the

slope value (0.55), indicating that the model still misses im-

portant mechanisms explaining the observations. In particu-

lar, N availability is an important driver of priming, inducing

higher priming when N availability is reduced (Fontaine et

al., 2004b; Blagodatskaya et al., 2007). The role of N in the

priming intensity as well as the extra N mineralization in-

duced by priming and its effect on primary production may

represent the next addition to the soil representation in a land

surface model by adding a control on the c parameter depend-

ing on the mineral N availability and on the C : N ratio of the

considered pool. Nevertheless, some detailed information on

the N dynamic in priming effect experiments would be nec-

essary to do so and very few authors reported the impact of

the priming effect on the N dynamic after FOC additions.

Code availability

For ORCHIDEE, the main part of the code was writ-

ten by Krinner et al. (2005). The version used here

is the 1.9.5.2 version. In this version, compared to the

one presented in Krinner et al. (2005), the albedo repre-

sentation was improved (http://dods.ipsl.jussieu.fr/orchidee/

DOXYGEN/webdoc_1240/), a routing scheme controlling

the flux of water from land surface to the ocean was

added (Ngo-Duc et al., 2007) and the dynamic of veg-

etation was modified (http://dods.ipsl.jussieu.fr/orchidee/

DOXYGEN/webdoc_1240/). Furthermore, since 2005 the

code has been parallelized. A detailed documentation and the

code can be provided upon request to the corresponding au-

thor.

ORCHIDEE–PRIM is derived from ORCHIDEE with the

modifications presented in Sect. 2.1.2. A detailed description

can be found in Guenet et al. (2013b). The code is available

upon request to the corresponding author.

Edited by: C. Sierra
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