Response to the Referee 1 for the Manuscript gmd-2021-333
“Optimization of Snow-Related Parameters in Noah Land Surface
Model (v3.4.1) Using Micro-Genetic Algorithm (v1.7a)”
by Sujeong Lim, Hyeon-Ju Gim, Ebony Lee, Seungyeon Lee, Won Young Lee,
Yong Hee Lee, Claudio Cassardo, and Seon Ki Park

The manuscript “Optimization of Snow-Related Parameters in Noah Land
Surface Model (v3.4.1) Using Micro-Genetic Algorithm (v1.7a)” by Lim et al.
addresses an important problem of model tuning/optimization. However, the
results are not very encouraging, it shows very small improvements. Moreover,
the manuscript seriously lacks in its analysis/validation part. Authors should
come up with more results/analysis to claim substantial improvements in their
method. The following are the comments, which may improve the manuscript.

= We appreciate the valuable and constructive comments, which helped us im-
prove the quality of the manuscript. We have included more analysis/validation
to enhance the results. Unfortunately, we found that there was a mistake when
we simulated some stations (urban and built-up lands (UB) in OPT_5 and crop-
land (CL) in OPT_6), thus we corrected the statistical values in the manuscripts.
An item-by-item response to the comments is provided below.

1. The improvements looks very small compare to the existing mean bias (ta-
ble /). The improvement ratio (equation 7), a metric used here gives an
impression of big improvement, but in reality it is not so. For an example,
improvement of RMSE from 6 to 5 will show about 16.5% improvements,
but RMSE of 5 is still big. Statistically how significant are these improve-
ments? Pls put significance level.

= We agree the improvement ratio may emphasize itself, even for the
small changes. Nevertheless, the improvement ratio helps to objectively
determine how much change has occurred in the value. To recognize the
original magnitude of them, we included the RMSE value of CNTL in
the caption of Table [R1 (Table 4 in the revised manuscript)| below. In
addition, the CNTL and OPTM (e.g., OPT_5 and OPT_6) experiments
exhibit statistically significant linear relationships in the 95 % significance
level. We have added this description in the caption of Table

[in the revised manuscript)|in the revised manuscript.




Table R1 (Table 4 in the revised manuscript): Improvement ratio (%) in RMSE,
coefficient of determination (R?), and mean bias (MB) of snow variables from
CNTL to OPT_5, and OPT_6 over the ten representative stations. The statistic
values in CNTL are following: RMSE is 0.270 for FSC, 0.155 for SA, and 10.599
for SD; R? is 0.219 for FSC, 0.183 for SA, and 0.806 for SD; MB is -0.107 for
FSC, 0.0513 for SA and -5.38 cm for SD. The CNTL and OPTM (e.g., OPT.5
and OPT_6) experiments exhibit statistically significant linear relationships at
the 95 % significance level.

EXP OPTL5 OPT_6
Snow Variable FSC SA SD FSC SA SD
RMSE 13% 67% 138% 65% 85% 17.7%
R? 3% 24% 16% 164% -02% 3.0%
MB -31.8% 285% 409 % -196% 326% 451 %

2. I would be interested to see some more graphical representations of analy-
sis, rather than many statistical number presented here. There are so many
numbers/numerical values mentioned in the manuscript (particularly the
results). It is very hard to recognise changes in the box plot (Figure 4), as
the improvements are really minute.

= We agree that the additional graphical representations are necessary to
easily understand the changes between CNTL and OPTM experiments.
Thus, we have included the scatter plots for the observation and simulation
results with the RMSE and R? to help to understand Figure 4 (Figure
|(Figure 5 in the revised manuscript)| below). Since the observation pat-
terns are different for different stations, we selected the representative sta-
tion as for each land cover type: Ulleungdo (UL) for deciduous broadleaf
forest (DBF), Gumi (GM) for mixed forest (MF), Bukgangneong (NG) for
woody savanna (WS), Boryeong (BR) for cropland (CL), and Seoul (SL)
for urban and built-up lands (UB). Firstly, the overall fractional snow
cover (FSC) relatively are hard to recognize the explicit bias patterns in
the scatter plots; however, GM in MF shows increasing FSC to solve the
underestimated problems. Most statistics indicate the improved RMSE
and R? from the CNTL to OPT_5 and additionally improved in OPT_6.
Secondly, snow albedo (SA) is overestimated in CNTL and it is reduced
in OPT_5 and OPT_6. For instance, UL in DBF shows decreasing SA in
OPT_5 and following OPT_6. Lastly, snow depth (SD) is optimized using
the hourly in-situ observations (i.e., more data), and hence shows remark-
able improvement compared to FSC and SA, both using the daily satellite
observations. Most stations have recovered the under-estimated SD with
decreasing RMSE and increasing R2. We include related descriptions in
L330-345 (written in blue fonts) with Fig. [R1 (Figure 5 in the revised)




“To understand more details of the improvements due to the optimiza-
tion, we analyzed the scatter plots of observations versus model results
along with the values of RMSD and R? (Figure 5). Since the observation
patterns differ depending on their stations, we selected the representative
station for each land cover type: Firstly, the overall FSC relatively is hard
to recognize the explicit bias patterns in the scatter plots (Fig. 5(a), (d),
(g), (j), and (m)); however, statistics indicate the improved RMSE from
the CNTL to OPT_5 and additionally improved in OPT_6. As for the
R?, most stations show the largest value in OPT_6 except the NG for
WS and BR for CL. In particular, GM in MF shows increasing FSC in
OPT_6 to solve the underestimated problems with the best RMSE and
R?. Secondly, SA is overestimated in CNTL, and it is reduced in OPT_5
and OPT_6. For instance, UL in DBF shows decreasing SA in OPT_5 and
following OPT_6 (Fig. 5(b)); it also shows the best RMSE and R? perfor-
mance. Most stations show the smallest RMSE in OPT_6 and a larger R?
in OPT_5 or OPT_6 (Fig. 5(b), (e), (h) and (k)); however, SL in UB was
deteriorated RMSE and R? after optimization (Fig. 5(n)). Lastly, SD is
optimized using the hourly in-situ observations (i.e., more data) and hence
shows remarkable improvement compared to FSC and SA, both using the
daily satellite observations. For example, UL in DBF results in a notable
increase in the underestimated SD with the lowest RMSE and the high-
est R? (Fig. 5(c)). It is hard to say which optimization experiment has
the best results, but the optimization performance is usually better than
CNTL in terms of RMSD (e.g., UL for DBF, GM for MF, NG for WS, SL
for UB) and R? (e.g., UL for DBF, GM for MF, and BR for CL). As a
result, most stations in OPT_5 and OPT_6 are generally closer to obser-
vations than CNTL, and OPT_6 leads the lowest RMSE and the highest
R? in all snow-related variables.”

. Pls write what is shown in the y-axis in Figure 4

= We added the y-axis information (Fig. [R2 (Figure 4 in the revised|
manuscript)|) as follows: (a) FSC bias, (b) SA bias, and (c¢) SD bias (cm).
The wrong maximum and mean value of each bias in OPT_5 and OPT_6
have been corrected in the caption.

. I found the validation part of the manuscript is very weak. Perhaps you
need to do more simulations/analysis to establish that your optimization
method works better that the default model.

= We prepared additional analyses with the scatter plots for snow vari-
ables (Fig. |R1 (Figure 5 in the revised manuscript)), as mentioned in
#2 above, and the time series of secondary variables (e.g., soil tempera-
ture, soil moisture, and sensible heat flux) through the snow optimization
(Fig. [R3 (Figure 6 in the revised manuscript)| with L346-354 (blue fonts
below)).

“Lastly, we have investigated how the optimized snow parameters can
effect on the other variables in LSM. Figure 6 is the time series of the




differences of LSM variables (e.g., soil temperature, sensible heat flux,
and soil moisture) between OPT_6 and CNTL (i.e., OPT_6 minus CNTL)
following SD changes. Although they are not directly optimized, they
respond to the optimized snow parameters through associated physical
processes. For example, soil temperature in the first soil layer (7 cm) in-
creases as SD increases after optimization, which consequently increases
sensible heat flux. The residual of surface energy balance is close to zero
(not shown), implying that the surface energy balance is well conserved
even after optimization. Soil moisture depends on snow melt, following the
trend of increased snowfall in the previous winter. Extreme fluctuations
sometimes appear in the time series analyses due to nonlinear effects, but
we can understand the overall tendency according to the increased SD in
the land surface.”

As the off-line Noah LSM is one-dimensional, it requires lots of computing
time for simulations and verifications at all the grid points. We plan to
address more stations in our further study. Moreover, we also plan to
optimize the Noah LSM in a coupled land-atmosphere prediction system
to produce two-dimensional data in one model run. These explanations
have added in the revised manuscript (L370-371; L379-384).

“As the further study, the online Noah LSM can help to include more
observation stations by covering the all grid points over SK.”

“Based on the encouraging optimization results in the off-line Noah LSM,
we plan to optimize the Noah LSM in a coupled land-atmosphere predic-
tion system. The online Noah LSM can produce a spatial distribution
of model variables over the land surface, which allows a two-dimensional
assessment of model performance. We anticipate the optimized snow pa-
rameters can lead to positive effects on the atmospheric variables through
the changes of heat fluxes as well as snow variables in Noah LSM. As a
result, we can identify how optimal parameters are appreciated in SK in
terms of both horizontal and vertical distributions. In addition, our cou-
pled system of micro-GA and Noah LSM can be utilized to optimize other
parameters in Nosh LSM.”

. In several previous studies it has been shown that improvement or incorpo-
ration of real physical processes, such as discrete treatment of snow layer,
more realistic snow physics significantly improves simulation of snow (e.g.,
Niu et al., 2011; Saha et al., 2017). Does your optimization fares better
than above?

= We agree with the reviewer that some previous studies have improved
snow simulation through more realistic physical parameterization [I] or
discrete treatment of snow layer [2]. We can develop more realistic pa-
rameterization schemes and make improvement in the model performance;
however, those scheme are still under uncertainty, especially in parameter
values. Moreover, the model performance by more realistic parameter-



ization scheme may significantly improve in one region but it may less
significantly improve or even deteriorate in other places, due to uncertain-
ties in parameter values. Parameter estimation is not competing with the
development of more realistic physical parameterization; it is rather an
effort to further improve the model performance by reducing uncertainty
in pre-existing parameterization schemes by optimizing the parameter val-
ues inside the schemes based on the observational data that reflect local
characteristics. If the employed parameterization scheme has less uncer-
tainty, improvement by parameter estimation on that scheme may not be
significant; if the scheme has large uncertainty in parameter values, param-
eter estimation may bring about prominent improvement in the scheme’s
performance. Therefore, we believe that development of more realistic
physical parameterization scheme, followed by appropriate parameter es-
timation, will create a strong synergy between them that results in higher
model performance, as indicated in [3]. We have added these explanations
in the revised manuscript (L359-364).

“This parameter estimation is an effort to further improve the model per-
formance by reducing uncertainty in pre-existing parameterization schemes
by optimizing the parameter values inside the schemes based on the obser-
vational data that reflect local characteristics to improve snow simulation.
If the employed parameterization scheme has less uncertainty, improve-
ment by parameter estimation on that scheme may not be significant; if the
scheme has large uncertainty in parameter values, parameter estimation
may bring about prominent improvement in the scheme’s performance.”

. Apart from RMSE, authors may also show any improvements in the cor-
relation skill

= We included the coefficient of determination (R?), which measures the
proportion of variation for a dependent variable that can be explained by
an independent variable, in Table|R1 (Table 4 in the revised manuscript)|
Like the RMSE, the R? of FSC and SD also improved in OPTM. The
SA was weakly worsened in OPT_5, but it was almost recovered to the
CNTL in OPT_6. The related explanations have contained in the revised
manuscript (L294-296; 1.311-312; L328-329).

“The performance has been evaluated using the improvement ratio, which
indicates how much the RMSE, MB, and coefficient of determination (R?)
of optimized experiments (i.e., OPT_5, OPT_W, and OPT_6) is improved
compared to CNTL, as shown in Eq. (7) (Table 4).”

“We also investigated the R?, which measures the proportion of variation
for a dependent variable that can be explained by an independent variable.
As a result, the OPT_5 improves the 3.1 % and 1.6 % for FSC and SD
while deteriorates 2.4 % for SA.”

“Like the RMSE, the R? of FSC and SD also improved in OPT_5 and
OPT_6. The SA worsened in OPT_5 was almost recovered to the CNTL
in OPT_6.”




7. How the seasonal cycle of snow parameters looks like (model vs observa-
tions)? Do you see improvements there also ¢

= Snow parameters do not have the observations; thus, it is impossible
to compare the snow-related parameters between model and observations.
In addition, the snow is found over South Korea only in the wintertime,
so it is hard to identify the seasonable cycle of snow parameters in our
study.

8. What are the effects of optimized model on skin and sub-surface tempera-
ture, soil moisture, surface energy balance etc?

= We investigate the responses of secondary variables due to optimiza-
tion of snow parameter (Fig. [R3 (Figure 6 in the revised manuscript))).
We bring the results of UL in DBF which shows enhancements on all of
snow variables in Fig. [R1 (Figure 5 in the revised manuscript)l Increased
SD warms the soil temperature in the first soil layer (7 cm) through the
land surface insulative response, resulting in larger sensible heat flux. The
residual of the surface energy balance equation gets close zero, thus the sur-
face energy balance is conserved after optimization (Figure is not shown).
Finally, the soil moisture depends on the snow melt, hence it follows the
increased snowfall in the previous winter. Because this is an hourly data,
extreme fluctuations sometimes appear in the time series analyses, but we
can understand the overall tendency from the increased SD. The related
descriptions are added in the revised manuscript (1.346-354, blue fonts
below).

“Lastly, we have investigated how the optimized snow parameters can
effect on the other variables in LSM. Figure 6 is the time series of the
differences of LSM variables (e.g., soil temperature, sensible heat flux,
and soil moisture) between OPT_6 and CNTL (i.e., OPT_6 minus CNTL)
following SD changes. Although they are not directly optimized, they
respond to the optimized snow parameters through associated physical
processes. For example, soil temperature in the first soil layer (7 cm)
increases as SD increases after optimization, which consequently increases
sensible heat flux. The residual of surface energy balance is close to zero
(not shown), implying that the surface energy balance is well conserved
even after optimization. Soil moisture depends on snow melt, following the
trend of increased snowfall in the previous winter. Extreme fluctuations
sometimes appear in the time series analyses due to nonlinear effects, but
we can understand the overall tendency according to the increased SD in
the land surface.”

9. As mentioned in the beginning, the ultimate goal is to improve forecast
of snow over SK, I believe all-grid point simulation (gridded) would be a
better strategy to really demonstrate the usefulness of this method.

= We fully agree with the reviewer. As mentioned in #4 above, running
the off-line Noah LSM over all grid points requires a large amount of



computational time. Thus, we have sampled representative stations in
this study for effective optimization. Following the reviewer’s suggestion,
we will do simulations over all the grid points in our further study. Based
on the promising results using the off-line Noah LSM, we have a plan to
optimize the Noah LSM in a coupled land-atmosphere prediction system
(e.g., Weather Research and Forecasting (WRF)-Noah LSM). While the
off-line Noah LSM is a one-dimensional column model, the Noah LSM
coupled to WRF is able to simulate the two-dimensional features with
prescribed spatial resolution. Moreover, it can interact with not only
the multiple soil layers but also the atmospheric layers. As a further
study, we anticipate the optimized snow parameters can lead to forecast
improvement in the atmospheric variables through the changes of heat
fluxes as well as snow variables in the LSM. These explanations have
included in the revised manuscript (L.379-384).

“Based on the encouraging optimization results in the off-line Noah LSM,
we plan to optimize the Noah LSM in a coupled land-atmosphere predic-
tion system. The online Noah LSM can produce a spatial distribution
of model variables over the land surface, which allows a two-dimensional
assessment of model performance. We anticipate the optimized snow pa-
rameters can lead to positive effects on the atmospheric variables through
the changes of heat fluxes as well as snow variables in Noah LSM. As a
result, we can identify how optimal parameters are appreciated in SK in
terms of both horizontal and vertical distributions. In addition, our cou-
pled system of micro-GA and Noah LLSM can be utilized to optimize other
parameters in Nosh LSM.”
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Figure R1 (Figure 5 in the revised manuscript): Scatter plots for the observation
(OBS) and land surface model (LSM) results: CNTL (red), OPT_5 (blue) and
OPT_6 (green). The representative station in each land cover type are analyzed
such as (a)-(c) DBF: UL, (d)-(f) MF: GM, (g)-(i) WS: NG, (j)-(1) CL: BR,
(m)-(o) UB: SL. From the left to right panels, they are the FSC, SA, and SD
(cm). Compared to observations, the statistics (e.g., RMSE and R?) in each
experiment are indicated in each panel.



@ {b) (©
r B 60 —

—— CONTL —— ONTL CONTL
08 ——— OPTS5 0.8 - —— OPT5 —_ oPTs
L —— OPTS6 [ — opPT_6  OPT.e
e . ¢ 10 - OPT 6
T T
04 — | T ! 04 |- T _ _ L
! H | | ] ! 20 —
| | ! ! —
I NV < I DO S
L 3 L g oL
2 00 Z 00 - i - g 0 B3 5|
@ E ] ! ] 2
: ! 1 %
i i 1 i H + -
7 20
04 - ' i | 04 |- 20
! H |
| |
| i o
0.8 + 0.8
| | | | 0 L | | |
CNTL OPT 5 OPT 6 CNTL OPT 5 OPT 6 CNTL OPT5  OPT 6

Figure R2 (Figure 4 in the revised manuscript): Box plots of (a) FSC bias, (b)
SA bias, and (c) SD bias (cm) for CNTL, OPT_5 and OPT_6. The maximum
differences are indicated with the black star symbol (e.g., 0.637 (CNTL), 0.643
(OPT.5), 0.570 (OPT-6) for FSC, 0.605 (CNTL), 0.563 (OPT.5), and 0.525
(OPT.6) for SA, and 34.1 cm (CNTL), 45.1 cm (OPT_5), and 46.3 cm (OPT_6)
for SD). Each mean of snow variables is indicated as a black circle (e.g., -0.107
(CNTL), -0.125 (OPT_5), and -0.130 (OPT_6) for FSC, 0.0513 (CNTL), 0.0381
(OPT.5), and 0.0359 (OPT_6) for SA, and -5.38 cm (CNTL), -3.46 cm (OPT_5),
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Figure R3 (Figure 6 in the revised manuscript): Time series of difference between

CNTL to OPT_6 for the UL in DBF during the May 2009 to April 2018: (a)

SD (cm), (b) soil temperature at the top soil layer (ST; 7 cm) (K), (c) sensible
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Response to the Referee 2 for the Manuscript gmd-2021-333
“Optimization of Snow-Related Parameters in Noah Land Surface
Model (v3.4.1) Using Micro-Genetic Algorithm (v1.7a)”
by Sujeong Lim, Hyeon-Ju Gim, Ebony Lee, Seungyeon Lee, Won Young Lee,
Yong Hee Lee, Claudio Cassardo, and Seon Ki Park

This study worked on determining the optimal parameter values in the snow-
related processes — smow cover fraction, snow albedo, and snow depth — of the
Noah LSM, using the micro-genetic algorithm and the in-situ surface obser-
vations and remotely-sensed satellite data. The study area was South Korea.
This manuscript does not have sufficient elements on the model development,
it is rather a study of applying a certain optimization algorithm to calibrate the
model parameters. I have doubts about the novelty of this manuscript and its
suitability for consideration for publication in Geoscientific Model Development.
Below are some comments which I hope could help improve the manuscript.

= We really appreciate the valuable and constructive comments, which helped
us improve the quality of the manuscript. Our study is a parameter estimation
problem, which is based on the assumption that all the physical parameteriza-
tion schemes are not perfect and have uncertainties, especially in their parameter
values; thus, it is strongly and directly linked to ‘assessment of model perfor-
mance’ through parameterization schemes, which corresponds to the scope of
Geoscientific Model Development (GMD). Parameter estimation is a compan-
ion of parameterizations as it reduces the uncertainties in the parameter values
of newly-developed parameterization schemes and enhances the model perfor-
mance through the schemes; furthermore, a new method of comparing model
results with observational data is developed in our study through various fitness
functions in the course of optimization. In this sense, we believe that our study
also indirectly satisfies the scopes of GMD, described as ‘developments such as
new parameterizations’ as well as ‘developing novel ways of comparing model
results with observational data’. We have faithfully followed the reviewer’s
suggestions and included more analysis/validation to enhance the results. An
item-by-item response to the comments is provided below.

1. Short Introduction and unclear novelty of this study. The introduction is
rather short and the novelty of this study is not explicitly stated.

= We appreciate the reviewer pointing this out. We have revised a para-
graph in Introduction (L35-53 in the revised manuscript) by adding more
statements as follows (see blue parts):

“Uncertainties in parameterized physical processes have been observed
and quantified in various numerical models (e.g., Mallet and Sportisse,
2006; Gubler et al., 2012; Shutts and Pallares, 2014; Folberth et al., 2019;
Li et al., 2020; Olafsson and Bao, 2020; Pathak et al., 2020; Souza et al.,



2020). Such uncertainties can be also reduced by estimating optimal pa-
rameter values in the subgrid-scale parameterization schemes (e.g., Annan
and Hargreaves, 2004; Lee et al., 2006; Neelin et al., 2010; Yu et al., 2013;
Zhang et al., 2015; Kotsuki et al., 2018; Liet al., 2018; Chinta and Balaji,
2020). Because empirical parameters are commonly derived from the ob-
servations or theoretical calculations, their estimated values are strongly
dependent on the local characteristics of the region and period where the
observations are made. Thus, parameter estimation that fits the model
outputs to the observations is essentially required to obtain an adequate
parameter [I]. It may be done using a trial and error approach by manual,
but the optimization algorithm helps to replace enormous experiments by
automatically minimizing the difference between model and observations
[2]. For example, a global optimization tool, called the micro-genetic al-
gorithm (micro-GA), has been effectively used for estimating the optimal
parameter values (e.g., Yu et al., 2013) and for finding the optimal set of
parameterization schemes (e.g., Hong et al., 2014, 2015; Park and Park,
2021).

Most snow processes in the LSMs are parameterized based on the observa-
tions in specific local regions, and hence they may not represent adequately
the situation in SK and be the source of uncertainties for numerical snow
prediction over SK. We aim at obtaining the optimal parameter values of
the snow-related processes — snow cover, snow albedo, and snow depth —
in a LSM using the micro-GA, which causes better LSM performance over
SK. This study represents the first attempt to develop a coupled system of
micro-GA and Noah LSM for parameter estimation of the snow processes.
Section 2 describes the methodology, including the snow processes of the
LSM and the micro-GA optimization tool. Section 3 explains experiment
design. Results, discussion and conclusions are provided in sections 4, 5
and 6, respectively.”

. Insufficient details on the methods/procedures. Section 2.2 and Table 2
miss necessary details on the selected parameters and settings for the dif-
ferent experiments.

= In Section 2.2, we have focused on the GA algorithm itself and the
fitness function. Descriptions on the selected parameters and settings for
different experiments are separately provided in Section 3. We modified
Table 2 with the typo and list order correction to help understanding (Ta-
ble [R1 (Table 2 in the revised manuscript)). Moreover, we have added
more details on the parameter settings in Section 3 (L.238-246 in the re-
vised manuscript) as follows (see blue parts):




Table R1 (Table 2 in the revised manuscript): The input parameters for micro-
GA in experiments OPT_5 and OPT_W.

Input Parameter OPT5 OPTW
Population size 5 5
Crossover operator 1.0 1.0
Elitism on on
Number of parameters 5 1
Number of chromosomes 30 5
Maximum value of generations 200 100

“Table 2 describes the input parameters used in this study. We follow
the options known as the best performance in micro-GA; it is done with
a population size of 5 and a uniform crossover (i.e., crossover operator =
1.0) with elitism [3, 4 B]. The uniform crossover makes all populations
perform a crossover at every generation to acquire the diversity [6]. The
number of parameters to be optimized is 5 for OPT_5 and 1 for OPT_W.
The number of chromosomes determines the number of cases expressed in
a binary format. For example, the selected parameters — Py, Qmaz,cofEs
C, Py, Py, and W, ., — use different chromosomes, i.e., 5, 5, 5, 6, 4, and 5,
respectively; thus, the total number of chromosomes is 30 for OPT_5 and 5
for OPT_6. The maximum value of generations at the end of optimization
is generally set to 100 [ Bl [7], whereas we increased generations up to
200 in OPT_5 due to larger number of parameters to be optimized.”

3. I advise the authors to add more figures to show the comparison, via scatter
plot, time series plot to show the modelling results in different perspectives.
Besides the RMSE value, what about the performance of the model in terms
of other commonly used metrics such as R or R? value?

= Following the reviewer’s comments, we have conducted additional anal-
yses and added more figures, including scatter plots, times series, and
statistics including R2. Figure [R1 (Figure 5 in the revised manuscript)|
(see below) represents the scatter plots of observations versus model results
along with the values of RMSD and R2. Consistent with the statistical
results in the original manuscript, OPT_6 shows improved snow variables
in the scatter plots for Ulleungdo (UL) in the deciduous broadleaf forest
(DBF). In particular, compared to CNTL, optimization results in notable
increase in the underestimated snow depth (SD; Fig|R1 (Figure 5 in the|
[revised manuscript)| (c)) and negligible changes in fractional snow cover
(FSC; Fig|R1 (Figure 5 in the revised manuscript)| (a)) and snow albedo
(SA; Fig|R1 (Figure 5 in the revised manuscript)| (b)). In statistical analy-
ses, represented by RMSE and R?, OPT_5 and OPT_6 are generally closer
to observations than CNTL while OPT_6 shows the lowest RMSE and the
highest R?. We have added the scatter diagrams and statistical analy-




ses for other stations and land cover types in the revised manuscript (see
Fig.|R1 (Figure 5 in the revised manuscript )| therein with 1.330-345 written
in blue fonts).

“To understand more details of the improvements due to the optimiza-
tion, we analyzed the scatter plots of observations versus model results
along with the values of RMSD and R? (Figure 5). Since the observation
patterns differ depending on their stations, we selected the representative
station for each land cover type: Firstly, the overall FSC relatively is hard
to recognize the explicit bias patterns in the scatter plots (Fig. 5(a), (d),
(g), (j), and (m)); however, statistics indicate the improved RMSE from
the CNTL to OPT_5 and additionally improved in OPT_6. As for the
R?, most stations show the largest value in OPT_6 except the NG for
WS and BR for CL. In particular, GM in MF shows increasing FSC in
OPT_6 to solve the underestimated problems with the best RMSE and
R?. Secondly, SA is overestimated in CNTL, and it is reduced in OPT_5
and OPT_6. For instance, UL in DBF shows decreasing SA in OPT_5 and
following OPT_6 (Fig. 5(b)); it also shows the best RMSE and R? perfor-
mance. Most stations show the smallest RMSE in OPT_6 and a larger R?
in OPT_5 or OPT_6 (Fig. 5(b), (e), (h) and (k)); however, SL in UB was
deteriorated RMSE and R? after optimization (Fig. 5(n)). Lastly, SD is
optimized using the hourly in-situ observations (i.e., more data) and hence
shows remarkable improvement compared to FSC and SA, both using the
daily satellite observations. For example, UL in DBF results in a notable
increase in the underestimated SD with the lowest RMSE and the high-
est R? (Fig. 5(c)). It is hard to say which optimization experiment has
the best results, but the optimization performance is usually better than
CNTL in terms of RMSD (e.g., UL for DBF, GM for MF, NG for WS, SL
for UB) and R? (e.g., UL for DBF, GM for MF, and BR for CL). As a
result, most stations in OPT_5 and OPT_6 are generally closer to obser-
vations than CNTL, and OPT_6 leads the lowest RMSE and the highest
R? in all snow-related variables.”

In Fig [R2 (Figure 6 in the revised manuscript), we analyzed the time
series of the differences of secondary variables (e.g., soil temperature, soil
moisture, and sensible heat flux) between OPT_6 and CNTL (i.e., OPT_6
minus CNTL). Although these variables are not directly optimized, they
respond to the optimized snow parameters through associated physical
processes. For example, soil temperature in the first soil layer (7 cm)
increases as SD increases after optimization, which consequently increases
sensible heat flux. The residual of surface energy balance is close to zero
(not shown), implying that the surface energy balance is well conserved
even after optimization. Soil moisture depends on snow melt, following the
trend of increased snowfall in the previous winter. Extreme fluctuations
sometimes appear in the time series analyses due to nonlinear effects, but
we can understand the overall tendency according to the increased SD




in the land surface. The related descriptions are added in the revised
manuscript (L346-354, blue fonts below).

“Lastly, we have investigated how the optimized snow parameters can
effect on the other variables in LSM. Figure 6 is the time series of the
differences of LSM variables (e.g., soil temperature, sensible heat flux,
and soil moisture) between OPT_6 and CNTL (i.e., OPT_6 minus CNTL)
following SD changes. Although they are not directly optimized, they
respond to the optimized snow parameters through associated physical
processes. For example, soil temperature in the first soil layer (7 cm)
increases as SD increases after optimization, which consequently increases
sensible heat flux. The residual of surface energy balance is close to zero
(not shown), implying that the surface energy balance is well conserved
even after optimization. Soil moisture depends on snow melt, following the
trend of increased snowfall in the previous winter. Extreme fluctuations
sometimes appear in the time series analyses due to nonlinear effects, but
we can understand the overall tendency according to the increased SD in
the land surface.”

We also added R? in Table[R2 (Table 4 in the revised manuscript)| below.
Both FSC and SD showed improvement in terms of RMSE and R?. The
SA worsened in OPT_5 but it showed less deterioration in OPT_6, getting
closer to CNTL in terms of R%. The related explanations have contained
in the revised manuscript (L294-296; L311-312; 1.328-329).

“The performance has been evaluated using the improvement ratio, which
indicates how much the RMSE, MB, and coefficient of determination (R?)
of optimized experiments (i.e., OPT_5, OPT_W, and OPT_6) is improved
compared to CNTL, as shown in Eq. (7) (Table 4).”

“We also investigated the R?, which measures the proportion of variation
for a dependent variable that can be explained by an independent variable.
As a result, the OPT_5 improves the 3.1 % and 1.6 % for FSC and SD
while deteriorates 2.4 % for SA.”

“Like the RMSE, the R? of FSC and SD also improved in OPT_5 and
OPT_6. The SA worsened in OPT_5 was almost recovered to the CNTL
in OPT_6.”




Table R2 (Table 4 in the revised manuscript): Improvement ratio (%) in RMSE,
coefficient of determination (R?), and mean bias (MB) of snow variables from
CNTL to OPT_5, and OPT_6 over the ten representative stations. The statistic
values in CNTL are following: RMSE is 0.270 for FSC, 0.155 for SA, and 10.599
for SD; R? is 0.219 for FSC, 0.183 for SA, and 0.806 for SD; MB is -0.107 for
FSC, 0.0513 for SA and -5.38 cm for SD. The CNTL and OPTM (e.g., OPT.5
and OPT_6) experiments exhibit statistically significant linear relationships at
the 95 % significance level.

EXP OPTL5 OPT_6
Snow Variable FSC SA SD FSC SA SD
RMSE 13% 67% 138% 65% 85% 17.7%
R? 3% 24% 16% 164% -02% 3.0%
MB -31.8% 285% 409 % -196% 326% 451 %

4. Results need more description and particularly figures. I advise adding
more figures on the modelling results, and particularly representing the
spatial patterns of modeling results. The author studied South Korea, read-
ers are interested in the spatial distribution of model performance.
= We appreciate the reviewer’s valuable comment. As the Noah LSM is a
one-dimensional column model, we should run the off-line Noah LSM over
all the grid point by point, which requires a large amount of computa-
tional time. Thus, we have sampled representative stations in this study
for effective optimization. Based on the promising optimization results
in the off-line Noah LSM, we plan to extend our study to optimize the
online mode of Noah LSM, coupled to an atmospheric model (e.g., WRF).
Then, we will be able to assess the model performance in terms of spatial
distributions, and we will do more experiments following the reviewer’s
comment in our follow-up study. The related descriptions are added in
the revised manuscript (L370-371; L379-384, blue fonts below).

“As the further study, the online Noah LSM can help to include more
observation stations by covering the all grid points over SK.”

“Based on the encouraging optimization results in the off-line Noah LSM,
we plan to optimize the Noah LSM in a coupled land-atmosphere predic-
tion system. The online Noah LSM can produce a spatial distribution
of model variables over the land surface, which allows a two-dimensional
assessment of model performance. We anticipate the optimized snow pa-
rameters can lead to positive effects on the atmospheric variables through
the changes of heat fluxes as well as snow variables in Noah LSM. As a
result, we can identify how optimal parameters are appreciated in SK in
terms of both horizontal and vertical distributions. In addition, our cou-
pled system of micro-GA and Noah LSM can be utilized to optimize other



parameters in Nosh LSM.”

. Discussion is completely missing. The current manuscript has no discus-
ston. I strongly advise the authors to compare their findings with existing
literature. In addition, what are the limitation of the study? And any
potential solutions for future studies? What are effects of some settings or
input on the modelling results? Lots of aspects need to be discussed.

= We have included the Discussion section before the Conclusion as fol-
lows (L355-384):

“Generally, the Noah LSM tends to simulate less snow amount during the
peak winter and earlier snow melting, and consequently overestimates SA
[8]. Our experiment with no optimization (CNTL) reveals underestima-
tion of SD and FSC and overestimation of SA compared to the in-situ
or satellite observations. We developed a coupled system of micro-GA
and Noah LSM to reduce the uncertainties in parameterized snow pro-
cesses through optimization of parameter values. This parameter estima-
tion is an effort to further improve the model performance by reducing
uncertainty in pre-existing parameterization schemes by optimizing the
parameter values inside the schemes based on the observational data that
reflect local characteristics to improve snow simulation. If the employed
parameterization scheme has less uncertainty, improvement by parame-
ter estimation on that scheme may not be significant; if the scheme has
large uncertainty in parameter values, parameter estimation may bring
about prominent improvement in the scheme’s performance. Our results
showed improvement in all snow variables in terms of RMSE by 6.5 %,
8.5 %, and 17.7 % for FSC, SA, and SD, respectively. Furthermore, SD
increased after optimization, which lead to increases in both soil temper-
ature and sensible heat flux due to insulating response; soil moisture also
increased due to increased SD in previous years. This implies that the
optimized snow parameters not only let the model solutions close to the
observations but also act in a physically consistent manner. In case of
some worsen statistics such as MB or R? in OPT_6, the insufficient sta-
tions used for optimization or a coarse resolution in satellite observation
can limit to improve the snow variables. As the further study, the online
Noah LSM can help to include more observation stations by covering the
all grid points over SK. Moreover, we can optimize other parameters that
indirectly affects to snow processes not only direct parameters used in this
study.

The coupling system of micro-GA and Noah LSM automatically estimates
the optimal snow-related parameters by objectively comparing observa-
tions and model solutions through the fitness function. Instead of trial-
and-error procedures, it has an advantage to reduce a substantial amount
of computational time. The original micro-GA reduces the computational



time using the elitism and re-initialization methods in the small number of
individuals. We have developed a parallel system on the coupled system
to further improve the computational efficiency in this study; it enables
us to simultaneously execute multiple individuals in one generation and
multiple Noah LSM runs in one individual.

Based on the encouraging optimization results in the off-line Noah LSM,
we plan to optimize the Noah LSM in a coupled land-atmosphere predic-
tion system. The online Noah LSM can produce a spatial distribution
of model variables over the land surface, which allows a two-dimensional
assessment of model performance. We anticipate the optimized snow pa-
rameters can lead to positive effects on the atmospheric variables through
the changes of heat fluxes as well as snow variables in Noah LSM. As a
result, we can identify how optimal parameters are appreciated in SK in
terms of both horizontal and vertical distributions. In addition, our cou-
pled system of micro-GA and Noah LSM can be utilized to optimize other
parameters in Nosh LSM.”
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Figure R1 (Figure 5 in the revised manuscript): Scatter plots for the observation
(OBS) and land surface model (LSM) results: CNTL (red), OPT_5 (blue) and
OPT_6 (green). The representative station in each land cover type are analyzed
such as (a)-(c) DBF: UL, (d)-(f) MF: GM, (g)-(i) WS: NG, (j)-(1) CL: BR,
(m)-(o) UB: SL. From the left to right panels, they are the FSC, SA, and SD
(cm). Compared to observations, the statistics (e.g., RMSE and R?) in each
experiment are indicated in each panel.
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Figure R2 (Figure 6 in the revised manuscript): Time series of difference between
CNTL to OPT_6 for the UL in DBF during the May 2009 to April 2018: (a)
SD (cm), (b) soil temperature at the top soil layer (7 cm) (ST; K), (c) Sensible
heat flux (SH; W m~2), (d) soil moisture at the top soil layer (7 cm) (SM; m3
m~3).
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