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 14 

Abstract. Nitrous acid (HONO), one of a reactive nitrogen oxide, plays an important role in 15 

the formation of ozone and fine aerosols in the urban atmosphere. In this study, a new simulation 16 

approach is presented to calculate the HONO mixing ratios using a deep neural technique based 17 

on measured variables. The “Reactive Nitrogen species simulation using deep neural network 18 

(RND)” is implemented in Python. The first version of RND (RNDv1.0) is trained, validated, 19 

and tested with HONO measurement data obtained in Seoul from 2016 to 2021. RNDv1.0 is 20 

constructed using k-fold cross validation and evaluated with index of agreement, correlation 21 

coefficient, root mean squared error, and mean absolute error. The results show that RNDv1.0 22 

adequately represents the main characteristics of the measured HONO, and it is thus proposed 23 

as a supplementary model for calculating the HONO mixing ratio in a polluted urban 24 

environment.  25 

 26 

1. Introduction 27 

Surface ozone (O3) pollution has worsened over continental areas (Arnell et al., 28 

2019;Monks et al., 2015;Varotsos et al., 2013;IPCC, 2014). Particularly, a warmer climate is 29 

expected to increase the surface O3 concentrations and peak levels in polluted regions 30 

depending on its precursor levels (IPCC, 2021). As a short-lived climate pollutant (SLCP), O3 31 

interacts with the global temperature via positive feedback (Shindell et al., 2013;Myhre et al., 32 

2017;Stevenson et al., 2013). Therefore, accurate predictions of the mixing ratios and variations 33 
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of the surface O3 are essential. While operational models such as the community multiscale air 34 

quality (CMAQ) have been widely used for this purpose, uncertainties still arise from poorly 35 

understood chemical mechanisms involving reactive nitrogen oxides (NOy) and volatile organic 36 

compounds (VOCs), and the lack of their measurements (Mallet and Sportisse, 2006;Canty et 37 

al., 2015;Akimoto et al., 2019;Shareef et al., 2019;Cheng et al., 2022).  38 

In the urban atmosphere, NOy typically includes NOx (NO + NO2), HONO, HNO3, 39 

organic nitrates (e.g., PAN), NO3, N2O3, and particulate NO3
−. These species are produced and 40 

recycled through photochemical reactions until they are removed through wet or dry deposition 41 

(Liebmann et al., 2018;Brown et al., 2017;Wang et al., 2020;Li et al., 2020). NOy plays an 42 

important role in critical environmental issues concerning the Earth’s atmosphere from local air 43 

pollution to global climate change (Sun et al., 2011;Ge et al., 2019). The oxidation of NO to 44 

NO2 and finally to HNO3 is the backbone of the chemical mechanism producing ozone (O3) 45 

and PM2.5 (particulate matter with size ≤ 2.5 μm), and determines the oxidization capacity of 46 

the atmosphere. Recently, as O3 has still increased even with decreasing NOx emissions over 47 

many regions, including East Asia, interest in the heterogeneous reaction of NOy, which is yet 48 

to be understood, has increased (Brown et al., 2017;Stadtler et al., 2018). Currently, the lack of 49 

measurement of individual NOy species is hindering a comprehensive understanding of the 50 

heterogeneous reactions (Anderson et al., 2014;Wang et al., 2017b;Chen et al., 2018b;Akimoto 51 

and Tanimoto, 2021;Stadtler et al., 2018).  52 

In particular, the evidence for the heterogeneous formation of HONO in relation to high 53 

PM2.5 and O3 occurrences in urban areas is increasing (e.g., (Li et al., 2021b)). As an OH 54 

reservoir, HONO expedites the photochemical reactions involving VOCs and NOx in the early 55 

morning, leading to O3 and fine aerosol formation. Nonetheless, its formation mechanism has 56 

not been elucidated sufficiently enough to be constrained in conventional photochemical 57 

models. In addition to the reaction of NO with OH (Bloss et al., 2021), various pathways of 58 

HONO formation have been suggested via laboratory experiments, field measurements, and 59 

model simulations: direct emissions from vehicles (Li et al., 2021a) and soil (Bao et al., 2022), 60 

photolysis of particulate nitrate (Gen et al., 2022), and heterogeneous conversion of NO2 on 61 

various aerosol surfaces (Jia et al., 2020), ground surface (Meng et al., 2022), and microlayers 62 

of the sea surface (Gu et al., 2022). Among these, the heterogeneous reaction mechanism on the 63 

surface is of major interest.  64 
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HONO has been mostly measured during intensive campaigns in urban areas using 65 

various techniques, such as a long path absorption photometer (Kleffmann et al., 2006;Xue et 66 

al., 2019), chemical ionization mass spectrometry (Levy et al., 2014;Roberts et al., 2010), ion 67 

chromatography (VandenBoer et al., 2014;Gil et al., 2020;Ye et al., 2016;Xu et al., 2019), 68 

monitor for aerosols and gases in ambient air (MARGA) (Xu et al., 2019), and quantum cascade 69 

- tunable infrared laser differential absorption spectrometry (QC-TILDAS) (Lee et al., 2011;Gil 70 

et al., 2021). Among these methods, QC-TILDAS has served as a reference for the 71 

intercomparison of measurement data obtained using different techniques due to its high time 72 

resolution and stability (Pinto et al., 2014). Previous studies have reported that the maximum 73 

HONO of several ppb levels has been observed at nighttime. In comparison, the WRF-Chem 74 

and RACM2 model captured approximately 67 %–90 % of the observed HONO in megacities 75 

such as Beijing (Tie et al., 2013;Liu et al., 2019).  76 

In recent years, machine learning (ML) methods have been employed in the 77 

atmospheric science field for pattern classification (e.g., new particle formation event) and 78 

forecasting and spatiotemporal modeling of O3 and PM2.5 (Arcomano et al., 2021;Shahriar et 79 

al., 2020;Krishnamurthy et al., 2021;Cui and Wang, 2021;Joutsensaari et al., 2018;Chen et al., 80 

2018a;Kang et al., 2021). Among the ML methods, the neural network (NN) architecture is 81 

widely used owing to its powerful ability to process large amounts of data, realizing 82 

performance improvement in comparison to the performance of conventional models through 83 

integration with physical equations (Reichstein et al., 2019;Schultz et al., 2021). As an NN 84 

architecture, a multilayer artificial NN (ANN) that is denoted as a deep NN (DNN) employs a 85 

statistical method that learns nonlinear relations in data and yields the optimum solution for the 86 

target species without prior information about the physicochemical processes. DNN is more 87 

beneficial than other NN architecture, such as convolution NN or long-short term memory, 88 

because it works well for discrete spatiotemporal data. Generally, the performance of DNN is 89 

similar to or better than that of other ML methods for small as well as large datasets (Baek and 90 

Jung, 2021;Dang et al., 2021;Sumathi and Pugalendhi, 2021). 91 

The DNN method requires lots of data to employ it as atmospheric chemical constituent 92 

estimation; therefore, the size of the measurement data is a limiting factor for trace species, 93 

such as HONO, that are not routinely measured. In this regard, previous studies had been 94 

attempted to estimate the daily average HONO mixing ratio by employing ensemble ML models 95 
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with satellite measurements (Cui and Wang, 2021). Furthermore, a simple NN architecture 96 

using ground measurement variables that is believed to be deeply involved in HONO formation, 97 

was used to calculate the hourly HONO mixing ratio (Gil et al., 2021). The accuracy of the 98 

hourly HONO estimated from input variables, such as aerosol surface areas and mixed layer 99 

height, is rated better than the daily HONO estimate. 100 

This study aims to develop a user-friendly “reactive nitrogen species simulation using 101 

DNN’ model (RNDv1.0) that estimates the HONO mixing ratios from the real-time 102 

measurements of criteria pollutants and meteorological variables. This study is the first to 103 

calculate the HONO mixing ratios using RNDv1.0. The entire construction process is 104 

comprehensively described, and the performance is evaluated via comparison with the results 105 

of simulations using a commonly used model and observations over several years. 106 

 107 

2. Model description 108 

 109 

The RNDv1.0 development follows systematic steps that are similar to a general ML 110 

model construction workflow, including data collection, preprocessing data, building the DNN, 111 

training, and validating the model, and testing the model performance (Figure 1). RNDv1.0 is 112 

written in Python, and the libraries necessary to build and operate RNDv1.0 are listed in Table 113 

1. The dataset used to train, test, and validate can be downloaded from Gil et al. (2021). 114 

 115 

2.1. Collection of measurement data for model construction 116 

 117 

To construct RNDv1.0, measurement data were obtained, including HONO, reactive 118 

gases, and meteorological variables. Note that the HONO measurement data were used for 119 

model construction but not required to run the RND model. The HONO mixing ratio was 120 

measured in Seoul using a QC-TILDAS system during May–June 2016, June 2018, and April–121 

June 2019 (Lee et al., 2011;Gil et al., 2021), and a MARGA system during May–June 2021 and 122 

October–November 2021 (Gil, 2022). When testing and evaluating the atmospheric HONO 123 

measurement methods, QC-TILDAS was chosen as the reference method to compare the 124 
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ambient HONO mixing ratios measured using several different techniques owing to its 125 

advantages of low detection limits (~0.1 ppbv) and high temporal resolution (Pinto et al., 2014). 126 

More details on measurements can be found elsewhere (Gil et al., 2021;Gil, 2022).  127 

HONO was measured at the Olympic Park (37.52° N, 127.12° E) during the Korea–128 

United States Air Quality (KORUS-AQ) study in 2016 (Kim et al., 2020;Gil et al., 2021), at the 129 

campus of Korea University (37.59° N, 127.03° E) in 2018 and 2021, and at the site near the 130 

Korea University campus (37.59° N, 127.08° E) in 2019 (NIER, 2020) (Figure S1). In addition 131 

to HONO, trace gases including O3, NO2, CO, and SO2 as well as meteorological variables 132 

including temperature (T), relative humidity (RH), wind speed (WS), and wind direction (WD) 133 

were measured. Note that HONO was not significantly correlated with any of these variables 134 

(Figure S2). The measurement statistics for the entire experimental periods are presented in 135 

Table 2 and Table S1. In brief, the 10th and 90th percentile mixing ratios of hourly HONO, NO2, 136 

and O3, were 0.3 and 2.0 ppbv, 10.0 and 47.0 ppbv, and 8.0 and 75.0 ppbv, respectively.  137 

 138 

2.2. Data preprocessing  139 

 140 

The observation dataset was prepared for RNDv1.0 model construction. As input 141 

variables, hourly measurements of chemical and meteorological variables were used, including 142 

the mixing ratios of O3, NO2, CO, and SO2, along with T, RH, WS, WD, and solar zenith angle 143 

(SZA) to estimate the target species, HONO, as the output. The WD in degrees was converted 144 

to a cosine value for continuity. In the last step of data processing, hourly measurement sets 145 

were removed from the input data set if any of the nine variables were missing. Finally, 54.2 % 146 

of all the available measurement data (2847) were used to construct and evaluate RNDv1.0. 147 

Since the measurements of the considered nine variables varied over a wide range in 148 

different units, they were normalized to avoid bias during the calculations. Among the widely 149 

used normalization methods, min–max scaling method was adopted, and the input variables 150 

were normalized against the minimum and maximum values herein (Eq. 1):  151 

 152 

xsca =
xraw−F2(X)

⁡ F1(X)
,        (Eq. 1) 153 
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 154 

where xraw  is the raw data, xsca is the scaled value, and the scale factors of F1 and F2 correspond 155 

to the maximum-minimum and minimum values of the input variable (X), respectively, which 156 

are listed in Table 2.  157 

 158 

2.3. Neural network architecture and hyperparameters 159 

 160 

The network was built using the above input variables to calculate HONO. RNDv1.0 161 

comprises five hidden layers (Figure 2), which employ an exponential linear unit (ELU) as an 162 

activation function (Eq. 2).  163 

 164 

ELU :  ϕ(𝑥) =  {
e𝑥 −1 (𝑥 < 0)

𝑥 (𝑥 ≥ 0)
.      (Eq. 2) 165 

 166 

In a DNN, an activation function creates a nonlinear relationship between an input 167 

variable and an output variable. When constructing a DNN model, ELU affords the advantage 168 

of a fast training process and exhibits better performance in handling negative values than other 169 

activation functions (Wang et al., 2017a;Ding et al., 2018). Moreover, the mean squared error 170 

and Adam optimizer were applied as the loss function and optimization function, respectively. 171 

The learning rate, epoch, and batch were set as 0.01, 100, and 32, respectively.  172 

 173 

2.4. Model training and k-fold cross validation 174 

 175 

RNDv1.0 was trained, validated, and tested with the HONO measurements obtained 176 

during May–June 2016 and June 2018, April–June 2019, and May–June 2021 and October–177 

November 2021, respectively (Figure 3). The number of data used for the training and 178 

validation was 1122 and that for testing was 1725. 179 
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Using the hyperparameters specified in the previous section, the model performance 180 

was first validated using the k-fold cross validation (KFCV) method, which is especially useful 181 

for small datasets (Bengio and Grandvalet, 2003). In the KFCV method (Figure 3), the entire 182 

data are randomly divided into k subsets, of which k − 1 sets are used for training and the 183 

remaining one is used for validation. In this study, k was set to 5. The accuracy was determined 184 

via index of agreement (IOA), which is expressed as follows (Eq. 3):  185 

 186 

IOA = 1−  
∑ (Oi−Pi)

2n
i=1

∑ (|Pi−O̅|+|Oi−O̅|)
2n

i=1

,     (Eq. 3) 187 

 188 

where 𝑂𝑖, 𝑃𝑖, 𝑂, and n are the observed value, predicted value, average of the observed values, 189 

and number of nodes, respectively.  190 

As IOA varies according to the number of nodes, it was calculated for the measured 191 

(HONOobs) and calculated (HONOmod) mixing ratios by varying the number of nodes from 0 to 192 

100 in each hidden layer. The best performance was obtained with 41 nodes, for which the 193 

average IOA was 0.89 ± 0.01 (Figure 4). The high IOA value signifies that the performance of 194 

RNDv1.0 is adequate, and it is capable of simulating the ambient HONO mixing ratio using the 195 

routinely measured criteria pollutants and meteorological variables. 196 

The performance of RNDv1.0 was compared with that of other models, including 197 

CMAQv5.3.1 (Appel et al., 2021), random forest (RF), and single-layer ANN (Gil et al., 2021), 198 

using the 2016 measurement data. The RF model was constructed using the KFCV method and 199 

the same input variables as RNDv1.0 (Figure S4). Its performance was evaluated based on mean 200 

absolute error (MAE), root mean square deviation (RMSE), and Pearson correlation coefficient 201 

(r): 202 

 203 

MAE =
∑ |Oi−Pi|
n
i=1

𝑛
,       (Eq. 4) 204 

RMSE = √
∑ (Oi−Pi)

2n
i=1

𝑛

2
,       (Eq. 5) 205 

r = 
𝑐𝑜𝑣(O,P)

σOσP
,        (Eq. 6) 206 
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 207 

where σ and 𝑐𝑜𝑣 denote the standard deviation and covariance, respectively. 208 

All models except CMAQ simulated the measured HONO mixing ratio fairly well 209 

(Figure 5). CMAQ not only underestimated the measured HONO but also failed to represent its  210 

diurnal variation (Figure 6). The statistical information about the performance of the four 211 

models is presented in Table 3. The mean HONO mixing ratio measured and calculated using 212 

CMAQ, RF, ANN, and RNDv1.0 was 0.94, 0.09, 0.95, 0.88, and 0.89 ppbv, respectively. Of the 213 

four models, RF exhibited the best performance followed by RND. ANN advantageously 214 

calculates HONO more accurately than RND as it uses more input variables, but it has a lower 215 

data capture rate (41.5 %) compared to RND (97.7 %) or RF (85.3 %).  216 

 217 

2.5. Model test 218 

 219 

RNDv1.0 and the RF model were tested using data obtained in June 2018, April 2019, 220 

and May–June 2021 and October–November in 2021, which were not used for RNDv1.0 221 

training (Figure 3). Note that the RF model outperformed the other three models in the training 222 

and validation process (Figure 5). Although the performance of RNDv1.0 was slightly lower 223 

than that of the RF model, simulated and measured HONO mixing ratios were in good 224 

agreement. Interestingly, the performance of the RF model was much worse than RNDv1.0 in 225 

the testing process (Figure 7). The IOA and correlation coefficient of the RF model were 226 

extremely low (0.29 and −0.02, respectively).  227 

The performance of RNDv1.0 was slightly lower than that of the RF model, but it well 228 

traced the HONO mixing ratio. Among the test dataset, the early winter (October–November) 229 

data are particularly valuable for demonstrating the applicability of RNDv1.0 because they stem 230 

from different weather conditions than the training dataset. For example, HONO mixing ratios 231 

reached over 4 ppbv when the daily average PM2.5 concentration increased to 120 g m−3 during 232 

severe haze pollution events. Therefore, in the next step, the performance of RNDv1.0 was 233 

compared for the two cases by dividing the testing dataset into a group in which all input 234 

variables fall within the range of the training dataset and a group which does not meet this 235 
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criterion. In RNDv1.0, there was no significant difference in performance between the two 236 

groups (Figure S5 and Table S2).  When the data in which at least one input variable does not 237 

fall within the range of the training dataset were excluded from the test dataset, no significant 238 

difference was observed in the performance of RNDv1.0 between the two that meet same 239 

atmospheric conditions or do not meet the criteria (Figure S5 and Table S2). These extreme 240 

atmospheric conditions can make the model performance be worsened. Except for these 241 

extremes, RNDv1.0 well traced the variation of the HONO mixing ratio. These results 242 

demonstrate the applicability of RNDv1.0, which is not strictly constrained by atmospheric 243 

conditions. The influence of input variable are further analyzed in the next section. 244 

 245 

2.6. Bootstrap test and feature importance 246 

 247 

 A simple bootstrapping test was conducted for both RNDv1.0 and the RF model to 248 

evaluate the relative importance of the input variable to the HONO estimates. In this analysis, 249 

each variable was set to zero and MAE was calculated as an evaluation metrics (Kleinert et al., 250 

2021). Among the nine input variables of RNDv1.0, NO2 was found to have the greatest 251 

influence on HONO concentration, followed by RH and T (Table 5). The highest MAE of 0.59 252 

ppbv could be considered as the maximum uncertainty of RNDv1.0 due to the input variable. 253 

The bootstrap test result well agreed with that of our previous study (Gil et al., 2021), where 254 

more variables such as aerosol surface area and mixing layer height were incorporated into the 255 

model, it highlights the crucial role of precursor gases and heterogeneous conversion in HONO 256 

formation.  257 

In contrast, in the RF model, O3 was the most important variable. This is likely due to the 258 

distinct inverse relationship between O3 and HONO in the diurnal patterns, and the O3 259 

variations over a wide range. In conjunction with the evaluation of the test dataset presented in 260 

the previous section, the results of the feature importance for the two models demonstrate the 261 

ability of RNDv1.0 to simulate the HONO mixing ratio more adequately in urban areas 262 

compared to the RF model. Thus, it is reasonable to state that RNDv1.0 constructed using 263 

routinely measured criteria pollutants and meteorological variables can sufficiently capture the 264 

HONO variability in the urban atmosphere. 265 
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 266 

3. Operation and application of RNDv1.0 267 

 268 

The RNDv1.0 package is provided as an operational model, and the .h5 files that can 269 

be opened in Python. To run RNDv1.0, the measurement data for nine input variables are 270 

required and needed to be properly prepared, as described in Section 2.2. Once the input data 271 

are ready, open RNDv1.0 with the input data files using the code provided in the example 272 

(Figure S3). Then, RNDv1.0 calculates and presents the HONO results as scaled values (xsca), 273 

which then can be converted to the HONO mixing ratio (ppbv) via the two scale factors shown 274 

in Table 2 (Eq. 5):  275 

 276 

HONO (ppbv) = HONOsca × F1(HONO) + F2(HONO).   (5) 277 

 278 

The HONO calculated using Eq. 5 can be applied to an urban photochemical cycle 279 

simulation. As is already known, the photolysis of HONO is a major source of OH radicals in 280 

the early morning when the OH level is low, and this OH affects daytime O3 formation through 281 

photochemical reactions with VOCs and NOx, which are primarily emitted during the morning 282 

rush hour in urban areas. Furthermore, the OH produced from HONO promotes the 283 

photochemical oxidation of SO2 and VOCs, leading to aerosol formation. However, the HONO 284 

formation mechanism is still poorly understood, which hinders the accurate simulation of O3 285 

and fine aerosols as well as HONO in conventional photochemical models.  286 

The framework for 0-dimension atmospheric modeling (F0AM), which utilizes the 287 

MCM v3.3.1 chemical reaction mechanisms (Wolfe et al., 2016), can be used to simulate the 288 

diurnal variation of O3 with the measurements of several reactive gases (NO, NO2, CO, HCHO, 289 

VOCs, and HONO). Detailed information about F0AM can be found in 290 

(https://sites.google.com/site/wolfegm/models) and in previous studies (Wolfe et al., 2016; Gil 291 

et al., 2020). When the F0AM model is run without HONO, it is unable to reproduce the 292 

concentration and diurnal cycle of the observed O3 (Figure 8). In comparison, the model well 293 

simulates the O3 within 2 ppbv when HONO is considered, which is the result of RND v1.0. 294 
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This is mainly due to the missing OH produced by HONO photolysis in the early morning. Its 295 

production rate is estimated to be 0.57 pptv s−1, contributing approximately 2.28 pptv to the OH 296 

budget during 06:00–11:00 (Local Sun Time) (Gil et al., 2021). Given that OH is mainly 297 

produced from the photolysis of O3 under high sun, the early morning supply of OH from 298 

HONO photolysis will expedite the photochemical cycle involving NOx and VOCs, promoting 299 

O3 and secondary aerosol formation. The presence of HONO in the photochemical model 300 

allows for the accurate estimation of OH radicals; thus, the incorporation of RNDv1.0 into 301 

conventional models will improve their overall performance.  302 

 303 

4. Summary and implications 304 

 305 

In this study, we developed the RND model to calculate the mixing ratio of NOy in 306 

urban atmosphere using a DNN along with measurement data. The target species of RNDv1.0 307 

is HONO, and its mixing ratio is calculated using criteria pollutants, including O3, NO2, CO, 308 

and SO2, as well as meteorological variables, including T, RH, WS, WD, and SZA. These 309 

variables are routinely measured through monitoring networks. RNDv1.0 was trained and 310 

validated using the HONO measurements data obtained in Seoul by adopting a KFCV method 311 

and tested with other HONO datasets. The test results demonstrate that RNDv1.0 adequately 312 

captures the characteristic variation of HONO.  313 

RNDv1.0 was constructed using the measurements made in a high NOx environment where 314 

the maximum NO2 reached about 80 ppbv.  During the measurement period, the HONO mixing 315 

ratio was increased up to about 7 ppb under the influence of air masses originating from China. 316 

When applying RNDv1.0 to regions or times heavily affected by transport, the model could 317 

possibly underestimate the HONO level without more detailed information, such as 318 

nanoparticles. Indeed, a previous study showed that HONO formation is closely related to the 319 

surface areas of submicron particles (Gil et al., 2021). Nevertheless, RNDv1.0 is 320 

advantageously a relatively inexpensive test for measurement quality control and location 321 

selection, and it supports the data used for traditional chemistry models based on the current 322 

knowledge of the urban photochemical cycle. Therefore, RNDv1.0 can serve as a 323 

supplementary tool for conventional forecasting models. Attempts are currently being made to 324 



12 

 

estimate ground HONO from satellite observations (Clarisse et al., 2011;Theys et al., 325 

2020;Armante et al., 2021), and RNDv1.0 will be useful for validating the satellite-derived 326 

HONO. 327 

 328 
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Figures and Tables 350 

 351 

 352 

Figure 1. The main processes for configuring RNDv1.0 (*: calculated values)  353 
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  354 

Figure 2. Structure of the deep neural network built for RND v1.0. 355 

 356 

  357 
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 358 

Figure 3. Training, validation, and test design to build RNDv1.0 using the measurement data. 359 

The k-fold cross validation was performed using randomly divided five subsets of the training 360 

data set. 361 

  362 
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 363 

Figure 4. Index of Agreement (IOA) for k-fold cross validation. Solid circle and red line 364 

represent IOA for each validation (k = 5) and the average of five validation sets at each node 365 

number.366 
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 367 

Figure 5. Comparison between the measured HONO (HONOobs) and calculated HONO 368 

(HONOmod) using CMAQv5.3.1 (blue triangle), RF (purple square), ANN (orange star), and 369 

RNDv1.0 (red circle) during the KORUS-AQ campaign (May–June 2016). 370 
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   372 

Figure 6. Average diurnal variation of the measured HONO (HONOobs) and calculated 373 

HONO (HONOmod) using CMAQv5.3.1 (blue triangle), RF (purple square), ANN (orange 374 

star), and RNDv1.0 (red circle) during the KORUS-AQ campaign (May–June 2016). 375 
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 377 

Figure 7. Relationship between measured HONO (HONOobs) and modeled HONO (HONOmod) 378 

using (a) RNDv1.0 and (b) a Random Forest model for the test dataset. 379 

  380 
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 381 

 382 

Figure 8. For June 2016, the diurnal variations of O3 (line) and OH production rate (bar) 383 

calculated using the F0AM photochemical model with (orange) and without (blue) HONO 384 

estimated from the RNDv1.0 model. The measured and calculated O3 values are compared.  385 

  386 
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Table 1. Resources for constructing the RND model. 387 

 Version Remark 

Python v3.8.3  

CUDA v10.1 *If using GPU 

CuDNN v7.6.5 *If using GPU 

Tensorflow v2.3.0 Python library 

Keras v2.4.3 Python library 

Pandas v1.0.5 Python library 

Numpy v1.18.5 Python library 

*GPU denotes graphic processing unit  388 
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Table 2. Input variables and their concentrations (10th–90th percentile of the hourly 389 

measurements), coverage, and scale factors for the RNDv1.0 model. Measurements were 390 

conducted in Seoul during May–June in 2016 and 2019. 391 

 10th–90th percentile (unit) 
Coverage 

 (%) 

Scale Factor1 

(F
1
)* 

Scale Factor 2 

(F
2
)** 

Input Variables 

O
3
 12.1–90.4 (ppbv) 95.5  204.738 0.842 

NO
2
 11.0–48.6 (ppbv) 80.6 79.925 2.375 

CO 252–743 (ppbv) 95.1 975.248 137.253 

SO
2
 1.9–6.4 (ppbv) 95.6  12.479 0.958 

Solar Zenith Angle  22.7–118.4 (º) 100.0 112.317 14.195 

Temperature 15.9–26.7 (°C) 99.4  24.240 8.610 

Relative Humidity 29.2–79.1 (%) 99.4  88.545 10.555 

Wind Speed 0.2–3.7 (m/s) 99.4  7.581 0.005 

Wind Direction 45.4–287.5 (º) 99.4  359.565 0.235 

Output Variables 

HONO 0.3–2.0 (ppbv) 81.1 % 3.447 0.013 

* Maximum–Minimum 392 
** Minimum value 393 

394 
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Table 3. Performance of the chemical transport model (CMAQv5.3.1) and machine learning 395 

(ML) models, including Random Forest (RF), Artificial Neural Network (ANN), and RNDv1.0, 396 

on the measurement data from 2016 KORUS-AQ campaign, which were used for training. 397 

 CMAQv5.3.1 RF ANN RNDv1.0 

IOA 0.44 0.99 0.86 0.9 

r −0.07 0.99 0.81 0.84 

MAE 0.82 0.1 0.38 0.27 

RMSE 1.06 0.12 0.41 0.37 

 398 

  399 
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Table 4. Results of the bootstrap test of measurement data used to train the RF and RNDv1.0 400 

models. The greater the MAE, the greater the influence of the variable. 401 

Variable 

RF RNDv1.0 

MAE Feature Importance MAE Feature Importance 

- 0.10 - 0.28 - 

O3 0.57 1 0.29 8 

NO2 0.24 4 0.59 1 

CO 0.19 7 0.37 5 

SO2 0.17 8 0.34 6 

Solar zenith Angle (SZA) 0.25 2 0.41 4 

Temperature (T) 0.21 5 0.52 2 

Relative humidity (RH) 0.25 3 0.52 2 

Wind speed (WS) 0.20 6 0.34 6 

Wind direction (WD) 0.13 9 0.29 8 

 402 

  403 
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