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Abstract

The  impact  of  climate  change  on  crops  and  agricultural  yield  is  an  actual  threat  while  being  a
challenging issue due to the high complexity of factors that intervene at the local scale of the crop.
Assessing it, requires the use of coupled models climate-phenology, meanwhile methods to identify
management and genotypes suitable for local future conditions, in order to sustain adaptation strategies.
We present  the implementation  and use  of  a  new integrated  climate-phenology adaptation  support
modeling  system based on regional  CORDEX climate  models  and the CERES Maize model  from
DSSAT platform,  with  new modules  for  optimal  management  and genotype  identification  using a
hybrid method: deterministic modeling and -ML/ genetic algorithms. It was run as a regional pilot over
Romania,  operating  in  real-time  in  interaction  with  users,  performing  agro-climate  projections
(combination of fertilization, sowing date, soil) and providing best crop management simulated under
climate change projections. Multi-model ensemble simulations for two climate scenarios RCP4.5 and
RCP8.5 and twelve management scenarios show new results for the region. 
For the actual genotype we find a projected mean decrease in yield in both climate scenarios for all
sowing dates and fertilization levels tested, response shown to be sensitive to initial soil parameters.
This  response  was  linked  to  two  factors:  a  shorter  growing  season  by  up  to  10% and  a  loss  of
fertilization efficiency in a warmer climate. A warning points to results showing a narrowing of agro-
management  opportunities  for  crop yield  but  in  opposite  it  is  shown a significant  role  of  optimal
genotype-range identification that may provide crop solutions under climate change even in extreme
years. Identifying best genotype under warmer climate along sets of six cross-parameter simulations
show systematic lower values of the maximal yields, but emphasizes genotype windows of increases in
the intermediate yield values in scenarios compared to actual climate. The highest harvest sensitivity to
genotype is shown to be to changes in the thermal time to juvenil respectively to maturity stage under
warmer climate.  The results  sustain using a deterministic  coupled modeling system combined with
data-driven modeling for identifying optimal adaptation including fertilization paths that contribute to
climate change mitigation.
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1. Introduction

According to the IPCC reports (IPCC, 2022) climate change is evident and the prospects appear more
worrying today than a few decades ago. Although progress is being made in studying the impacts of
climate change on crops and agricultural yield (Arnell and Freeman, 2021; Hatfield at al, 2021, these
are rarely directly applicable to provide solutions due to the extremely high complexity of factors that
intervene at the local scale of the crop (Malhi et al., 2021, Eyring et al., 2021). These factors include
culture-scale  sensitivities  to  the  interacting  climate  sub-components  atmosphere/  soil/  phenological
processes/ ecosystems, to climate change, to natural causes or human activities (Wheeler and Braun,
2013, Xie et al, 2023).

Taking into account scientific research estimating that the world population will continue to grow, and
it is expected to arrive to 9,1 milliards until the year 2050 (Godfray and Charles, 2010), the total food
yield will have to grow by 70-100% (Smil, 2005; World Development Report,  2008; Selvarju et al,
2011). Meanwhile the agro-climatic conditions are expected to become vulnerable and gradually, more
deficient in the context of climate change and its impact on water availability (Villalobos et al., 2012;
van Ittersum et al., 2013; Roccuzzo et al., 2014; Stehr and von Storch, 2009). 
Another face of the problem comes from the need that approaches and solutions should both: merge
user needs, and be in line with neutral climate adaptation stringency (Semenov et Stratonovitch, 2015;
Dainelli et al., 2022; Mitchell et al., 2022).

Early studies on climate change impact  on crops have pointed to the need of very high resolution
modeling, capable of representing management practices and local scale impact of climate on plant as
temperature and precipitation (Trnka et al, 2015; Adams et al., 1998; Mkee et al, 1993) affecting water
stress (e.g. the stomatal opening, stem water potential, leaf transpiration efficiency (Espadafor et al,
2017)). Further at regional scale, water availability relation to yield indicated a strong dependence on
crop, region, time-scale and plant physiological stage (Webber et al, 2020; Webber et al. 2018; Ceglar
et al,, 2020; Wu et al, 2021; Berti et al.  2019; Marcinkowski and Piniewski 2018). In this regard, under
future  climate  changes,  perspectives  for  corn  yield  rises  (15%)  under  irrigated  conditions  were
identified  by  simulations  for  areas  currently  more  arid  than  the  geographical  region  of  interest
considered  in  this  paper  (Kothari  et  al.,  2022).  This  points  out  the  need  for  continuation  of  the
simulations taking in consideration soil humidity accuracy and various irrigation strategies.
Apart from atmospheric conditions, soil changes significantly affect plant growth through interactions
with climate and through changes in chemical compositions. Increasing air temperature was shown to
affect the soil carbon budget, its decrease affecting plant and root level processes, biochemical cycles,
and species (Abhik Patra et al, 2021). 

Modeling  at  local,  regional  and  also  global  scale  reported  significant  advances  in  understanding,
simulating and projecting future crop (Tao et al., 2009; Ganguly et al., 2010; Cock et al., 2021; Chen
and Tao, 2022; Schauberger et al.,  2020). These emphasize global projected yield mean reductions
(Asseng et al., 2015) with differences in the regional pattern of climate change impact on crop and
yield (Li et al. 2022). Not only projected regional but also time variability of the impact appears larger
and accelerated, motivating intensified efforts on seasonal predictions of plant development and yield
(Baez-Gonzalez et al., 2005; Jin et al., 2022) using crop models. These simulations’ results significance
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was analyzed suggesting the need to include crop uncertainty in climate scenarios assessments (Meehl
et al., 2007, Rosenzweig  et al., 2013, Basso Bruno et al., 2019; Chapagain et al., 2022). In addition,
model  simulations  proved  to  be  a  highly  useful  tool  in  plant  breeding  analysis  (Bernardo,  2002;
Hoogenboom  et  al.,  2004;  Cooper  and  Messina  et  al.,  2023)  considered  a  support  in  developing
superior genotypes and plant-breeding methods for maximizing crop effectiveness. Demonstrations of
model simulations’ potential as a valuable tool for breeders were reported in finding paths for optimal
cultivar using  techniques such as parental selection, breeding by design, etc. (Peleman and van der
Voort, 2003, Qiao et al., 2022).
In most recent years developments climate-crop modeling extended from deterministic crop models
(Boogaard et al. 2013; Morell et al., 2016) to data-driven techniques or hybrid approaches for assessing
crop response to weather and climate change (Zhuang, 2024; Morales and Villalobos, 2023,  Meroni et
al., 2021; Schwalbert et al., 2020; Zhang et al., 2021). Statistical methods as well as ML used for crop
forecast and modeling were however shown to bring for now, limited benefits (Paudel et al. 2021),
pointing to possibly hybrid techniques that include physical process in the modeling as a key approach
for this challenging issue. 
On the other hand, deterministic breeding techniques using model simulations require a huge number
of simulations,  analysis  and inter-comparisons of predicted  cross performance (Wang and Pfeiffer,
2007).
 
Here we present a novel approach developed in the frame of the PREPCLIM (“preparing for Climate
Change”) project in which we solve plant phenology development using deterministic modeling and
merge this  technique with ML-genetic  algorithms along simulations  in  order to iteratively  select  a
cross-range of optimal genotype parameters according to a pre-set user-criteria of the optimum. Genetic
algorithms (GA) simulate the evolution of a population by iteratively applying genetic operators, such
as selection, crossover, and mutation, to a set of candidate solutions (chromosomes). The chromosomes
represent potential solutions to the problem and are encoded as strings of binary or symbolic values,
with their fitness assessed by a problem-specific evaluation function here, user-request based. GA was
successfully used with DSSAT for optimizing irrigation and fertilizer applications (Bai  et al, 2021,
Wang et al, 2023).

The hybrid approach implemented here presents the advantage of physically treating the crop  complex
process involved each time along optimizing iterations, so allowing analysis of causes of the responses
to  various  climate  or  /and  management  scenarios,  meanwhile  enhancing  the  ability  of  choosing
optimum conditions  from a continuous interval,  not a discrete  one,  of gene parameter  values.  The
continuum values approach is an important feature mainly for isolated extremes, or broad parameters’
range, both of increasing interest, as we show in this work the a tendency toward narrower adaptation
opportunity windows under warmer climate.

We present the system developed and data flow in section 2. The motivation of its development, linked
to projected climate change in the target region are shown in section 3a. We show results of the system
used to estimate changes in plant phenology and crop parameters under climate change scenarios and
for different management scenarios, for the actual control genotype in section 3b. Then we discuss in
section 3c, results using the genotype optimization package of the system. Perspectives and conclusions
are discussed in section 4.
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2. Data and methods

Projected changes in agro-climate indicators over Romania are computed for two climate scenarios:
RCP45  and  RCP85  as  anomalies  reported  to  historical  simulations,  using  an  ensemble  of  three
CORDEX  models  (Benestad  et  al.,  2021).  Then,  projected  changes  in  phenological  and  yield
parameters are simulated using the DSSAT crop model (Hoogenboom et al., 2019; Jones et al., 2003)
forced with the atmospheric conditions from the CORDEX models (from GFDL, HadGEM, MiIROC,
IPSL, NorESM), for each model of the ensemble for the historical period and for each of the two
climate scenarios. 
A software package was developed for the DSSAT model  that   performs identification  of optimal
model parameters set-up according to user-criteria, user chosen climate-management scenario, region,
time-horizon. The user-criteria for optimisation includes maximum yield,  stable yield, across years,
minimizing the amount of leached nitrogen below the maximum level of the root front (reducing the
risk of water pollution), etc. Management scenarios include cross-options for sowing date, fertilization
amount,  genotype  (six  parameters  defining  the  genotype).  By  default,  twelve  agro-management
simulations are performed, for four planting dates (separated by 5 days interval) and three fertilization
amounts with Nitrogen (zero, a mean value of the region and the double of the mean value). For each
agro-management scenario, genotype optimization by selection of the values for the cultivar related
coefficients (named further G-parameters) was performed through two methods: a fixed-discretisation
runs  and  post-processing  ordering  and  a  continuum  space-search  with  iterative  selection  along
simulations, by genetic algorithms methods (GA). The proposed GA-based method commences with an
initial population of randomly generated chromosomes and undergoes iterative cycles (generations). In
each generation, a selection process is performed to choose the fittest chromosomes to reproduce, based
on their fitness scores. Subsequently, crossover (recombination) and mutation operators are applied to
the selected chromosomes, generating offspring that inherit traits from their parents. The new offspring
replace some of the least  fit  individuals in the population,  ensuring that the average fitness of the
population improves over time. The convergence of the GA toward an optimal or near-optimal solution
is  achieved  by  balancing  exploration  (searching  the  problem  space  for  diverse  solutions)  and
exploitation (refining the best solutions found so far). Here GA have even been applied to develop an
innovative  crop selection  algorithm to optimize  genotype  along agro-management  scenarios.  Steps
along the algorithms are shown in Schema from Annex1. 

The overall output information from the system (climate, agro-climate and optimal paths) is directed on
two platform-components (Fig.1). One is a platform (Info-Platform, Fig.  1a) providing static  agro-
climate information at local scale (NUTS3) over the region, delivering climate indicators, agro-climate,
and agro-climate extremes indices computed from observations and re-analysis for the actual climate
and from climate scenarios (anomalies relative to historical runs) for future.
The second platform is an operational online, user-interactive in real-time component, where requests
are placed, treated, and results sent back to the user (User-Platform, Fig. 1b).
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Fig. 1a: Info-Platform for information at local scale,  derived from regional climate high resolution
models CORDEX, presenting climate, agro-climate, agro-climate extremes indices at NUTS3 level.

Fig. 1b: User-Platform: the user-interactive component to specify requests on adaptation management
simulations.  User request (left)  on: the region, time slice present or  climate scenarios,  choices for:
sowing date, fertilization/ irrigation (time, amount), genotype and output requests (right) on results:
yields,  phenology  dates,  evapo-transpiration,  N  and  C  balance,  optimal  management  path (dates,
management), optimal genotype.
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The pilot area where the system was implemented and validated is Southern Romania, for maize. The
potential beneficiaries of this system are users, researchers, farmers, and policy makers. Maize breeders
also can adapt using the system to the climate conditions by accommodating or testing genotypes that
are more resistant to challenging climate. Accelerated climate change makes such a system a useful
support in many respects.

The core  of  the modeling  system relies  on coupled  modeling  by DSSAT crop model  (Linux OS)
interfaced with regional climate models (Fig.2), with new feature allowing multiple cross-parameter
simulations  under  iterative  loops  (parameter  perturbations)  and  new  features  for  optimal  agro-
management x genotype identification (parameter’ value selection). 

Fig.  2:  DSSAT-core  and  the  Optimal-Crop  modeling  system.  Data  flow:  Input  data  (left),  output
information (right); model components and set-up (middle). Red modules were developed within the
project.
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Table 1: Treatment description in terms of the sowing date and fertilization amount, N [kg/ha].
Treatment TR1 TR2 TR3 TR4 TR5 TR

6
TR7 TR

8
TR
9

TR1
0

TR1
1

TR1
2

Sowing date 1.04 15.05 1.05 15.0
5

1.04 15.
05

1.05 15.
05

1.0
4

15.0
5

1.05 15.0
5

Fertilization
(3N)

Fx0=
0

Fx1=6
0

Fx2=1
20

Fx0 Fx1 Fx1 Fx1 Fx1 Fx
2

Fx2 Fx2 Fx2

Fertilization
(1N)

Fx0=
0

Fx1=2
3

Fx2=4
6

Fx0 Fx1 Fx1 Fx1 Fx1 Fx
2

Fx2 Fx2 Fx2

3. Results

a) Agro-climate changes in the region

a.1) Changes in agro-climate indicators
 
Agro-climate  Indicators  (provided  on  Info-Platform)  are  computed  from  CORDEX  models,  and
provide derived parameters information as time slices for ensemble or model metrics from country to
NUT3 level over South Romania. At the country region Fig.3 shows projected changes in main agro-
climatological characteristics. Region’s climate is expected to shift as shown (Fig. 3a) by the Johansson
continentality index (Baltas, E. 2007; Flocas, 1994) defined as:  

JCI=1.7 dT/ sin (phi) -20.4

where dT is the annual maximal thermal range of monthly mean temperatures and phi is the latitude.
Changes in JCI show an increase in the entire Southern part up to 5.5% of the interval required to
switch to “extreme continental” from “continental” class already in the first 10 years (2021-2030) in
the  ensemble  mean  (and  up  to  10% change  per  model).  Changes  are  towards  “maritime”  in  the
Northern half, this zonal differentiation creating strong thermal wind gradients and being stronger in
RCP85. For agriculture, an often-used regional-indicator is the scorching days number (SC), computed
over the region as the number of degrees in summer days (JJA) over the temperature of 34ºC. SC is
constantly increasing (Fig. 3a) in the overall country, with a stronger increase in RCP85 both, in the
first decade and until 2050 than in RCP45, emphasizing as well, the enhancement of the north- south
gradient.  Relevant  for  composed temperature  and precipitation,  the deMartonne aridity  index (IM)
computed as the ratio between annual total precipitation ([mm]) and annual mean temperature ([C]
+10) shows in Fig. 3b significant changes in its classes as well, decreasing (towards aridity) mainly in
the South, SE and SW, the main agricultural areas discussed here. Identification of projected changes in
aridity was shown to be a key issue for adaptation in semiarid environments (Ignacio Lorite, et al,
2018). 
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We summarize that changes are accelerating in the South in RCP85 (differences 2071-2100 versus Hist
are higher than those over 2021-2050). 

Fig. 3a: Historical (left) and changes relative to it under RCP45 (middle) and RCP85 (right) along
2021-2050, for: the Johansson conventionality index JCI (top): the JCI climate is marine for 0<k<33,
continental  for  33<k<66  and  exceptionally  continental  for  67<k<100;  the  Scorching  index  SC
(bottom). 

Fig. 3b: Historical (left) and changes relative to it under RCP45 (middle) and RCP85 (right) along
2021-2050 (top) and 2071-2100 (bottom) for the Martonne aridity index. (0<IM<10 arid; 10<IM<20
semi-arid; 20<IM<24 Mediterranean; 24<IM<28 semi-humid; 28<IM<36 wet; 36<IM<55 very wet;
ID>55 extreme wet).

a.2) Changes in agro-climate extremes
Projected changes in extremes are analyzed for the ensemble models in Fig. 4 that shows for Călăraşi
target subregion changes in RCP85 versus Hist, in the number of freezing days (FD), total precipitation
(RR),  severe precipitation (RR10 the number of days with daily accumulated > 10 mm) and total
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precipitation (RR), for each of the three decades (10 days) of April (the main sowing month for maize).
We note a decreasing tendency in FD for both decades, but interestingly intervals with even higher
numbers of FD may occur in RCP85 scenario compared to Hist in the third decade. This late spring
blizzard feature over the region, important for plant evolution, was shown in a previous work, to be
related to the combined context of Polar Jet instability meanwhile with warmer sea surface temperature
in the Eastern Mediterranean (Caian and Andrei, 2019). Both these features are projected to enhance in
a warmer climate (Lelieveld et al., 2012; Shaw and Miyawaki, 2024; ), which for the region indicates a
higher potential for severe spring blizzard, affecting crops and the year’s yield under warmer climate.

Fig.  4:  Time  evolution  ([years],  Ox  axis)  in  Hist  and  RCP85  (1981-2070)  of  extreme  climate
parameters: number of frost days (minimum temperature <0ºC, per 10 days slice, top), number of days
total per 10days slice with heavy precipitation (>10mm) (middle); precipitation sum (10 days, [mm]
bottom); 10 days slices are centered: 5 April (left), 25 April (right). Boxes indicate the slope of the
linear trend (black line) and the p-value of significance (p-value <0.05 -> significant at 5% level of
falsely rejecting the null hypothesis of linear regression coefficient =0). 
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Extreme (RR10) and total precipitation RR show the following: a negative trend in the first decade of
the month turns in opposite to positive trends in the third (and second) month’s decade, that indicate a
time-shift towards end-April -May of accumulated precipitation peack along April month. We note that
this feature of precipitation shift is present systematically in each model of the five-member CMIP5
ensemble (Karl et al. 2011). RR10 (and RR20, not shown) extremes enhance even more towards 2070.
Also, RR10 and RR show higher variability with significantly higher isolated extremes in the third
decade  of  the  month  in  scenario  compared  to  Hist.  Extreme  daily  precipitation  is,  in  most  cases
detrimental for the crop, causing soil erosion and surface runoff after drought periods. 

b) Phenology and Yield projected changes for the control genotype

Projected  changes  in  phenology were simulated  with the DSSAT forced by multi-model  Hist  and
climate scenarios RCP45 and RCP85, using first the control genotype G0 (Pioneer 375*) of the region.
The implemented system validation was done in Control simulations that used reanalysis climate data
from ERA5 (Simmons, 2021) over 1976-2005. These show a good time variability of the simulated
Yield against available measured values for the region, and that the modeling system is able to capture
years of high and low yield (Fig.5). The model set-up involved soil parameters calibration, that was
performed along sensitivity experiments for soil water and Nitrogen and Carbon organic content. 

Fig. 5: Harvest simulated under twelve default management scenarios (Table 1, 3N) and measured (red
thick  line),  for  the  S-Romania.  Blue  box  shows  the  Pearson  correlation  between  treatments  and
measured Harvest with statistical significance (*** p=0.01; ** p=0.02; * p=0.05).

b.1)  Phenology dates - projected changes 

Ensemble model simulations over 30 year scenarios up to 2050, compared against historical runs (for
RCP 4.5 and RCP 8.5) indicate projected changes in the anthesis and maturity days in Fig. 6, for the
control genotype G0, fertilization 3N (Table 1, experiment E_3N_G0). These show that the anthesis
date is projected to occur earlier by up to ~6 days while maturity days come also earlier by up to about
10 days (ensemble mean, time mean), regardless of the planting date and the fertilization level. The two
shifts together lead to a shortening of the growing season  by up to 10%. The average maturity date
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may show small variations with the fertilization level, due to occurrence of slowed grain feeling (Fig.
6). 

a) b)

Fig.6:  a) Anthesis dates ([dap], day after planting) simulated for the historical period (black), RCP45
scenario (green) and RCP85 scenario (red) for treatments  1 to 4; b) the same for the maturity date, for
treatments 1 to 12. On the Ox axis there are the treatments (1-12, Table 1, 3N, experiment E_3N_G0). 

b.2)  Yield - projected changes

Same multi-model simulations experiment E_3N_G0 show an overall decrease, in the ensemble mean,
of the yield in both climate scenarios, for all tested (Table 1) management scenarios with perturbed
sowing dates and fertilization levels (Fig. 7a,b,c). 

This decrease was related to several factors: - a decrease in the accumulated rainfall in the growing
period (Fig. 8a,b,c) in scenarios compared to Hist in both climate scenarios and for all managements
scenarios; - a systematic earlier flowering date and date of reaching physiological maturity, the two
leading a shortening of the crop season (Fig. 6); - a decrease of fertilization efficiency with increasing
warming: the decrease in Harvest in scenario compared to Hist is higher for later sowing dates and for
higher emission in RCP8.5 than in RCP4.5 (Fig. 7c). 

In the non-fertilized (Fig. 7a) case, we note is a Harvest increase with delaying sowing, for Hist and for
scenarios, indicating in the lack of nutrients, a stronger relation with precipitation: more accumulated
precipitation (Fig. 8a) for later dates (season’s length increases for later sowing, for all treatments).
Also,  RCP85  shows  higher  H  values  than  RCP45  due  to  precipitation  time  shift  (Fig.  4),  more
appropriate for the plant development phase. This is no more valid when fertilization occurs (Harvest
decreases  are  obtained  for  later  sowing dates  in  this  case)  pointing  to  nonlinear  relation  climate-
fertilization and to a decay of fertilization efficiency with warming. 
The robustness of these is further analyzed in sensitivity simulations with enriched soil nutrients. 
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b.3)  Sensitivity of changes to nutrients

In a  second experiment  we use the same fertilization  levels  but  change in addition  the initial  soil
content in Carbon and Nitrogen (increased). The aim is to understand if less fertilization (less pollution)
could be compensated by better soil characteristics choice. Achieving best Harvest in warmer climate
versus actual climate enhancing the support towards a neutral climate, is a crucial point.
The sensitivity ensemble simulations increase soil Carbon and Nitrogen at the initial time by 20%, for
the same control genotype (Experiment E_1N_G0_soil+CN).

Fig.  7:   Same as Fig.6b,  for Harvest  ([kg/ha])  for  experiment  E_3N_G0 (top)  and for experiment
E_1N_G0_soil+CN (bottom). 

Experiment E_1N_G0_soil+CN compared to E_3N_G0 (Fig.7) shows that the Harvest is reduced by
only up to 7% for about 60% reduction in fertilization when the soil nutrients content is increased by
20%. In addition, we note two interesting features also for adaptation decisional support. One is that
there  are  still  options  even  under  warmer  climate  to  overestimate  the  historical  Harvest  under
appropriate initial  soil composition (e.g. in RCP45 TR6 and TR7, Fig. 7e) and even under RCP85
(TR10 and TR11, Fig.7f). The mechanism behind appears to be linked to richer soil (N, C) leading to a
slower maturity (Fig. 8b)  with consequent more precipitation accumulated along the growing season
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(Fig. 8c). This slower maturity is stronger for early sowing (Fig. 8b) hence better date option (Fig. 7d,
differences diminishing at later sowing due to precipitation shift).

Fig.8:  a): Accumulated precipitation from the initial time of the simulation until the maturity date
([mm]), for scenarios as in Fig.7, for  E_3N_G0;  in b) are shown differences [dap] in the maturity date
and in precipitation for (E_3N_G0) minus  (E_1N_G0_soil+CN); c) same differences as in b for the
precipitation accumulated along growing season ([mm]). 

In summary for the control genotype, in both climate scenarios, and for all the management scenarios
tested  for  sowing-date  and  fertilization  level  but  keeping  the  same  genotype,  it  is  projected   a
shortening of the growing season (and earlier development phases) with mean decrease of the projected
yield. Meanwhile, it is shown that one can get comparable outcomes if astuciously using soil richness,
elongating the growing season, instead of enhancing fertilization levels and pollution. 

c) Optimal genotype identification 

The system was further developed to extend the management scenarios for multi-genotype simulations
and algorithms for optimal identification under each agro-climate scenario. Best options are searched
that lead to optimal (user-defined) yield: highest harvest, stable yield, less pollutant. 
Two optimization methods are implemented: a discrete-value pure deterministic technique and a hybrid
optimization technique combining deterministic modeling with ML Genetic Algorithms for iterative
selection.
Deterministic  method  performs  multiple  simulations  (and  optimisation  is  part  of  the  the  post-
processing), for pre-established limits and discretisation intervals for each of the genotype parameters
considered (here six). Multi-model simulations in which each parameter is varied while the others have
fixed values are performed, resulting in a number of simulations depending on the discretisation. An
example for the criteria of “maximum yield” is illustrated in Fig.9a, for six genotype parameters: P1 the
thermal time from seedling emergence to the end of the juvenile phase; P2 a photoperiod-development
delay parameter; P3: the thermal time from silking to physiological maturity; P4 linked to maximum
kernels per plant, P5 linked to kernel filling rate and P6 the phyllochron interval), for Hist, RCP45 and
RCP85,  each  for  the  twelve  default  sowing  date-  fertilization  treatments  and  each  model  of  the
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ensemble. We discuss here the results of genotype optimization (experiments E_1N_Gn+w) that are
based on the setup of E_1N_G0 but in which we increased the initial  soil water content by 5% as
indicated by the projected maximum change over the pilot area (Fig. 1S, Suppl). Parameter P4 was kept
constant as having known impact.

i) Optimal Harvest under climate change

Fig. 9 shows, for the ordered genotype upon Harvest (H), a projected average decrease of the Harvest
(H) in maximum values’ genotype-range range (top 2.5% cases), for RCP45 and emphasized also in
RCP85 for earlier sowing. This response is not systematic among models (Fig. 2S, Suppl). Among
models, we note a strong link between H differences and  models’ projected precipitation (a parameter
with  high  intra-model  variability  and  regional-scale  uncertainty)  mainly  for  unfertilized  case.  In
opposite, the warming trend is a parameter in models’ consensus for this region, leading to systematic
responses as earlier anthesis and maturity dates with a season shortening in RCP45 and even more in
RCP85 affecting mainly in the range of highest H (Fig. 3S, Suppl). 
We further analyze robust features of the projected yield that are systematically seen among model-
simulations. Important climate-adaptation information appears from these diagrams. 

One is the different response obtained for maximum H (GX) and for intermediate H (GI). Any
(“n”)  ordered  simulations  has  a  harvest,  and  a  genotype  associated,  that  we  call  “H-range”  and
respectively “G-range” (of the top “n”-th value of H). We call GX the ranges of highest H values, GI of
intermediate H values and GN of lowest H values.
The large ensemble of genotype-treatment  simulations  indicate  a decrease that  is  projected  for the
highest yield (GX, Fig.9b) that is projected in RCP45 and RCP85 (except late sowing, low fertilization,
potentially  linked to  precipitation  shift  towards later  in  April  mainly in  RCP85).  In  opposite,  a H
increase is projected for the intermediate yield genotype ranges (GI) for almost all treatments (Fig. 9c).
The explanation comes from the fact that we test a broad range of parameter P3 (the thermal interval to
maturity) and H increases significantly with P3 increase, in scenarios relative to Hist, a cause being the
fact that at highest values of P3 the plant maturity comes earlier in scenario compared to Hist with an
overall  shortening  of  the  season (with  increasing  P3,  allowing  stage  accomplishment).  These  two
tendencies  become  systematic  for  all  models  in  RCP85.  Tendency  towards  H  overestimations  in
scenarios is not excluded neither for the Control genotype under conditions of higher soil water as it
was already noticed in Fig.7 e,f for the control Genotype. Here its G-parameters are located in the
intermediate range (400-1400) and have a central P3 value, but a lower initial soil moisture. 
P3 value appears  a  key parameter  on managing H.  However  care should be  taken as  extreme P3
increase leads to a too slow grain filling, and crop failure, more often in scenarios than in Hist (Fig.
3S), when P3 is above a threshold (that is P1 and P2 dependent, not shown).  

The second feature is the fact that while for the highest H (GX) range it is systematic that earlier
sowing conditions are better options in E_1N_Gn+w (as P1 is small in maximal H), this is no more
valid for intermediate H genotype ranges (GI, Fig. 9a zooms, more days with precipitation improving
mainly the unfertilised cases). We note ranges with e.g. TR2 worse than TR3 (at GI ranges) and better
than TR1 (at GX ranges) mainly in RCP85. At mid-low H (ranges 1400-1890, GI, GN), there are
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intervals of cross-parameter (sowing-fertilization) critical cases under unfertilized early sowing, rather
than fertilized (top zoom in Fig. 9a, e.g. for RCP85). 

How  one  can  use  the  PREPCLIM-v1  system  output  to  assess  a  best  management  under  climate
scenarios?  For  a  given  genotype  one  can  identify  in  these  diagrams,  either  the  optimal  sowing-
fertilization for a given scenario (on the vertical Ox=constant on Fig. 9a), or, for a given H one can
identify the genotype ranges (per each sowing-fertilization) allowing this solution (line Oy=constant on
Fig. 9a). These may propose variate options to improve yield, using the modeling system.

Third, we note a systematic narrowing of the spread among treatments (all models, all  scenarios, as
shown in Fig. 9a) all along genotype spectra (G-range belts), indicating a reduction of response options
in future.

a) 

b) c)

Fig.9 a): Ordered simulation results for Harvest (Oy, model ensemble mean, time mean over 30 years).
The simulations are for: Hist (left), Rcp45 (middle) and Rcp85 (right); a logarithmic scale was used for
the simulations index in order to emphasize high H values. On Ox is the simulation rank (logarithmic
scale)  increasing  for  decreasing  H  (set-up  E_1N_Gn+w  with  cross-genotype changes  in  six  Pi
parameters resulting 1890 experiments); each  panel has a small zoom over intermediate H genotype
ranges [20-320] at bottom and over [1700-1890] for RCP85, top corner; b) differences of H over two
genotype range windows indicating a mean change for: the window of highest H in (b) ; c) same aș b)
for the window of intermediate H values. Colors în b) and c) have the same meaning as in a).
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The third feature to be noticed is the role of the initial soil moisture. We note that the control genotype
in E_1N_G0+soil (Fig. 7d,e,f) falls in the intermediate H values of E_1N_Gn+w here (Fig. 9) with
higher yield in scenarios than Hist, feature already but marginally reached in Fig 7e,f, mainly due to
enhanced initial soil moisture in E_1N_G0_soil+w. In this regard, Fig.1Sa indicates a projected overall
decrease in soil moisture over the main agricultural area in the target region, with stronger decrease în
the Eastern and SE parts. 

ii) Optimal Genotype under climate change

We saw a response of optimal H to the genotype choice in climate scenarios, and a different one for the
highest H (highest 0-2.5% H), intermediate (interval 21%-75% of genotype range) and then lowest H
values. For practical applications the crop projected response should be discriminated per genotype
parameter (P1-P6) to provide efficient support in adaptation decisions. 
We analyze the role of each P1-P6 genotype sub-parameter related to crop performance under climate
scenarios versus Hist.

Management-genotype scenarios show that main drivers of increasing H in Hist runs are: decreasing P1
the thermal interval seedling-juvenile phase and decreasing the photoperiod delay parameter P2 (their
increases are associated with lower H). Contributions come then from a longer thermal time to maturity
(increasing P3), increasing the kernel-filling rate P5, and decreasing the phyllochron interval P6. The
slopes  of  Pi  variation  as  a  function  of  G-ranged  index  (the  index  increasing  from maximal  H to
minimal H) are positive for P1 and P2, negative for P3 and for P5 and P6 positive only in the GX range
of highest Harvest. 
At  lowest  H  we  mention  a  particular  sensitivity  behavior  of  mainly  P3  and  P5  under  increased
fertilization  and sowing date.  In this  case,  both small  and high P values may lead to H decreases
(Fig.10a). This is related to critical situations of too slow grain filling that occur at high P3. We raise
warning  for  careful  consideration  when  perturbing  parameters  as  P3,  P5  to  perform  genotype
adaptation, requiring additional modelling: finer discretisation of genotype parameters intervals, highly
accurate  soil  conditions  set-up,  close  analysis  of  warming  thresholds  and  phenology  interactions
implied). 

How one can use the  PREPCLIM-v1  system output to assess a best  genotype range under climate
scenarios? We compare scenarios against Hist first for the different Pi in Fig. 10. Simulations show for
all Pi a slope increase (Pi are functions of the G-ranged index) in the GX interval. Compensating the
slopes decrease in GI and GN (the variation limits for Pi being kept the same) in scenarios relative to
Hist. Relating these to H, we obtain estimates of projected impact of G-parameter perturbations, under
climate change.

For GX, the slope decrease found for positive slopes (P1,P2,P5,P6, Fig.10a) means that a G-
range in GX will be obtained up to higher Pi values than in Hist (Fig. 10b) hence an enlargement of
actually possible values (lower Pi values correspond to higher H in positive slopes). For GX, the slope
increase found for the negative slope of P3 means that higher H values than a given H-range here will
require  higher  P3 values  (seen  Fig  10b,  as  high  values  are  giving  best  H in  negative  slopes),  so
constraining its variation interval in GX to a narrower interval. This can be understood as a constraint
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on using P3 for enhancing H and an enhanced efficiency on using P1,P2,P5,P6 options for enhancing H
under warmer climate, for maximal H (GX range).

For GI, a same analysis, links the slope increase for positive slopes (P1, P2, P5, P6, Fig. 10a) to
constraints on these parameters as options for increasing H, while the slope decrease of negative slope
for P3 represents an enhanced efficiency on using this parameter for improving H in the intermediate
range values.

For GN as discussed above, the response present bifurcations in the relation (Pi,H) and careful
simulations  are  required.  These  are  however  very  important  in  the  critical  years,  when  yield  is
estimated to be very low and we are searching for solutions. Note that over GN P6 has a third slope
change (otherwise main, non-bifurcated slopes and changes are as in GI), becoming positive (Fig.10a),
with enhanced efficiency.  

We finally note the interesting aspect of differences between the two scenarios, in which important
changes of response (reversal) occur in P5 and P6 in RCP85 compared to RCP45, with consequent
impact on measure efficiency / constraint, that should be accounted for in adaptation.
 
In summary of the tis  analysis,  it  is  revealed  that  the main impact  on H of genotype parameters’
changes are from P1, P2 and P3. It is shown that using shorter thermal time to flowering P1 values or
species with a shorter photoperiod-development delay P2 (for ensuring  intermediate H-range values)
and  higher  P3  values  (longer  thermal  time  to  maturity)  for  getting  maximal  H-range  values  are
constraints for Pi under warmer climate compared to Hist, emphasized for the pilot region. 

Equally important, we note that changes in sign of responses (scenarios minus Hist) occur in Fig. 10b
in the GI range [400-1500], that is about the actual  Control  genotype range (Fig.  4S).  This points
definitely to necessity for model simulations in order to identify which slight changes in Pi would lead
better or worse H in a warmer climate.

Regarding now the hybrid method deterministic-ML, this involves the same cross-simulations but this
time the selection of values for parameters is no more following a pre-defined discretisation and instead
it is a random picking up over a continuous interval of values and successively retrieving the best
generation, applying for optimization classic Genetic Algorithms methods in which selection of pairs is
based on the user-criteria (e.g. maximum yield, stable yield, etc.). Our results show that for the same
physical intervals of genotype parameters the ML hybrid technique only after 20 generations shows at
least 50% chances to get a better result than the deterministic model, while after 100 generations, it
already  increases at  80% chances  to  get  better  results.  A better  result  means  here,  identifying  an
optimal configuration that has not been able to be emphasized by deterministic simulations.

In  each  of  the  two  techniques  used  for  optimal  genotype  identification,  we  note  that  in  climate
scenarios versus historical climate, it is projected a significant narrowing of the management options
range leading, for a given genotype, to high yields (Fig. 8b), that is a severe warning for future decision
planning.  Also there  is  a  lower  maxima potentially  reachable  under  scenarios  managements  under
warmer climate (including genotype, sowing, fertilization).  
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Fig.10a : Indices of the Genotype’ six parameters (Ox) that correspond to Harvest ordered from max
Harvest (Oy bottom) to min Harvest (Oy top). Here are 1890 genotypes (5x7x6x1x3x3 simulations
with parameters, per model in [1,7]), shown as ensemble mean for two treatments (TR1 left column
and TR12 right column). Indices are time-averaged (30 years) for simulations along Hist (top row),
Rcp45 (middle row) and Rcp85 (bottom row) scenarios.

Fig. 10b: Percent changes in Genotype parameters Pi as a function of the ordered Harvest from highest
(left, Ox) to lowest (right, Ox). Differences (running means over 378=P2*P3*P4*P5*P6  values) are
shown for TR1 (yellow for RCP45 minus Hist) and green (RCP45 minus Hist) and for TR12 (red
(yellow for RCP85 minus Hist) and blue (for RCP45 minus Hist). Differences in indices are expressed
in percent relative to the parameter’s range.  Arrows indicate the (Pi,G-ranged index) overall  linear
trend from Fig.10a. (on Ox: the G-ranged index; on Oy the values of Pi).
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The complex interactions for cross-parameters choice regarding sowing-fertilization-soil composition,
shown before, would make it  difficult  for assessing an optimal path, in the absence of a modeling
system.  Even  more,  when  it  comes  to  choosing  an  optimal  genotype  with  fixed  or  cross-optimal
sowing-fertilization-soil configuration the added value of such a modeling for optimum identification
becomes obvious and necessary, under warmer climate when traditional genotypes might no longer be
suitable.

Discussions and Conclusions

The main conclusion of this study is that an agroclimate real-time Interactive Service was developed
that  goes  beyond  interrogation  platforms  for  agro-climate  information,  stepping  forwards  and
performing in real-time, under  user request, agro-management scenarios for the region. These allow
crop simulations for time-slice of interest, specified climate scenario, and user-specified management
scenarios.
A main novel feature of the system is the ability for identifying optimal management paths along cross-
cultivar  management  parameters  and climate  scenarios,  as  e.g.  sowing  date,  genotype  parameters,
amount and date of fertilization. The system provides solutions and uncertainty associated by using
multi-model ensemble for each agro-climate and management scenario. The optimisation criteria are
user-defined  and  can  relate  to  high  yield,   stable  yield,  low  pollution.  The  optimization  module
implemented a hybrid deterministic and ML methodology. It performs multi-model simulations using
physical  models  of climate  and plant  penology and optimisation is  done either  through simulating
discrete  cross-parameters  intervals  pre-definied  and  optimisation  post-processing,  either  using  the
advantage of continuous parameter space investigation by using ML Genetic algorithms along multiple
model simulations. ML is spanning continuous parameter’s space and interactively selecting along the
simulations  the best fit  parameters,  allowing to identify unprecedented optimal  configurations,  not-
reachable under the discrete deterministic method.

The overall system output information is layered and accessed from two interfaces. One static, contains
high resolution agro-climate information (phenology, yield, extremes) at NUTS3 level that is useful for
user-analysis,  management  and adaptation  and research.  The second interface  is  interactive  online
through which  the  system receives  user  requests  and performs required  simulations  providing  the
results.  The  user  request  refers  to  regional  management  scenarios  or  on  optimal  management
identification under climate change. These platforms are operational and were tested for two climate
scenarios RCP45 and RCP85 and twelve management scenarios (sowing dates and fertilization), for the
time-horizon  up to  2050,  with  open-source  code (EERIS platform).  The  results  of  these  tests  are
discussed here for the pilot region South Romania.

For the control genotype, in both climate scenarios it is projected  a shortening of the growing season
(and an earlier shift of anthesis and maturity phases) and a mean decrease of the projected yield, for all
the management scenarios, sowing-date and fertilization level tested. We show that the decrease is also
linked  to  a  lower  efficiency  of  fertilization  under  warmer  climate.  Compared  with  the  previous
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observed unirrigated yields, here the shown reduction is significant (around 50%) in simulated yields of
rainfed corn cultivated in South-eastern Romania under the new climatic conditions. 

However, we show that this response is highly sensitive to initial soil parameters as soil water content,
Nitrogen,  Carbon.  One  could  get  an  improved  outcome  if  using  richer  soil  (by  15%)  but  lower
fertilization (by 60%), elongating the growing season. This solution prevents a detrimental increase of
pollution that would otherwise enhance climate warming. It is shown the importance of precipitation
projections in relation with the sowing date: a time-shift towards end-April was identified in climate
scenarios for the region with an important link to planting date’s Harvest.
 
The results for optimal genotype identification show, for the pilot area, under warmer climate two main
features. One is a mean decrease of maximal reachable H (in the genotype G-range of highest harvest
values) linked to a reduction of the agro-season length in the same genotype range (and earlier anthesis
and maturity dates). This response becomes systematic for all models in RCP85. Another is for the
genotypes range of intermediate H values, under climate scenarios, where rising tendencies are found.
These are linked on one hand to the broader range allowed for the P3 parameter  (thermal  time to
maturity),  higher P3 values leading higher H-range even against season’ length decrease as shown
further in the G-parameter analysis. To note here that caution is required and additional modeling of P3
extreme increases that give uncontrolled (bifurcation) of the H response as it leads, above a threshold
(P1 and P2 dependent) to crop failure due to a too slow grain filling, at a higher rate in scenarios than in
Hist.  On the other hand, another contribution to higher intermediate-range harvest comes from the
mean precipitation decade-shift, mainly in RCP85 projections.
When discriminating the results  upon genotype parameters  we obtain that  the main H changes are
linked to changes in P1 and P3 the  thermal times to juvenil/ maturity phases. We show that there is a
stronger constraint to their decrease respectively increase.
Using shorter thermal time to flowering P1 values or species with a shorter photoperiod-development
delay P2 (for a same intermediate Harvest range) and longer thermal time to maturity P3 for maximal
H-range values are constraints emphasized for Pi under warmer climate compared to Hist. 
These could be exploited in adaptation strategies for enhancing yield optimization in scenarios. We
showed that the actual Control genotype falls in the broader range of most sensitive H response to these
changes for the region.

It was shown that the optimisation search is improved by using a hybrid ML genetic algorithm method
coupled  to  the  deterministic  model-output,  leading  to  detecting  better  optimal  solutions.  Of  equal
perspective interest would be using the system for managing critical levels under periods of prolonged
or extreme drought, as emphasized in climate projections.  As shown here, extreme events changes
under warmer climate (frost, precipitation shift, heat stress and soil moisture deficit, etc) are projected
to occur at different crop stages. In addition we showed that sink–source relationships (fertilization
efficiency -  harvest,  initial  soil  humidity)  are  projected  to  change,  all  leading to  changes  in  yield
parameters.  Hence,  targeted  understanding,  validation  and  identification  of  optimal  configurations
(genotype-management) for extreme cases or dynamics of their physical links, appropriate to alleviate
the impact, are a perspective of near-future exploitation of the system. 

The main outcome of this work is the implementation and demonstration of the ability of deterministic
coupled modeling system combined with data-driven modeling for identifying optimal crop solutions.
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This can be extended for other regions, scenarios, crops as a performant tool for adaptation support and
agro-climate research. Futures perspectives are opened to use the system for more complex issues as
rainfed  yield  level  and  stability  in  the  new  climatic  conditions,  where  combination  of  cultivar
dependent  coefficients  that  control  the  phenology  of  maize  could  help  identify  in  the  same way,
phenological  evolutions  that  are  more  performant  in  certain  patterns  of  water  and  heat  stress
distribution along the year. Also, the improvement of the forecasts for the 6-12 months range may
increase chances to use this methods with weather prediction data in order to early select the most
suitable combination of hybrids for the current agro-season. Automatisation of these processes already
done, further supports extending the system towards a pilot regional agro-climate digital twin fed with
actualized data.
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Annex 1: Data and Methods

Schema of steps in work-flow of ML algorithms for optimal genotype identification: 

 Start with 10 randomly chosen solutions within the bounds of P1-P6;
 Calculate the mean and std of harvest of each solution for the 30 years 1976-2005;
 Calculate fitness = (Mean of harvest) – (Standard-deviation of Harvest/4);
 Randomly  choose  4  pairs  of  ‘parents’,  with  the  probability  being  chosen weighted  by  the

fitness;
 For each pair of parents A and B, create identical children ‘a’ and ‘b’ to the parents, then choose

a random number of P’s to be subjected to crossover, called x;
 For each child, modify Px as follows:

 Pxa = round (B * Pxa + (1 - B) * Pxb )
 Pxb = round (1 - B) * Pxa + B * Pxb )

Where Pxa is the value of the x parameter of child a (initially identical to that of parent A), and
B is  the blending factor,  set  in  this  paper  to 0.75.  This technique  is  called blending and it
generates  offspring  chromosomes  that  inherit  real-valued  traits  from  both  parents  while
exploring the search space between the parents' positions. The blending crossover promotes a
smoother and more gradual search for optimal solutions in continuous domains;

 Then  take  each  child,  and  with  a  probability  of  0.5  perform  a  mutation  on  one  of  its
chromosomes.  This  means  setting  one  of  the  P’s  to  a  random value  between  its  allowed
minimum and maximum;

 At this point the children have been fully constructed. Discard the 8 parents with the lowest
fitness and substitute them with the children;

 Repeat.
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