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Abstract. Groundwater is a crucial part of the hydrologic cycle and the largest accessible freshwater source for humans and 

ecosystems. However, most hydrological models lack explicit representation of surface-groundwater interactions, leading to 

poor prediction performance in groundwater-dominated catchments. This study presents DECIPHeR-GW v1, a new surface-10 

groundwater hydrological model that couples a Hydrological Response Units (HRU)-based hydrological model and a two-

dimensional gridded groundwater model. By using a two-way coupling method, the groundwater model component receives 

recharge from HRUs, simulates surface-groundwater interactions, and returns groundwater levels and groundwater discharges 

to HRUs, where river routing is then performed. These interactions are happening at each time step in our new surface-

groundwater model. Depending on the storage capacity of the surface water model component and the position of the modelled 15 

groundwater level, three scenarios are developed to derive recharge and capture surface-groundwater interactions dynamically. 

Our new coupled model was calibrated and evaluated against daily flow timeseries from 669 catchments and groundwater 

level data from 1804 wells across England and Wales. The model provides streamflow simulation with a median KGE of 0.83 

across various catchment characteristics, with high performance particularly for the drier chalk catchments in southeast 

England, where the average KGE increased from 0.49 in the benchmark DECIPHeR model to 0.7. Furthermore, our model 20 

reproduces temporal patterns of the groundwater level timeseries, with more than half of the wells achieving a Spearman 

correlation coefficient of 0.6 or higher when comparing simulations to observations. Overall, this new DECIPHeR-GW model 

demonstrates remarkable accuracy and computational efficiency in reproducing streamflow and groundwater levels, making 

it a valuable tool for addressing water resources and management issues over large domains.  

 25 
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1 Introduction 

Groundwater systems are a vital component of the hydrologic cycle connecting recharge zones and discharge, and facilitating 

complex interactions between the surface and sub-surface (Kuang et al., 2024; Gleeson et al., 2016; Giordano, 2009). As the 

main freshwater storage component of the hydrologic cycle (Aeschbach-Hertig and Gleeson, 2012), groundwater systems 30 

support baseflow levels in rivers (Miller et al., 2016; Gleeson and Richter, 2018) and provide key water supplies for industry, 

agriculture, and public use, especially during droughts (Famiglietti et al., 2011; Siebert et al., 2010; Giordano, 2009). As such, 

they are a critical resource for people, economies and the environment (Loaiciga and Doh, 2024) and play a vital role in water 

management. Often, groundwater models support groundwater management decision-making for local (Wang et al., 2019; 

Wendt et al., 2021), national (Dobson et al., 2020; Lee et al., 2007), continental (Rama et al., 2022; Condon and Maxwell, 35 

2015), and global scales (De Graaf et al., 2019; Turner et al., 2019; Gorelick and Zheng, 2015).  

Groundwater systems and their interactions with surface water form an active component of the hydrologic water cycle, which 

can have significant effects on climate, surface energy and water partitioning (Gleeson et al., 2021; Kuang et al., 2024). The 

importance of representing surface-groundwater water interactions in hydrological models is widely acknowledged (Gleeson 

et al., 2021; Condon et al., 2021; Bierkens et al., 2015; Clark et al., 2015), especially under the influence of climate change 40 

and intense anthropogenic activities (Benz et al., 2024; De Graaf et al., 2019; Condon and Maxwell, 2019). Neglecting these 

important surface-groundwater water interactions may lead to unrealistic partitioning of precipitation between runoff and other 

water balance terms, such as significant evapotranspiration biases (Famiglietti and Wood, 1994; Condon and Maxwell, 2019), 

causing inaccurate prediction of the hydrologic states and fluxes (Naz et al., 2022; Wada et al., 2010). Gnann et al. (2023) 

demonstrated strong disagreement among many models in describing groundwater recharge, indicating potential errors in 45 

estimating the contribution of groundwater to evapotranspiration and streamflow. Moreover, many hydrological models across 

regions and countries globally struggle to reproduce the streamflow dynamics in groundwater-dominated catchments 

(Massmann, 2020; Coxon et al., 2019; Badjana et al., 2023; Mcmillan et al., 2016; Lane et al., 2019; Hartmann et al., 2014), 

leading to difficulties in predicting and managing water resources in these regions.  

To counter these problems, there has been a growing interest in integrating groundwater models into hydrological models, 50 

accompanied by notable progress in groundwater modelling analysis and evaluation at various scales (Gleeson et al., 2021; 

Condon et al., 2021). A variety of coupled surface-groundwater water models has emerged across different scales (summarized 

in Table S1). Examples at regional scale include SWAT-MODFLOW (Bailey et al., 2016), TopNet-GW (Yang et al., 2017), 

mHM-OGS (Jing et al., 2018), CWatM-MODFLOW (Guillaumot et al., 2022), GSFLOW-GRASS (Ng et al., 2018), JULES-

GFB (Batelis et al., 2020), SHETRAN (Ewen et al., 2000), CLSM-TOPMODEL (Gascoin et al., 2009), CaWaQS3.02 (Flipo 55 

et al., 2023), ORCHIDEE (Guimberteau et al., 2014), HydroGeoSphere (Ala-Aho et al., 2017; Brunner and Simmons, 2012) 

etc.; at the continental scale, such as ParFlow (Maxwell et al., 2015), ParFlow-CLM (Naz et al., 2022); and at the global scale, 

models like GLOBGM (PCR-GLOBWB-MODFLOW) (Verkaik et al., 2022; De Graaf et al., 2017), WaterGAP2-G3M 
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(Reinecke et al., 2019; Müller Schmied et al., 2014). The configuration of these models are tailored to their specific purpose 

and simulation objectives, with each adopting distinct and diverse methodologies for coupling groundwater models. These 60 

coupling methodologies range from more simple conceptual approaches to highly sophisticated fully physical-based coupling 

techniques. 

Many conceptual coupled models employ simplified groundwater representations. For example, groundwater is described as 

a linear reservoir or additional storage (Yang et al., 2017; Gascoin et al., 2009; Guimberteau et al., 2014; Müller Schmied et 

al., 2014), receiving groundwater recharge and discharging into a river within the same grid cell or other computation unit. 65 

These models typically compute time-series of groundwater storage rather than groundwater hydraulic heads. Although 

representing groundwater as a water storage could enable global-scale assessment of groundwater resources and stress (Turner 

et al., 2019; Wada et al., 2014; De Graaf et al., 2014), the absence of groundwater hydraulic heads simulations may hinder 

effective local and regional water resource management (White et al., 2016; Gorelick and Zheng, 2015). Moreover, lateral 

groundwater flow between grid cells or surface-groundwater interactions is critical as absent lateral flows result in large 70 

inaccuracies (Ferguson et al., 2016; Fleckenstein et al., 2010; Xin et al., 2018; Wada et al., 2010). In contrast, some physically-

based coupled models integrate three-dimensional (3D) coupled surface-groundwater flow models (Ewen et al., 2000) or adopt 

pseudo 3D diffusivity equation (Flipo et al., 2023), two-dimensional (2D)/3D Richard’s equation (Maxwell et al., 2015; Naz 

et al., 2022; Brunner and Simmons, 2012; Ala-Aho et al., 2017) to simulate the groundwater flow. Yet, such complex model 

structure significantly increases numerical complexity and computation time (Jing et al., 2018; Gleeson et al., 2021), resulting 75 

in many coupled models remaining uncalibrated or requiring extensive computation time for calibration and validation 

(Reinecke et al., 2019; Verkaik et al., 2022; Ewen et al., 2000; Maxwell et al., 2015; Naz et al., 2022). Calibrating these models 

within a stochastic framework is computationally infeasible, leading to significant uncertainty in simulation results, which 

further hinders an application in large-scale simulations and water management. 

This paper proposes a coupled hydrological model DECIPHeR-GW with a specific focus on enhancing the representation of 80 

surface-groundwater interactions whilst maintaining computational efficiency for national or large-scale modelling 

applications. We discuss the rationale behind coupling DECIPHeR and the 2D gridded groundwater model in Section 2 and 

provide detailed descriptions of the coupled model structures. Section 3 and 4 demonstrate the implementation to 669 

catchments in England and Wales and its calibration and evaluation results against large sample of streamflow and groundwater 

level observations. Discussion of advantages as well as potential future model developments are summarized in the last 85 

sections.  
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2 The DECIPHeR-GW model  

2.1 Rationale 

Our main aim was to develop a coupled hydrological model that represents surface-groundwater interactions whilst 

maintaining computational efficiency. To achieve this, we coupled a hydrological model (DECIPHeR) with a large-scale 2D 90 

groundwater model that have both been applied at national scales (Coxon et al., 2019; Rahman et al., 2023). Both models are 

described below, note that more details can be found in their respective papers. 

DECIPHeR is a flexible modelling framework (Coxon et al., 2019), which can be applied to a range of scales, i.e. small 

catchments to continental scales for complex river basins. It uses hydrological response units (HRUs) as the main spatial 

element where each HRU is considered as an independent model store. All HRUs can have different spatial inputs and model 95 

parameter values to represent diverse and localized processes, see the full description of DECIPHeR model structure and 

evaluation results for Great Britain in Coxon et al. (2019). Previous studies have shown that model performance in 

groundwater-dominated regions can be inadequate, underscoring the need to enhance surface-groundwater interactions (Coxon 

et al., 2019; Lane et al., 2021). The model’s open-source nature and its flexible model structure facilitated the opportunity to 

develop new modules of hydrological processes, i.e., groundwater representations. Moreover, DECIPHeR is computationally 100 

efficient and has an automated model build function, meeting our requirements for large-scale simulations. 

The large-scale groundwater model utilized in this paper is developed by Rahman et al. (2023). This 2D gridded model employs 

a transient groundwater flow equation for numerical groundwater flow simulation. Their study presents the first development 

of a numerical groundwater flow model for large-scale simulations using local hydrogeological information. The advantage of 

this model is its capability to simulate groundwater hydraulic heads, enabling groundwater resources assessment and 105 

management. Additionally, its computational demand is low, facilitating multiple simulations for both calibration and 

evaluation against groundwater level observations or a model parameter sensitivity analysis, as presented in Rahman et al. 

(2023). This model’s computational efficiency is critical, as many existing large-scale coupled models are published in an 

uncalibrated state due to high computational costs (Maxwell et al., 2015; Reinecke et al., 2019; Naz et al., 2022; Verkaik et 

al., 2022). Moreover, this groundwater model also has relatively low requirements of input data and model parameters. Besides 110 

open-access data like geology and topography, the model needs groundwater recharge data as inputs, which can typically be 

derived by a land surface hydrological model. This low data requirement facilitates coupling this groundwater model with 

other hydrological models.  

2.2 Model structure  

The new coupled model fully integrates the DECIPHeR and the groundwater models, as shown in Figure 1, which consists of 115 

the HRU-based surface water model component and the 2D gridded based groundwater model. At each time step, the 

groundwater model receives recharge values (QRC) from the surface model component, i.e., the root zone storage (SRZ) at HRU 
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scale, simulates surface-groundwater interactions, and passes the derived groundwater head (HGW) and groundwater discharge 

(QGWDS) back to HRUs for the river routing.  

 120 

Figure 1: Schematic view of (a) the DECIPHeR-GW model structure and (b) spatial interaction between DECIPHeR HRUs and 
groundwater model grid cells. 

The surface water component (e.g., SRZ) as well as the river routing module of the coupled model were taken from the 

hydrological model DECIPHeR (Coxon et al., 2019). The root zone store is the main surface water component in the coupled 

model, which directly interacts with precipitation (P) and evapotranspiration (ET), with a maximum storage determined by the 125 

model parameter 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚. At each time step, precipitation is added to SRZ, and the actual evapotranspiration (ET) is calculated 

and removed directly from the root zone. Equation (1) was used to derive the actual evapotranspiration (ET) for each HRU, 

which depends on the potential evapotranspiration rate (PET) and the saturation level of the root zone storage.  

𝐸𝐸𝐸𝐸 = 𝑃𝑃𝐸𝐸𝐸𝐸 ∙ (𝑆𝑆𝑅𝑅𝑅𝑅/𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚),          (1) 

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the initial root zone storage for each HRU, which requires initialization at the beginning of the simulation. 130 

Previous studies (Coxon et al., 2019; Lane et al., 2021) have shown that this parameter exhibits low sensitivity to the model 

results. Consequently, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is initialized as half of the 𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 in this study instead of behaving as a model parameter for 

calibration. Once the root zone storage is full, excess rainfall is generated as saturated excess flow (QEX) and then added to the 

river channel for river routing.  

Recharge 𝑄𝑄𝑅𝑅𝑅𝑅  from the root zone storage is computed by implementing the non-linear equation from Famiglietti and Wood 135 

(1994), which takes into account the soil hydraulic properties and the storage capacity of the root zone (Equation (2)). In our 

coupled model setup, recharge is driving the groundwater model component. 
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𝑄𝑄𝑅𝑅𝑅𝑅 = 𝐾𝐾𝑠𝑠[ 𝑆𝑆𝑅𝑅𝑅𝑅
𝑆𝑆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

]
2+3𝐵𝐵
𝐵𝐵 ,           (2) 

where 𝐾𝐾𝑠𝑠  is the saturated hydraulic conductivity (m/time step), and B is the pore size distribution index (dimensionless).  

The groundwater model component was developed by Rahman et al. (2023), which uses a transient groundwater flow equation 140 

in two spatial dimensions (Equation (3), Figure 1b). The finite difference approximation is used to discretize Equation (3) and 

an implicit approach is employed to solve it. A no-flow lateral boundary condition is implemented in the model. Spatially, the 

model domain can be discretized using a user-defined uniform grid according to the topography. With the input of recharge 

(QRC), groundwater initial head (Hinit) and hydrogeology (i.e., transmissivity T and specific yield Sy) data, gridded groundwater 

heads (HGW) can be calculated at each time step through solving large sets of linear equations.  145 

Whenever modelled groundwater head exceeds the topography, groundwater discharge (QGWDS) is calculated using Equation 

(4). The groundwater discharge is passed back to the HRUs as the saturated flow (QSAT) and added to the nearest river channel 

for river routing. Given the high sensitivity of groundwater head simulation to hydrogeological data (Rahman et al., 2023), 

transmissivity (T) and specific yield (Sy) are selected as model parameters for calibration in the coupled model. 

𝑆𝑆𝑦𝑦
𝜕𝜕ℎ
𝜕𝜕𝑖𝑖

= 𝛻𝛻(𝐸𝐸𝛻𝛻ℎ) + 𝑆𝑆,           (3) 150 

𝑄𝑄 = 𝑆𝑆𝑦𝑦 × (ℎ − ℎ𝑖𝑖𝑡𝑡𝑡𝑡),           (4) 

where 𝑆𝑆𝑦𝑦 is specific yield (-), h is the groundwater head (m), t is time, T is transmissivity (m2/time step), R is the potential 

recharge rate (m/time step) and ℎ𝑖𝑖𝑡𝑡𝑡𝑡 is the topographic height (m). 

The overview of all model stores, fluxes, state variables and model parameters are summarized in the Table 1. There are six 

model parameters in the coupled model that can be sampled or set to default values. The parameters SRmax, Ks, B and CHV 155 

control the surface water model component (including recharge and river routing), while T and Sy determine the groundwater 

flow simulation. Details of the river routing approach can be found in Coxon et al. (2019). 
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Table 1. Overview of model stores, fluxes, state variables and parameters. (mAOD in this table stands for metres Above 

Ordnance Datum, i.e. sea level) 160 

Category Name Meaning Unit  
Stores SRZ Root zone storage m 
 SRinit Initial root zone storage m 
Internal fluxes QEX Saturated excess flow  m/time step 

QOF Overland flow m/time step 
QRC Recharge flow m/time step 
QGWDS Groundwater discharge m/time step 
QSAT Saturated flow m/time step 

External fluxes: input P Precipitation  m/time step 
ET Actual evapotranspiration m/time step 

External fluxes: output Qsim Simulated discharge m/time step 
State variable Hinit  Initial groundwater head m (mAOD) 
 HGW  Groundwater head m (mAOD) 
Model parameters SRmax Maximum root zone storage m 
 Ks Saturated hydraulic conductivity m/time step 

B Pore size distribution index dimensionless (-) 
CHV Channel routing velocity m/time step 
T Transmissivity m2/time step 
Sy Specific yield dimensionless (-) 

2.3 Surface-groundwater interactions  

To represent dynamic surface-groundwater interactions, three scenarios (as shown in Figure 2a, b and c) have been 

implemented in the coupled model setup. At each time step, the position of the groundwater head and root zone storage 

determines the occurrence and the amount of recharge. For example, if the groundwater head is below the bottom of the root 

zone (Figure 2a), we assume that recharge occurs, leaking from the root zone storage to the groundwater system after removing 165 

the actual evapotranspiration. As presented in the Equation (2) of section 2.2, the value of recharge depends on the soil texture 

and the saturation level of root zone storage. The recharge was set not to exceed the root zone storage SRZ. The bottom of root 

zone is defined as the topography 𝐻𝐻𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 minus the depth of the root zone 𝐷𝐷𝑅𝑅𝑅𝑅. The root zone depth is estimated using Equation 

(5) according to previous studies (Wang-Erlandsson et al., 2016; Lane et al., 2021). 

𝐷𝐷𝑅𝑅𝑅𝑅 = 𝑆𝑆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖𝑦𝑦

,            (5) 170 

If the groundwater head reaches the bottom of the root zone but below the topography (Figure 2b), we assume no exchange of 

water takes place between the surface and groundwater system in this case (i.e., no recharge). In the last scenario, if 

groundwater head exceeds the topography (Figure 2c), groundwater discharge is generated (no recharge). Groundwater 

discharge is subsequently passed to the HRUs as the saturated flow and added to the nearest river channel for river routing. 
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 175 

Figure 2: Schematic model set up of surface-groundwater interactions under three scenarios: (a) groundwater head is below the 
bottom of the root zone; (b) groundwater head is within the root zone; and (c) groundwater head is higher than the topography. The 
colour coding of the text is as follows, red indicates the root zone, purple represents recharge, and blue denotes the modelled 
groundwater heads. 

In all three scenarios, the root zone storage receives rainfall and actual evapotranspiration is subtracted as usual at every time 180 

step (Equation (1)), regardless of the movement of the groundwater heads. Whenever root zone storage is full, any rainfall 

excess is generated as overland flow and then added to the river channel.  

Given that we build and run the coupled model for each catchment, the groundwater model gridded domain needs to be first 

determined according to the catchment boundary before the simulations. In our study, we assumed that no water can move and 

leave the groundwater system across the boundary, since no-flow lateral boundary conditions is adopted in the groundwater 185 

model. To reduce the effects of this no-flow boundary condition and allow for inter-catchment groundwater exchange, a buffer 

zone is needed between the groundwater gridded domain and the catchment boundary. Absence of this kind of buffer zone 

could lead to the potential buildup of water in the adjacent cells of the lateral boundaries. Users can customize this buffer zone 

according to the modelling objective. Details on how to determine the appropriate buffer size for our analysis are provided in 

Section 3.2. 190 

The recharge, groundwater discharge fluxes as well as the state variable groundwater head need to be transferred between 

surface water component HRUs and gridded groundwater cells. To address this spatial scale discrepancy between variables, a 

model mapping scheme is adopted, which follows a similar procedure to coupling the HRU-based SWAT model and gridded 

https://doi.org/10.5194/gmd-2024-211
Preprint. Discussion started: 19 November 2024
c© Author(s) 2024. CC BY 4.0 License.



9 

 

groundwater model MODFLOW (Bailey et al., 2016). For a given HRU, the proportion of its area overlapped by different 

grids is needed for transferring variables from HRUs to grids. Conversely, to transfer variables from grids to HRUs, the 195 

proportion of each grid cell area that is occupied by different HRUs is needed. Both these proportions are calculated as the 

weighting matrix at the beginning of the simulation and stored for transferring variables at each time step. Detailed model 

mapping methods and the schematic figures can be found in Text S2 and Figure S1-S3. Water balance checks were 

implemented to verify conservation of mass in the coupled model (See Text S3 of the supporting information).  

3 Model implementation and evaluation across England and Wales 200 

3.1 Study area and catchments selection 

To test our new coupled model, we apply DECIPHeR-GW over a large sample of catchments across England and Wales. 

Extensive and high-quality open source hydro-climate and geological data are available in England and Wales, such as the 

CAMELS-GB dataset (Coxon et al., 2020), along with a large amount of groundwater level observations (Environment Agency, 

2023), making it highly suitable for testing and evaluating our coupled model. Also, Great Britain exhibits a wide diversity in 205 

hydrogeology with units ranging in age from Pre-Cambrian (Allen et al., 1997), resulting in a wide variety of aquifer types 

(Figure S5). This allows us to test the robustness of the coupled model under a range of hydrogeological conditions modelling 

for the three principal aquifers: Chalk, Permo-Triassic sandstone and Jurassic limestone (Allen et al., 1997). The Chalk aquifer, 

notably distributed in the south-east of England, is highly permeable, where catchments are connected to a wider regional 

groundwater system, resulting in inter-catchment subsurface flows (Allen et al., 1997; Oldham et al., 2023). Despite the vast 210 

range of hydrological models applied to this region (Coxon et al., 2019; Lane et al., 2019; Lane et al., 2021; Hannaford et al., 

2022; Lees et al., 2021; Bell et al., 2007; Ewen et al., 2000; Seibert et al., 2018; Lewis, 2016), deficiencies in model 

performance persist for these groundwater flow-dominated catchments. Thus, we test our coupled model over England and 

Wales, with the aim of improving model performance in these groundwater-dominated regions through better representation 

of surface-groundwater interactions.  215 

We selected 669 catchments from all river records in the National River Flow Archive (NRFA) across England and Wales to 

evaluate the coupled model and represent a variety of hydro-climate characteristics, which ensures the robustness and 

generalizability of our results. All catchments are shown in the Figure 3a-c that are selected based on the following data criteria. 

Note that catchments in Scotland were excluded from our analysis due to lack of access to hydrogeological data.  

First, to ensure robust calibration, only catchments with over 20 years of observed data within the calibration period spanning 220 

from 1980 to 2010 were selected. The model was configured to run from 1970 to 2020 based on data availability, capturing a 

broad range of climate conditions during this period. The initial 10 years served as a warm-up period, with calibration 

performed from 1980 to 2010, followed by model evaluation in the subsequent years. Secondly, we excluded catchments that 

are affected significantly by reservoirs as the coupled model does not incorporate the reservoir operating rules. Using a suite 
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of hydrological signatures we identified 25 catchments where reservoirs were having a significant impact on the water balance 225 

or flow variability and excluded these from our sample (Salwey et al., 2023). Thirdly, catchments with runoff coefficient 

(calculated as the ratio of mean annual discharge and mean annual precipitation) greater than 1 were also excluded from the 

analysis due to potential issues with data quality, missing rainfall data or substantial human-water interactions that we didn’t 

consider in this coupled model.  

 230 

Figure 3: Hydro-climate, geology, and available groundwater well locations of 669 catchments used in this study. (a) Mean annual 
rainfall (mm/year), (b) Aridity (-), (c) Baseflow index (-), (d) The locations of 3888 groundwater wells collected in this study, and (e) 
The locations of six selected catchments (Details in section 4.2 and Table 3). The hydrogeological properties map in the background 
(this figure contains British Geological Survey materials © UKRI 2020) highlights highly productive aquifers, including white Chalk, 
Triassic Sandstone, and Lias Limestone. 235 

3.2 Surface water component and groundwater model configuration 

For the surface water component, a 50-m gridded digital elevation model (Intermap Technologies, 2009) was adopted as the 

basis for the Digital Terrain Analysis to build the river network and define the HRUs across all England and Wales catchments. 
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Headwater cells were extracted from Ordnance Survey river layers (Ordnance Survey, 2023) and then routed downstream 

along the steepest slopes in the catchment to create the river network for the coupled model. Defining HRUs is a critical step 240 

in the application of surface water component, because these HRUs act as an individual model store with different spatial 

inputs and model parameter values. In this study, we implemented the same HRUs discretization approach described in (Salwey 

et al., 2024), which uses three equal classes of slope and accumulated area, catchment boundaries as well as a 2.2-km input 

grid (consistent with national climate projection data, detailed in section 3.3).  

We constructed and operated the gridded groundwater model based on the topography data at 1 km spatial resolution. The 245 

groundwater model simulation domain is defined by grids overlaying the catchment boundary and the buffer zone. Text S12 

and Figure S15 in supporting information provide details of how we determined a buffer zone size, which resulted in a 3 km 

buffer zone around the catchment boundary to reduce the impact of no-flow boundary conditions. Future users can adjust this 

buffer value as needed. We used the long-term steady-state simulated groundwater heads from Rahman et al. (2023) as the 

initial condition for the groundwater model to ensure the model achieves a stable and reasonable operational state as quickly 250 

as possible.  

3.3 Input and evaluation datasets 

Daily precipitation, potential evapotranspiration (PET), streamflow and groundwater level data were used to run and evaluate 

DECIPHeR-GW. For the input data, this study uses the observation-based gridded daily precipitation and PET data derived 

from HadUK-Grid, a newly produced dataset providing gridded climate observations for the UK at a spatial resolution of 1km 255 

(Hollis et al., 2019). Daily precipitation data from HadUK-Grid, available from 1891-present, is derived from the Met Office 

UK rain gauge network, which is quality controlled and then inverse-distance weighted interpolation is applied to generate the 

daily rainfall grids. Daily PET data, available from 1969-2021, is calculated using the Penman-Monteith equation with climate 

variables obtained from HadUK-Grid (Robinson et al., 2023). To align with the existing model setup and the grid used for 

national climate (Robinson et al., 2021; Lane and Kay, 2022; Salwey et al., 2024), these climate variables were upscaled to a 260 

2.2-km grid for hydrological simulations.  

To evaluate river flows generated in DECIPHeR-GW, daily observed streamflow data sourced from NRFA were used to 

calibrate and evaluate the model performance. The modelled groundwater levels are evaluated using groundwater level 

observation data from the Environment Agency’s groundwater monitoring network database (Enviroment Agency, 2023). The 

groundwater level observations for a total of 3888 groundwater wells in England and Wales were collected, which covers a 265 

variety of temporal resolution and coverage with varying levels of  data quality. Before using these in model evaluation, several 

quality control steps were applied to the measured groundwater level data, as illustrated in Figure S4b. Details of data quality 

control are provided in the supporting information (Text S4). There are 3005 wells providing manually measured data (‘Dipped 

data’) at either daily or monthly intervals, while 883 wells offer automatically ‘Logged data’ recorded by pressure transducers 

at sub-daily scale. Furthermore, there are 395 wells where both types of data are available (see the locations in Figure 3d and 270 
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Figure S4a). The temporal coverage varies significantly, with a median of approximately 41 years and the shortest period being 

just 4 years of non-continuous observations (Figure S4c). After the data quality control, data from 1804 groundwater wells 

were used for the model evaluation.  

3.4 Model parameters 

A total of six model parameters need to be calibrated to run the coupled model. Parameters SRmax and CHV were already 275 

included in the DECIPHeR model structure. For the coupled model, we sampled these two model parameters using the same 

method following Lane et al. (2021). Specifically, SRmax is sampled by adopting the multiscale parameter regionalization (MPR) 

strategy, which was first estimated at the high resolution based on the geophysical data and the transfer function, and then 

upscaled to the HRU scale. The channel routing parameter CHV, which is not associated with spatial fields, was not 

parameterized using MPR and calibrated through random sampling instead. Details about the sampling method of these two 280 

model parameters can be found in the work from Lane et al. (2021).  

In addition to the two mentioned above model parameters, we have introduced 4 new model parameters in the coupled model, 

i.e., saturated hydraulic conductivity (Ks) and pore size distribution index (B), which interact with the surface water 

components, and transmissivity (T) and specific yield (Sy), which drive groundwater flow. We use representative ranges of 

saturated hydraulic conductivity (Ks) and pore size distribution (B) from various soil texture measured from a large sample of 285 

soil from Clapp and Hornberger (1978); (Rawls et al., 1982). Maps of soil surface properties (porosity, percentage sand, silt 

and clay) at a 50m raster were sourced from Lane et al. (2021) for deriving the root zone depth and soil texture classification. 

Soil texture is classified based on the United States Department of Agriculture (USDA) criteria. Ks and B values were sampled 

in the corresponding range for each soil texture classification using Monte-Carlo method at the high resolution map (50m 

raster) of soil texture, and then the geometric mean was calculated for upscaling to the HRU scale for calibration.  290 

Transmissivity (T) and specific yield (Sy), as the parameters of groundwater component, needed to align with its gridded 

structure, which is set at 1 km grid resolution for parameter input. Following Rahman et al (2023), these parameters can be 

obtained from the representative ranges for different lithology classes based on extensive literature review and reports for 

England and Wales (Allen et al., 1997; Jones et al., 2000). The 1:625000 scale digital geological map of the United Kingdom 

developed by the British Geological Survey (BGS) is used for providing the lithology classes at 1 km grid resolution. By 295 

adopting this lithology map and the lookup table from Rahman et al. (2023), the parameter values of T and Sy can be sampled 

through Monte-Carlo method for every 1 km grid cell. Table 2 summarizes the functions, parameter ranges and catchment 

attributes data used in this study for sampling the model parameters. The lookup tables for linking Ks, B with soil texture class 

and T, Sy with lithology types as well as the detailed parameter ranges are provided in Table S2 and Table S3 in the supporting 

information. Since the model parameters are linked with the soil and lithology types, catchments with the same spatial attributes 300 

will be calibrated with the same set of model parameters, facilitating parameter regionalization for ungauged catchments or 

large-scale modelling.  
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Table 2. Model parameters range, transfer functions and catchment attributes data used in this study 

Parameter Parameter 
description (Unit) 

Catchment attribute data/ Sampling 
method 

Transfer function/ Parameter Range 

SRmax Maximum root zone 
storage (m) 

Porosity (p) and land use (u). Global 
parameters are constrained using the root 
depth associated with different land uses. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑔𝑔1 ∙ 𝑝𝑝 ∙

⎩
⎪
⎨

⎪
⎧
𝑔𝑔2,   𝑢𝑢=1
𝑔𝑔3,   𝑢𝑢=2
𝑔𝑔4,   𝑢𝑢=3

⋮
𝑔𝑔11,   𝑢𝑢=10

 

𝑔𝑔1 is the scaling factor. 𝑔𝑔2~𝑔𝑔11 are the estimated root zone 
depths for different land use types. Details see Lane et al. 
(2021). 

CHV Channel routing 
velocity (m/time 
step) 

Random sampling from the lower and upper 
bound according to previous applications 
(Coxon et al., 2019; Lane et al., 2021) 

[100, 4000] 

Ks Saturated hydraulic 
conductivity (m/time 
step) 

Surface soil texture (sc) based on the 
percentage sand, percentage clay and 
percentage silt; 

Lookup table from (Clapp and Hornberger, 
1978; Rawls et al., 1982) linking Ks field 
measured representative values range 
according to soil texture 

𝐾𝐾𝐾𝐾 =

⎩
⎪
⎨

⎪
⎧
𝑔𝑔12,   𝑠𝑠𝑠𝑠=1
𝑔𝑔13,   𝑠𝑠𝑠𝑠=2
𝑔𝑔14,   𝑠𝑠𝑠𝑠=3

⋮
𝑔𝑔22,   𝑠𝑠𝑠𝑠=11

 

Ks values range for each soil texture class is presented in 
Table S2. 

B Pore size distribution 
index (-) 

Same with Ks, lookup table linking B field 
measured representative values according to 
soil texture (sc) 𝐵𝐵 =

⎩
⎪
⎨

⎪
⎧
𝑔𝑔23,   𝑠𝑠𝑠𝑠=1
𝑔𝑔24,   𝑠𝑠𝑠𝑠=2
𝑔𝑔25,   𝑠𝑠𝑠𝑠=3

⋮
𝑔𝑔33,   𝑠𝑠𝑠𝑠=11

 

B values range for each soil texture class is presented in 
Table S2. 

T Transmissivity 
(m2/time step) 

Lithology types (lt); Lookup table from 
(Rahman et al., 2023) 

𝐸𝐸 =

⎩
⎪
⎨

⎪
⎧
𝑡𝑡1,   𝑙𝑙𝑖𝑖=1
𝑡𝑡2,   𝑙𝑙𝑖𝑖=2
𝑡𝑡3,   𝑙𝑙𝑖𝑖=3

⋮
𝑡𝑡𝑖𝑖,   𝑙𝑙𝑖𝑖=𝑖𝑖

 

T values range for each lithology type is presented in Table 
S3. n is the total number of lithology types.  

Sy Specific yield (-) Lithology types (lt); Lookup table from 
(Rahman et al., 2023) 

𝑆𝑆𝑦𝑦 =

⎩
⎪
⎨

⎪
⎧
𝐾𝐾1,   𝑙𝑙𝑖𝑖=1
𝐾𝐾2,   𝑙𝑙𝑖𝑖=2
𝐾𝐾3,   𝑙𝑙𝑖𝑖=3

⋮
𝐾𝐾𝑖𝑖,   𝑙𝑙𝑖𝑖=𝑖𝑖

 

Sy values range for each lithology type is presented in 
Table S3. n is the total number of lithology types. 
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3.5 Model calibration and evaluation 

In this study, we set up the simulations for 669 catchments using the DECIPHeR model introduced by (Lane et al., 2021) to 305 

compare with DECIPHeR-GW. The DECIPHeR model in Lane et al (2021) employs the Multiscale Parameter Regionalization 

(MPR) method to parameterize model parameters while maintaining the original DECIPHeR model structure without 

groundwater representation. The objective is to utilize these simulations as a benchmark to evaluate the performance of the 

coupled model after implementing the groundwater processes representation. Note that these benchmark model runs are 

calibrated and evaluated using the same method with the coupled model as described below.  310 

We use non-parametric KGE metrics (Pool et al., 2018) to calibrate and evaluate the model results, which comprises three 

components accounting for the errors in mean flow, flow variability and the correlation between observed and simulated flow. 

This non-parametric KGE is proposed to avoid overfitting to particular hydrograph elements. In contrast to the parametric 

KGE (Gupta et al., 2009), this metric incorporates the difference between Flow Duration Curve (FDC) to indicate variability 

instead of standard deviation and employs Spearman correlation in place of the Pearson correlation coefficient. 315 

Both coupled and benchmark model was calibrated and evaluated across all 669 catchments by running 5000 simulations in 

each catchment (i.e., each of the 5000 regionalization of parameters g1-g33, t1-tn, s1-sn mentioned in Table 2 is used for all 

catchments). The model simulates the period from 1970 to 2020 at daily time step. Simulations from 1970 to 1979 were treated 

as a warm-up period, and the non-parametric KGE was calculated separately for the calibration period from 1980 to 2010 and 

the evaluation period spanning from 2011 to 2020. These periods were selected as a suitable test for the model, encompassing 320 

a variety of climatic conditions to showcase its capability to reproduce major national-scale hydrological extremes, including 

floods in 2007, 2015, and 2019, as well as droughts in 1984, 2003, 2011 and 2018. Two calibration approaches, namely (a) 

catchment by catchment and (b) nationally-consistent calibration, were used to calibrate the coupled model following the study 

from (Lane et al., 2021). The first catchment by catchment calibration is to find the best performing simulation (maximum 

KGE across 5000 simulations) and its corresponding parameter sets for each catchment. The second nationally-consistent 325 

calibration scheme enables us to identify the best national model parameter sets across all catchments. The median KGE across 

all catchments is calculated for each simulation and the nationally-consistent approach selects the simulation with the highest 

median KGE. The second calibration approach is beneficial for national model parameter regionalization, offering valuable 

insights on model parameter selection for model application in ungauged catchments. In contrast, the first calibration method 

demonstrates the optimal performance achievable by our coupled model. For the national-consistent calibration approach, 330 

following Lane et al., (2021), catchments with maximum KGE values below 0.3 in the first calibration method (catchment by 

catchment) were excluded from the median KGE calculation. This exclusion avoids catchments where the model structure was 

not suitable, while retaining as many catchments as possible. 

Furthermore, modelled groundwater levels are assessed using a large sample of groundwater level observations from 1804 

wells in England and Wales (described in section 3.3) for the model evaluation. Due to the scale discrepancy between the 1 335 
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km grid scale simulated groundwater level and point-scale observations of specific wells, we use the Spearman correlation 

coefficient to quantify the ability of the coupled model in reproducing the temporal correlation and don’t calculate the bias.  

4 Results  

4.1 Overall model performance across catchments 

Figure 4a presents the non-parametric KGE values of the simulated streamflow for the coupled model across 669 streamflow 340 

gauges during the evaluation period. The calibration results, which are consistent with evaluation results, are detailed in the 

Supporting Information file (Figure S6). Using the catchment-by-catchment calibration method (Figure 4a-d), overall, the 

coupled model performs well in simulating streamflow across catchments, with a median KGE of 0.83, and most catchments 

(81%) achieving 0.7 or higher. Figure 4b illustrates the KGE differences between the coupled model and benchmark runs by 

using DECIPHeR. Approximately 70% of the catchments exhibit KGE differences of 0.1 or less between the coupled and 345 

benchmark models, indicating that the coupled model achieves comparable results with those of the benchmark model. Notably, 

the coupled model demonstrates better performance in groundwater-dominated chalk catchments with baseflow index > 0.75 

(blue dots in Figure 4b), where the average KGE improves from 0.49 with the benchmark model to 0.70. In the southeast’s 

chalk region, the coupled model achieves KGE improvements exceeding 0.35 in 20 catchments, with 6 catchments showing 

improvements greater than 1. In contrast, the benchmark model performs slightly better in the western regions of England and 350 

Wales (indicated by orange dots in Figure 4b), where catchments are wetter with mean annual rainfall exceeding 1500 mm/year, 

achieving a median KGE around 0.88. Nevertheless, the coupled model still maintains a median KGE of 0.80 for these wetter 

catchments. 

The comparison of the KGE bias component between two models, as displayed in Figure 4c and 4d, further confirms that the 

coupled model improves the reproduction of the water balance for these groundwater-dominated catchments in the southeast, 355 

particularly those in the Thames River basin. However, the coupled model still tends to overestimate streamflow in some 

catchments in central and southeast England, where intense surface water, groundwater abstractions and waste water 

discharges are prevalent (Figure S8 in the supporting information).  

As expected, a performance drop is observed in the national-consistent calibration strategy (Figure 4e-f), since the 

parameterization is not optimized for individual catchments. Compared to the catchment-by-catchment calibration, 360 

approximately 50% of catchments experienced a decline of less than 0.1 in KGE for the coupled model, whereas 64% 

experienced a decline for the benchmark. The decrease in KGE scores is primarily concentrated in the southeast of England, 

echoing findings of Lane et al. (2021). This might be attributed to the method used for catchment selection in the national 

regionalization process. Groundwater-dominated catchments with baseflow index > 0.75 account for less than 10% of the total 

catchments calibrated in this study. By assigning equal weight to all catchments, the model parameters for groundwater-365 

dominated catchments might not be constrained properly under the national-consistent approach, leading to reduced 
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performance in those areas. However, despite  the reduced performance with the national-consistent calibration method, the 

coupled model still outperforms in approximately 50% groundwater-dominated catchments compared to the benchmark model 

(Figure 4f). 

 370 
Figure 4: Spatial maps of model performance using two calibration approaches (a) Catchment-by-catchment (CBC) and (e) 
National-consistent (NC), the non-parametric KGE differences between the coupled model and the corresponding DECIPHeR 
benchmark runs (b, f), and the bias component of KGE for the coupled model and benchmark runs under CBC approach (c, d). The 
maps for other KGE components are provided in the supporting information (Figure S7). Each dot represents the performance at 
a river gauge during the evaluation period. Model performance maps for the calibration period are provided in the supporting 375 
information (Figure S6). The scatter dots for groundwater-dominated catchments (baseflow index > 0.75) were labelled with larger 
dots and outlined with thicker borders. The background of the maps highlights the areas of high productivity in aquifers (this figure 
contains British Geological Survey materials © UKRI 2020). Light green represents  highly productive aquifer (fracture flow), while 
blue indicates the intergranular flow of a highly productive aquifer.  
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4.2 Performance of simulated flow timeseries  380 

Six catchments were selected to demonstrate the coupled model’s ability in reproducing the streamflow timeseries with distinct 

characteristics, i.e., climate conditions, geology types and levels of human impact (Table 3). Specifically, catchments 76014 

and 67005 were selected to evaluate coupled model performance in wet climate (mean annual rainfall > 1200 mm/yr), while 

39028 and 39001, differing in human impact, represented dry chalk catchments. Catchment 31021 was chosen for limestone, 

and 54044 for sandstone. The simulation of the 2-year period for 2010 to 2012 using the calibration period model parameters 385 

is presented here for these catchments, as it encompasses diverse hydrological extreme events (Marsh et al., 2013). The 

evaluation period model parameters exhibit the similar pattern and won’t change the herein analysis. 

Figure 5 illustrates DECIPHeR-GW results for a wide spectrum of hydrological dynamics, including the wetter catchments in 

the northwest England and north Wales (Figure 5a, b), as well as the drier catchments in the south-east (Figure 5e, f). Especially 

in the groundwater-dominated chalk catchment (39028), characterized by small net loss from abstractions and discharges 390 

(minor human influences) and essentially a natural baseflow-dominated flow regime, the streamflow hydrograph simulations 

from the coupled model significantly improve and fit well compared to observations (Figure 5e), with the KGE metric 

increasing almost twofold compared to the benchmark. In addition, the coupled model performed well for other aquifer types, 

as shown by the results from a limestone catchment 31021 (Figure 5d) and sandstone catchment 54044 (Figure 5c), with KGE 

values exceeding 0.80. The simulated streamflow hydrograph using the national-consistent calibration method also closely 395 

aligns with the results from the catchment-by-catchment calibration method, with relatively larger differences in performance 

observed in groundwater-dominated catchments (Figure 5e). 

Table 3. Catchment attributes and model performance for the six selected catchments. Their locations are presented in 
Figure 3e, simulated hydrographs are shown in Figure 5. Baseflow index and aridity are derived from the CAMELS-
GB dataset (Coxon et al., 2020). Runoff coefficient is calculated as the mean annual discharge divided by mean annual 400 
rainfall. The KGE values presented in this table calculated for calibration periods under catchment-by-catchment 
(CBC) and national consistent (NC) calibration approaches. Benchmark KGE represents the results from DECIPHeR. 
Gauge 
number 

River Station  
location 

Catchment 
area (km2) 

Geology type Mean 
annual 
rainfall 
(mm/yr) 

Mean 
annual 
PET 
(mm/yr) 

Mean 
annual 
discharge 
(mm/yr) 

Runoff 
coefficient 
(-) 

Baseflow 
index (-) 

Aridity 
(-) 

Coupled 
model 
KGE 
(CBC) 

Coupled 
model 
KGE(NC) 
 

Benchmark 
KGE 
(CBC)  

76014 Eden Kirkby 
Stephen 

69 No highly 
permeable 
bedrock 

1514 434 1248 0.82 0.38 0.29 0.88 0.83 0.89 

67005 Ceiriog Brynkinalt 
Weir 

112 No highly 
permeable 
bedrock 

1211 477 849 0.70 0.57 0.39 0.82 0.75 0.93 

54044 Tern Ternhill 93 Sandstone 738 500 280 0.38 0.78 0.68 0.91 0.86 0.82 
31021 Welland Ashley 247 Limestone 646 508 175 0.27 0.46 0.79 0.83 0.65 0.84 
39028 Dun Hungerford 101 Chalk 806 505 217 0.27 0.85 0.63 0.90 0.52 0.50 
39001 Thames Kingston 9948 Chalk 710 508 193 0.27 0.63 0.72 0.46 0.33 0.85 
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In the Thames at Kingston River basin (catchment ID: 39001) where surface water and groundwater abstractions, waste water 

returns from sewage treatment works are prevalent, the coupled model tends to overestimate flows particularly during the dry 

periods (Figure 5f), leading to a decline in KGE performance. This overestimation indicates the challenge of simulating flows 405 

in heavily human impacted catchments and underscores the need to enhance the representation of human-water interactions in 

the hydrological model. Meanwhile, it’s interesting to see that the benchmark model produces better simulation results for the 

Thames River basin, with a KGE of 0.85, despite not accounting for either groundwater or human-water interactions. This 

implies that the benchmark calibration could produce good results, but potentially due to the parameterization that compensates 

for the absence of these processes representation. Ensuring that model performs well with appropriately structured components 410 

is crucial for maintaining both accuracy and reliability (Kirchner, 2006; Gupta et al., 2012). 

Furthermore, the simulated streamflow hydrographs for the wetter catchments tends to be flashier than the benchmark 

simulations (as shown in catchment 67005, Figure 5b). This might be related to the relatively wet conditions of the catchment 

in combination with the underlaying groundwater system is already saturated or nearly saturated. Once the root zone reaches 

capacity, runoff is quickly generated as the excess rainfall, leading to a rapid response to precipitation and resulting in more 415 

pronounced spikes in the hydrographs. The dynamic variations of these internal variables for this catchment during 2010-2012 

are provided in the supporting information (Figure S9). However, for most wet catchments (mean annual rainfall > 1500 

mm/year), the coupled model performs well (examples in catchment 76014, Figure 5a), with around 78% of these catchments 

achieving a KGE greater than 0.7. 

A simple model parameter sensitivity analysis (details provided in supporting information Text S11) reveals that the parameters 420 

of the surface model component have a greater influence on simulated streamflow hydrographs than on modelled groundwater 

levels (as seen in Figure S11 and Figure S14). SRmax, which determines the maximum root zone storage, plays a crucial role 

in regulating the flashiness of simulated flows (Figure S11a). Smaller SRmax values lead to increased variability in runoff, as 

runoff is rapidly generated whenever SRmax reaches its capacity, causing spikes in the hydrographs due to excess rainfall. Both 

the B and Ks parameters control the magnitude of recharge, as shown in Figure S11b and c, their effects on simulating 425 

streamflow hydrographs are similar, with a relatively greater impact observed for parameter B. Smaller B values lead to 

reduced recharge, causing the root zone storage to fill up more quickly and resulting in increased overflow and also flashier in 

streamflow hydrographs. The groundwater related parameters, i.e., T and Sy are intended to control groundwater levels more 

than streamflow, which is confirmed by this analysis (see Figure S12 and S13). Consequently, this sensitivity analysis indicates 

that increasing SRmax or B values could result in smoother streamflow hydrographs and therefore might improve DECIPHeR-430 

GW’s performance in wetter catchments. 
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Figure 5: Observed and the best simulated streamflow hydrographs using the model parameters from the calibration period for the 
six catchments across different catchment attributes (shown in Table 3). The best simulated hydrographs along with their KGE 
values for both catchment-by-catchment (CBC) and national-consistent (NC) are provided. 435 
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4.3 Model evaluations with groundwater levels 

We used 1804 groundwater well observations to evaluate grid-scale simulated groundwater levels. In this study, we calibrated 

the model solely using streamflow data as our objective, while utilizing groundwater observations to evaluate the internal 

dynamics of the coupled model. Figure 6a-b illustrates groundwater simulations corresponding to the best streamflow 

simulations under two streamflow calibration methods, i.e. catchment-by-catchment and national consistent. Overall, the 440 

groundwater simulation results are generally reliable in capturing the temporal correlation of the observations, particularly in 

the Chalk region, where over 75% wells achieve Spearman correlation coefficients above 0.6 with a median of 0.77. The 

results are highly consistent between the two streamflow calibration methods (Figure 6a and 6b), indicating the coupled model 

is robust in simulating the groundwater levels.  

Taking catchment 39028 as an example, Figure 6c demonstrates that model performance can vary across 5000 simulations 445 

under catchment-by-catchment calibration method. The median Spearman correlation coefficients for different groundwater 

grids across all simulations in general reach 0.6 or higher. A portion of the groundwater wells has a median Spearman 

coefficient for groundwater levels exceeding 0.8 (see groundwater well 3, 4 and 5 in Figure 6c), underscoring the model’s 

capability in reproducing the temporal patterns of groundwater variations. Figure 6d presents two examples of simulated 

groundwater level timeseries against well observations. While these examples are not from the best simulations, they are 450 

chosen to demonstrate the model’s performance under conditions of both strong and weak temporal correlation. 

Figure S13 in the supporting information illustrates the impact of T and Sy model parameters on the groundwater level 

timeseries for example catchment 39028 (details are recorded in Text S11). Higher T values generally result in lower 

groundwater levels, which is to be expected as higher transmissivity (T) facilitates quicker lateral flow through an aquifer. In 

contrast, when Sy is low, the speed of groundwater flow and storage capacity may be reduced, resulting in  flashier groundwater 455 

levels increasing their variability. Our results confirm the above patterns, showing that higher T leads to decreased groundwater 

levels and lower Sy leads to greater variability (Figure S13a and b), highlighting the overall agreement and well-representation 

of physical processes of our coupled model.  

Given that poorer temporal correlation observed in some wells, we investigated which factors could contribute, such as short 

groundwater observation records, low streamflow accuracy in catchments, distance between wells and rivers, and attributes 460 

like borehole depth, elevation of wells, and grid elevation contributed to the discrepancies. Our findings point towards key 

factors, such as  borehole depth, river proximity, and streamflow accuracy, which might be affecting the ability to model 

groundwater levels accurately (see details in Figure S10). We have found lower spearman correlations for wells with deeper 

boreholes, those closer to the river or the wells with lower streamflow simulation accuracy. This is likely because our 

groundwater model is 2D without explicit river features representation, which can result in lower performance for wells that 465 

are deeper or closer to rivers. More details are discussed in section 5.2.  
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Figure 6: Spatial maps of groundwater level evaluation results. (a) and (b) shows the evaluation results for the simulated 
groundwater levels under the catchment-by-catchment (CBC) and national-consistent (NC) streamflow calibration methods, 
respectively. (c) presents the performance of the eight groundwater grids in the Dun at Hungerford catchment (39028) across 5000 470 
simulations under the catchment-by-catchment calibration method. (d) displays the simulated groundwater level time series 
compared with the observations from two wells, demonstrating cases with strong and weak Spearman correlation coefficients. 
Example groundwater timeseries shown for two wells at Old School House (GW well 2062) and East Wick Farm (GW well 859).  

5 Discussion  

5.1 Enhanced performance of DECIPHeR-GW in groundwater-dominant catchments  475 

Based on the evaluation with 669 river flow gauges and 1804 groundwater monitoring sites across England and Wales, our 

coupled model DECIPHeR-GW v1.0 is able to produce robust streamflow simulations whilst capturing temporal dynamics of 

groundwater levels. Notably, the model achieves better performance in simulating river flows in groundwater-dominated 

catchments with baseflow index > 0.75 (Figure 4b), especially simulations for catchments with minor human influence 

showing significantly higher performance compared to DECIPHeR model. This improvement is most evident in the chalk 480 

regions with strong surface-groundwater water interactions, where it reproduces the observed hydrographs (examples in Figure 

5e) and enhances hydrological simulation reliability. Moreover, the coupled model also performed well in other aquifer types 

including sandstone and limestone (Figure 5c and d). Although our coupled model is exhibiting similar or slightly better 

performance compared to the benchmark model in around 70% of the catchments, the coupled model has a more robust and 

reliable structure by better representing the groundwater processes. Herein, the coupled model could avoid the unrealistic 485 
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model parameterisations to compensate for the absence of groundwater representations (Kirchner, 2006; Coxon et al., 2014; 

Dang et al., 2020). The well-matched results for streamflow, parameter sensitivity and groundwater levels patterns show the 

potential of DECIPHeR-GW for future applications especially under climate change.  

Additionally, DECIPHeR-GW v1.0 model facilitates a promising tool for water resources management in the southeast 

England, as existing hydrological models in the UK have faced challenges in accurately simulating streamflow and 490 

groundwater heads in these groundwater-dominated catchments. For instance, Lane et al. (2019) assessed four different 

conceptual hydrological models (TOPMODEL, ARNO/VIC, PRMS, SACRAMENTO) through the Framework for 

Understanding Structural Errors (FUSE) across over 1000 catchments in England, Wales and Scotland. Their findings revealed 

these models struggled with simulating biases, standard deviations, and correlations, particularly for the groundwater-

dominated catchments in southeastern England. Similar issues have been reported with other models, including Grid-to-Grid 495 

(G2G) simulation over 61 Great Britain catchments (Rudd et al., 2017), GR4J application across 303 UK catchments (Smith 

et al., 2019), SHETRAN performance in 306 UK catchments (Seibert et al., 2018; Lewis, 2016) and SWAT simulation in two 

medium-scale catchments within the Thames River basin (Badjana et al., 2023). Efforts have been made to improve the 

groundwater representation in hydrological models like GR6J and PDM (Pushpalatha et al., 2011; Moore, 2007). Yet, models 

are still unable to accurately capture low flows in some groundwater-influenced catchments, such as those in the eastern 500 

Chilterns north of London (Hannaford et al., 2023). Even machine learning models like LSTM, while generally outperforming 

conceptual models, struggle to accurately simulate streamflow in the groundwater-dominated catchments (Lees et al., 2021). 

Moreover, most of these models mentioned above cannot simulate the timeseries of groundwater heads, at the same time as 

producing streamflow timeseries. In this study, our coupled model enables the simulation of inter-catchment subsurface flow 

and well captures the dynamic surface-groundwater interactions, providing a more precise representation of runoff and 505 

groundwater generation process in groundwater-dominated catchments. Consequently, the DECIPHeR-GW model shows 

potential for future applications, such as in low flow simulation and drought prediction, particularly in groundwater-dominated 

catchments. 

Furthermore, our coupled model is relatively efficient in terms of computational requirements. One simulation over 51-year 

for the largest Thames at Kingston river basin (9948 km2) with 27980 HRUs, takes approximately 17 hours to run on a standard 510 

CPU, producing simulated streamflow and groundwater level timeseries for all upstream 98 river gauges and 416 groundwater 

grids simultaneously. A 51-year simulation for the smallest river basin (10 km²), with 52 HRUs and one river gauge, completes 

in about one second using a CPU. Future enhancements in computational efficiency of the coupled model can be achieved by 

employing sophisticated parallel computing techniques. Currently, lots of existing coupled surface-groundwater models either 

cannot perform or require excessive time for calibration due to high computational costs (Ng et al., 2018; Parkin et al., 2007; 515 

Naz et al., 2022; Reinecke et al., 2019), which limits the ability to assess uncertainty in presented results and hinder future 

model applications. The computational efficient feature of our proposed model allowed us to calibrate it against extensive 
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observed data, including 669 streamflow gauges and 1804 groundwater wells, thereby providing reliable results for future 

application.  

5.2 Lessons learned from model coupling and ongoing developments 520 

As awareness of the importance of groundwater process-based representation grows, along with the rapid development of 

groundwater models with a variety of complexity, there is a growing interest in incorporating the groundwater representations 

into hydrological or land surface models (Gleeson et al., 2021; De Graaf et al., 2017; Maxwell et al., 2015; Irvine et al., 2024; 

Ntona et al., 2022). When designing coupled models, balancing model complexity with computational efficiency is crucial 

(Condon et al., 2021; Barthel and Banzhaf, 2016; Henriksen et al., 2003). Therefore, we selected a computationally efficient 525 

2D model (Rahman et al., 2023), which generally yields superior results. However, this model lacks the representation of river 

network and assumes groundwater above topography is directly discharged to the nearest river, leading to inaccuracies of 

capturing groundwater dynamics in some low-elevation areas where simulated groundwater levels stay at the surface (see 

example in supporting information Figure S16). In addition, to achieve a simpler and more efficient structure of the coupled 

model, we removed the unsaturated zone from the benchmark DECIPHeR model and directly replaced the saturated zone with 530 

the groundwater model. This approach is consistent with many existing coupled models that do not account for the unsaturated 

zone and generally provide robust simulations (Yang et al., 2017; Jing et al., 2018; Reinecke et al., 2019; Müller Schmied et 

al., 2014; Henriksen et al., 2003). According to our results, while this approach worked well in most catchments, the absence 

of an unsaturated zone led to flashier hydrographs in some wetter catchments, where the unsaturated zone is critical for storing 

excess rainfall (Dietrich et al., 2019; Hilberts et al., 2007). Thus, future research are advised to explore and design model 535 

structures tailored to their specific needs. 

Parameterizing surface-groundwater coupled models across large scales and diverse geological types remains challenging due 

to the difficulty in accurately representing geological heterogeneity (Gleeson et al., 2021; Condon et al., 2021). In our study, 

groundwater level simulations are highly dependent on hydrogeological parameters (i.e., T and Sy; see sensitivity analysis in 

Figure S13). Although we have attempted to capture the complexity of geological conditions by using different parameter 540 

ranges across 5000 simulations for a total of 101 lithology types, parameters for the same lithology type can only be assigned 

the same set of values for one simulation. In reality, parameters such as T can vary significantly even within one Chalk aquifer. 

A recent study presented a three-dimensional geological digital representation model of Great Britain using extensive 

geological maps and borehole data (Bianchi et al., 2024). They  developed a national-scale groundwater model of Great Britain 

(BGWM) using this detailed geological data to consider the heterogeneity characteristics of aquifers, demonstrating its 545 

capability to accurately simulate groundwater dynamics. Griffiths et al. (2023) developed a method to estimate the initialized 

groundwater model parameter set using national-scale hydrogeological datasets to improve the parameterization of New 

Zealand’s national groundwater model. Adopting more accurate and detailed geological data and advanced sampling methods 
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to parametrize the model could be another direction of further improving the model performance (Hellwig et al., 2020; 

Henriksen et al., 2003; Westerhoff et al., 2018).  550 

For our coupled model, the model configuration can be further improved to enhance streamflow simulation results in small 

and isolated catchments. Currently, we retain the digital terrain analysis (DTA) configuration of the DECIPHeR model (Lane 

et al., 2021; Coxon et al., 2019), delineating catchments using the downstream gauge and clipping the groundwater grid for 

the simulation domain. Each catchment is configured individually and run in batches, rather than modelling the entire continent 

or nation. Although groundwater simulation domain extends beyond the catchment boundary (i.e., buffer zone), rainfall and 555 

groundwater recharge are confined to the HRUs within the catchment. This setup may cause inaccuracies for small, isolated 

catchments, as their buffer zones receive no rainfall or recharge. The fixed buffer zone constitutes a relatively larger proportion 

in these catchments compared to larger ones. Furthermore, the model does not account for groundwater flow between 

neighbouring catchments in this case, which may explain the lower performance observed in these small and isolated 

catchments. To address these issues, we recommend improving the DTA model setup in future research by configuring the 560 

model for the entire continent or region, simulating all HRUs and associated groundwater grids simultaneously at each time 

step. This will ensure accurate rainfall and groundwater recharge computations across the study area and better represent inter-

catchment flow dynamics. 

Our study demonstrates the robust performance of the DECIPHeR-GW model in simulating streamflow and groundwater head 

at a large scale across 669 catchments, highlighting its potential for widespread application in diverse geographical regions. 565 

While the model effectively captures natural surface-groundwater interactions, it falls short in accurately representing human 

influences, particularly in catchments affected by anthropogenic factors like surface/groundwater water abstraction and waste 

water returns (see example in Figure 5f). The dramatic rise in anthropogenic water use over the last century underscores the 

need to incorporate these human impacts into hydrological models (De Graaf et al., 2019; Döll et al., 2014; Wada et al., 2017). 

Many previous models lacked explicit modules for human impacts due to data limitations or relied instead on parameterizations 570 

or water use estimation statistics to mimic the human influences (Arheimer et al., 2020; Veldkamp et al., 2018; Sutanudjaja et 

al., 2018; Müller Schmied et al., 2014; Guillaumot et al., 2022). However, with the potential increasing availability of observed 

water abstraction and waste water returns data (Rameshwaran et al., 2022; Wu et al., 2023), it is crucial to integrate additional 

modules that accurately reflect these influences. In future developments, we aim to improve the overall accuracy and 

applicability of DECIPHeR-GW for both natural and human-dominated hydrological systems by refining the model to better 575 

capture the complexities of human-water interactions. 

6 Conclusions  

DECIPHeR-GW v1.0 is a new coupled surface-subsurface hydrological model that enhances the representation of surface-

groundwater interactions and demonstrates good ability in simulating the streamflow and groundwater heads over large model 
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domains. This paper introduces the details of the proposed model structures and its key components. We present an application 580 

in England and Wales, where previous hydrological models haven’t captured surface-groundwater interactions and have shown 

poor performance in the south-east of England. Our evaluation against 669 river gauges and 1804 groundwater wells across 

England and Wales illustrates our coupled model performs well in streamflow simulation, achieving a median KGE of 0.83 

across diverse catchments. Additionally, the model accurately captures the temporal patterns of groundwater level timeseries 

with approximately 56% of the wells showing a Spearman correlation coefficient of 0.6 or higher. More importantly, 585 

DECIPHeR-GW presents significant improved results in the drier natural chalk catchments of southeast England, where the 

average KGE increased from 0.49 in the benchmark DECIPHeR model to 0.7, facilitating a promising tool for water resources 

management in this region. DECIPHeR-GW is shown to be computationally efficient and capable of being calibrated and 

evaluated over large datasets of gauges. Being open-source and accompanied by a user manual, DECIPHeR-GW offers 

researchers an accessible implementation process and could be applied in other regions. 590 

Code availability  

The DECIPHeR-GW v1.0 model code (Zheng, 2024a), written in Fortran, is open-source and accessible at: 

https://github.com/YanchenZheng/DECIPHeR-GW_V1.0. A user manual to guide the researchers to use the model is also 

provided.  

Data availability  595 

The rainfall data (Hollis et al., 2019) is accessible from the CEDA archive (https://archive.ceda.ac.uk/), and the PET data 

(Robinson et al., 2023) is available from the CEH Environment Data Centre (https://catalogue.ceh.ac.uk/documents/9275ab7e-

6e93-42bc-8e72-59c98d409deb). The daily streamflow timeseries are available from the NRFA website 

(https://nrfa.ceh.ac.uk/), while the groundwater timeseries data is available at 

https://environment.data.gov.uk/hydrology/explore (last access: 19th April 2023). Simulated flow, groundwater outputs and 600 

performance metrics (Zheng, 2024b) of the best model simulations (including both catchment-by-catchment and nationally-

consistent calibration) from the DECIPHeR-GW v1.0 model are available at the University of Bristol data repository 

(https://data.bris.ac.uk/data/), at https://doi.org/10.5523/bris.wt0r1ec81zti2tww4p64fsqr3.  
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