
A Genetic Algorithm with Self-Distancing Bits but No Overt Linkage

William A. Greene
Computer Science Department

University of New Orleans
New Orleans, LA 70148

bill@cs.uno.edu
504-280-6755
Abstract

We present a novel representation and crossover
operator for genetic algorithms. Bits are not
linked to one another. Instead, the current popu-
lation suggests a pseudo-distance between each
pair of bits; this pseudo-distance really measures
the degree to which bits appear to participate in a
building block. Then crossover respects the
pseudo-distance: it is clumps of nearby bits that
have their values copied from parent to child.
Thus our new approach does directly (preserva-
tion of building blocks under crossover) what
other approaches only hope to do indirectly. Our
approach is tested on several problems, ranging
from simple to very challenging, and the results
compared to standard approaches. In these prob-
lems, the new approach is successful and usually
outperforms the standard approaches.

1. INTRODUCTION

We assume there is a problem of interest to us, and we
wish to use a genetic algorithm to search among the solu-
tions to the problem. There is a plenitude of solutions to
the problem, of varying quality; some are rather good
solutions, and some are only fair. We assume there is a
known measurement of the quality of a solution, which
we term its fitness and which is a non-negative real num-
ber. Individual solutions are identifiable with the property
values they exhibit, along a known set of properties. Solu-
tions differ one from another by having different values
for these properties.

In the standard representation used for genetic algo-
rithms, an individual solution (which we now begin to
term simply an individual) gets represented by represent-
ing its property values as values, which in this paper we
will take to be bits, which are linked together in a linear
sequence, like beads along a strand, that is, like genes
along a chromosome. Under this representation, which
mimics a biological model, mating with crossover contin-
ues the mimicry, in particular of haploidal reproduction.
One or more crosspoints are chosen at random along the
strand, parental genetic sequences are clipped at those

points, and parental genetic fragments are exchanged, to
form the children. Also mutation is easily mimicked, by
changing an occasional bit value.

Two bits, as a pair, can assume any one of four bit-pair
values, namely, (0, 0), (0, 1), (1, 0), and (1, 1). Let us say
that two bits are closely related, provided that they can
exhibit a bit-pair value that is rather beneficial to a solu-
tion, in the sense that having this pair of values
significantly increases the fitness of the solution. This
notion of a beneficial bit-pair value is an instance of what
[Holland, 1975] terms a building block.

When we read the proof of the Schema Theorem (see
[Holland, 1975] or [Goldberg, 1989]), we learn that two
closely related bits can suffer from a great hazard. To lie
far apart from one another along the bead strand increases
the likelihood that the beneficial bit-pair value will be
destroyed under crossover. One parent may exhibit the
beneficial bit-pair value, but if a crosspoint is chosen
between the pair of bits, it can happen that neither child
exhibits the pair.

This hazard was recognized at the dawn of genetic algo-
rithms, and since then attempts have been made to
contend with it. One possibility is reordering bits, with the
intention of having closely related bits wind up situated
near one another. [Holland, 1975] noted that the inver-
sion operator (a subsequence of bits gets its order
reversed) might be useful in reordering bits dynamically.
[Goldberg, 1989, pp.166-179] argues that for permuta-
tion-based representations (as might be used in the
traveling salesman problem), certain permutation-based
crossover operators, such as PMX [Goldberg and Lingle,
1985], combine the actions of crossover and reordering.
The messy genetic algorithm mGA of [Goldberg, Korb,
and Deb, 1989], along with its other distinctive features,
implicitly permits reordering of bits. Bui and Moon have
a sequence of papers that deal with ordering and preorder-
ing bits; of particular interest to them are graph problems,
such as the graph bisection problem (see section 3.5
below). In [Bui and Moon, 1993] there is a preprocessing
step which makes the sequence of bits (one for each graph
vertex) reflect certain vertex adjacencies as they are evi-
denced in, say, breadth-first traversal. Then in [Bui and
Moon, 1995] they follow a different course; this time the
bits are placed, not in a one-dimensional sequence, but

instead at integral points of multi-dimensional real space;
they argue the latter allows room for a more faithful rep-
resentation of adjacencies. In [Greene, 2000] it is shown
that under reasonable assumptions, a schema theorem
obtains when the structure of bits and their linkages is lib-
eralized to be as general as a connected graph, and then in
[Greene, 2001] there are experiments with such alterna-
tive bit arrangements. [Sehitoglu and Ucoluk, 2001]
explicate a regime for exchanging bits with their neigh-
bors to the left or right, based upon whether they appear
to participate in a building block.

(A new school, of probabilistic modeling, takes a com-
pletely different tack, but with the same general goal of
identifying and exploiting those bits which are closely
related. This school is exemplified by the research in
[Muehlenbein and Paass, 1996], [Pelikan, Goldberg, and
Cantu-Pas, 1998], and [Harik, 1999]. In this school, simu-
lation of biological crossover is abandoned, in favor of a
generate-and-test approach. The typical regimen is to loop
on two steps: use the current population to infer some
probabilistic dependencies between the values of the vari-
ous bits, then use those probabilities to stochastically
manufacture plausible individuals that will comprise the
next generation.)

In the current paper, we will take a novel step towards
correcting the hazard mentioned above. We will stay
within the tradition that simulates crossover, but our bits
will not be overtly linked together at all!

Reading the proof of the Schema Theorem suggests the
following line of reasoning. When parental genetic mate-
rial is inherited, it should be inherited in a certain
piecemeal way. When parental bit values are copied into
child bits, closely related bits should be copied in clumps.
We will loop to copy parental bit values. When an uncop-
ied parental bit is chosen to be the next one copied, we
will copy not only that bit’s value, but also the values of
those still uncopied bits which are suitably closely related
to it.

Above we alluded to reordering efforts, and non-linear
linkage schemes. We now describe these as follows. Such
approaches link or re-link bits one to another, with an eye
to positioning closely related bits close together (gener-
ally this means a short path length between them). Then it
should follow that when links are chosen for clipping dur-
ing crossover, there will be a decreased likelihood that
closely related bits get separated from one another.

The appeal of our approach is that it does directly what
the other approaches only hope to do indirectly: closely
related bits tend to clump together when parental genetic
material is being copied into children. Linking bits one to
another is a held-over artifact from the biological model
of a chromosome (especially this is so when the linkage is
into a linear sequence), and we now dispense with it.

Below we introduce a plausible measurement for close
relatedness between bits. We will think of this measure-
ment as also giving a pseudo-distance between bits. Our
genetic algorithm will be generational (an entire new pop-

ulation P(t+1) at time tick t+1 is created from the
population P(t) at time t, as opposed to a steady-state
approach). Also, the measurement of close relatedness (or
pseudo-distance) between bits is re-calculated for each
generation. We term our approach a linkless self-distanc-
ing genetic algorithm.

2. THE LINKLESS SELF-DISTANCING
GENETIC ALGORITHM

In this section we describe the details of our approach,
LSDGA. Of course, our approach is mostly distinguished
by a new way of representing an individual in the popula-
tion, then by the algorithm for crossover that follows from
it.

2.1. AN INDIVIDUAL

An individual is a set of bit-values. The bits are not linked
together. Each individual in the population consists of the
same number of bits, and that number is constant over all
generations of the population. An individual has a fitness,
which is a non-negative real number. The fitness value is
problem-dependent.

2.2. CLOSELY RELATED BITS

How can we gauge when two bits are closely related? We
do not purport to provide a perfect answer to that ques-
tion, but our answer is plausible and persuasive. Future
research may improve upon our answer.

As a pair, two bits can assume any one of four different
bit-pair values, namely, (0, 0), (0, 1), (1, 0), and (1, 1).
Our sentiment is that two bits are closely related, pro-
vided that they can exhibit a bit-pair value that is rather
beneficial to an individual, in the sense that having this
bit-pair value significantly increases the fitness of the
individual. [Holland, 1975] would say that the two bits
form a (small) building block.

We think of the current population as a sampling of the
entire fitness landscape, and as such it offers evidence as
to which bits are closely related. We consider just the fit-
ter half of the current population (some other fractional
part of the fitter individuals may be a better choice);
denote this subset S. Now let two bits b1 and b2 be given.
Considering just bits b1 and b2, the members of S may
potentially exhibit any one of the four bit-pair values, and
of course the members of S have their respective fit-
nesses. If among the members of S, fitness is rather
disproportionately concentrated above just one of the four
possible bit-pair values assumable by the bit-pair b1 and
b2, then that is what we will deem close relatedness
between b1 and b2. (Put another way, let us consider the
opposite circumstance. If fitness is evenly distributed
above the four bit-pair values assumable by b1 and b2,
then we would say these bits are independent of one
another, meaning that the value of one has little to do with
the value of the other, as far as contributing to the fitness
of an individual.)

Specifically, we do the following. For i = 0, 1, and j = 0,
1, let Fij be the sum of the fitnesses of those elements of
population subset S for which bit-pair (b1, b2) assumes
the value-pair (i, j). Let F = F00 + F01 + F10 + F11. The
four fractions rij = Fij / F lie in the real unit interval [0, 1],
and add up to 1.0. We want to detect the situation when
one of these fractions is rather close to 1.0 (and the other
three are nearly 0.0). More than one expression would
reveal such; we use a familiar entropy calculation,

and denote this value by dist(b1, b2). The normalizing
factor 1/2 guarantees that this value lies in the real unit
interval [0, 1]. Finally we observe that bits b1 and b2
more nearly fulfill our notion of being closely related
exactly when dist(b1, b2) more nearly approximates zero,
and we will think of dist(b1, b2) as being a pseudo-dis-
tance value.

At this point a reader may interject that a building block
may consist of more than just two bits. We respond by
reasoning as follows. If fitnesses are concentrated above
one of the eight possible bit-triple values assumable by a
triad of bits, then even more so is fitness concentrated
above the bit-pair values of any two bits of the triad. This
is because the latter concentration includes the concentra-
tion above the bit-triple value. On the other hand we also
caution the reader as follows. For triads, the correspond-
ing concentration metric (measuring the spread of eight
fractions) should use not 1/2 but 1/3 as its normalizing
factor. The concentration metric for a triad is not neces-
sarily either greater or less than the concentration metric
for a pair of bits drawn from the triad.

As remarked earlier, we practice generational evolution.
Mating with crossover among sundry pairs of members of
the population P(t) at time t is used to create the next pop-
ulation P(t+1). The first step in this generational rollover
is to use (the fitter half of) population P(t) to calculate the
pseudo-distances between all pairs of bits; these distances
will be used during crossover. Note that pseudo-distances
are re-computed on each generation. (If an individual con-
sists of 100 bits, there are 100 * 99 / 2 = 4950 bit-pairs,
and so also that many distances get calculated.)

During crossover, we want bits that are suitably close
together in pseudo-distance to get copied in clumps. To
this end we calculate a cutoff value for pseudo-distance.
We found the following worked well in our experiments.
Bit-pair pseudo-distances are grouped into a histogram of
twenty 5% brackets, then the chosen cutoff is that pseudo-
distance that as an upper bound contains at least 20% of
the bit-pair pseudo-distances (or sometimes it is 25%).

2.3. CROSSOVER

Crossover is now easily described. Two parents produce
two children. To copy parental bit values into child bits,
we loop on four steps. Step 1: choose an uncopied bit b at

random. Step 2: to it, group those uncopied bits such

that . Step 3: for k = 1, 2, copy this
group of bit-values from parent(k) into child(k). Step 4:
with 50% probability, interchange the roles of child(1)
and child(2). (Step 4 means we may expect parts of a par-
ent’s genetic material to wind up in both children.) Let us
note that the copying of isolated bits (ones not suitably
close to other bits) resembles uniform crossover
[Syswerda, 1989]. (In step 2, we sometimes prevent copy-
ing of an entire clump that is too large by making nearby
bit jump a 50-50 hurdle before we group it with b.)

It is conceivable that premature convergence of the popu-
lation can occur. Once the (fitter half of the) population
members closely resemble one another, most bit pairs will
seem to have fitness concentrated above a particular bit-
pair value, so most bit pairs will appear to be quite close
to one another, and a child may simply duplicate a par-
ent. In section 2.4, which concerns how the next
generation of the population is constructed from the cur-
rent one, we take steps to diversify the population.

2.4 GENERATIONAL CHANGE

Our initial population P(0) consists of random
individuals.

To construct the next generation P(t+1) of the population
from P(t), we first practice elitism, and have the fittest
two members of P(t) survive intact into P(t+1). Then
P(t+1) is filled up to the same size as P(t) by mating with
crossover. As an aside, population size is kept small, typi-
cally between 25 and 50. Also, we linearly scale the set of
fitness values present in the current population into a real
interval of the form [1, maxVF] (for maximum virtual fit-
ness) in such a way that the smallest fitness value in the
population is mapped to 1, and the largest is mapped to
maxVF. (Typically maxVF is 2 or 4.) Then, individuals
are selected for parenting by using a weighted roulette
wheel based upon the scaled fitnesses (see [Goldberg,
1989]).

Two parents produce two children. Each child is added to
P(t+1), but only if it is distinct from the individuals
already in P(t+1). Next we sort P(t+1) into decreasing
order of fitness, as a prelude to mutation.

The elite survivors in P(t+1) are spared any mutation. For
the rest, mutation is graduated and stochastic. A single
mutation step consists of flipping the value of a randomly
chosen bit. Each individual is subjected to some number
of mutation attempts; in our experiments, the maximum
number of attempts is 40. Mutation is stochastic, in that a
mutation attempt succeeds to become a completed muta-
tion step only with a 50% probability. Mutation is
graduated, in that less fit individuals are subjected to more
mutation attempts. The number of attempts is propor-
tional to the rank of the individual within the (sorted)
population. Thus the least fit individual is subjected to 40
mutation attempts, and we expect about 20 of these to
result in the flipping of a bit in that least fit individual.

This completes the construction of P(t+1).

1 2⁄() rij– log2rij⋅()

i j,
∑⋅

b ′
dist b b ′,() cutoff≤

b ′

2.5. STOPPING CONDITIONS

Generations of populations P(1), P(2), P(3), …, are
formed, until some maximum number of generations has
been reached, or some stopping condition has been met.
Since we view genetic algorithms as a heuristic approach
to problem solving, in this research we often content our-
selves when a very good though sub-optimal solution has
been unearthed. For many of the problems used in our
experiments, a maximum fitness is known for the prob-
lem, and so we may content ourselves if we reach 98% of
that value.

3. EXPERIMENTS

We have explored the behavior of our approach on a num-
ber of problems. The problems range from simple ones, to
very challenging ones drawn from the literature.

3.1. COUNTING WEIGHTED 1’S

In this simple experiment, there are 80 bits, and they are
numbered 1 through 80. The fitness of an individual
equals the sum of the bit numbers of those bits whose
value is 1 (versus 0). This problem is not quite the “count-
ing 1's” problem (see Experiment 3.3); we might term it
“counting weighted 1's”. The maximum fitness is 1 + 2 +
3 + … + 80 = 80 * 81 / 2 = 3240. There is one individual
of maximum fitness. The fitness landscape everywhere
slopes upward towards this maximum. (Why? if we hill-
climb in Hamming space, then changing a 0 to a 1 in an
individual produces an individual of increased fitness,
with the degree of increase depending on the bit number.)
We used 98% of maximum fitness, or 3175.2, as accept-
able fitness. We ran 20 trials of this experiment, using 40
as our population size, and allowing up to 100 genera-
tions per trial. We would expect the bits having high bit
numbers to rapidly converge to the value of 1, and indeed
this is what can be observed when a trial's generations are
examined sequentially. All but two trials found an indi-
vidual of acceptable fitness before exhausting all 100
generations. Over the 20 trials, the average fitness of the
fittest individual found on a trial was 3186.75 and the
average final generation number was 63.0. So, our new
approach is successful at finding rather good solutions in
a reasonable amount of time. Table 1 summarizes the
results of this experiment.

3.2. WEIGHTED 8-BIT GROUPS

This experiment is somewhat similar to the preceding
one. Again an individual consists of 80 bits, but they are
no longer numbered. Instead, they are grouped into 10
groups of eight bits each, and the groups are numbered 1
through 10. A subgroup of bits makes its own contribu-
tion to fitness. For group number k, , let n(k)
denote the absolute value | (number of 1's in k-th sub-
group) minus 4 |. Note n(k) is in the range 0..4, and has
the maximum value 4 when either all (eight) of the sub-
group's bits are 1's or all are 0's. The fitness of an
individual is then defined to be . The maxi-

mum fitness is 1*4 + 2*4 + … + 10*4 = 220. For this
problem, there are 210 = 1024 individuals of maximum
fitness. These individuals exhibit all 0’s or all 1’s in each
subgroup. As earlier, we used 98% of maximum fitness as
acceptable fitness. We ran 20 trials of this experiment,
using 40 as our population size, and allowing up to 100
generations per trial. We would expect subgroups to con-
verge towards all 1's or all 0's, with convergence
happening sooner in subgroups having a higher group
number, and this can be observed when a trial's genera-
tions are examined. This time, 13 of the trials found an
individual of acceptable fitness before exhausting all 100
generations. Over the 20 trials, the average fitness of the
fittest individual found on a trial was 215.5 and the aver-
age final generation number was 84.3. See Table 2.

3.3. TARGETING A SPECIFIED INDIVIDUAL

In [Greene, 2001] the following experiment is described.
An individual is a 2-dimensional 24 x 24 grid of bits. A
particular individual is distinguished (it resembles the let-
ter capital-A against an opposing background); this
individual becomes the target. Then, an arbitrary popula-
tion individual has an error, equal to its Hamming
distance from the target, with a maximum value of 24 *
24 = 576. Thence the individual has a fitness, defined as
maximum error minus own error. Thus maximum fitness
also equals 576, and we use 98% of that, or 564.48, as
acceptable fitness. We note that this problem is isomor-
phic to a “counting 1's” problem. In a counting 1’s
problem, the fitness of an individual is the number of bits
having value 1. For the problem at hand, fitness equals the
count of bits which have the target’s corresponding bit
value. In a counting 1’s problem, each bit acts as an inde-

Table 1: Counting Weighted 1’s

Bits per individual 80
Optimal fitness 3240
Acceptable fitness 3175.2
Number of trials 20
Population size 40
Max generations 100
Avg final gen. num 63.0
Avg best fitness 3186.75

1 k 10≤ ≤

Σk k n k()⋅()

Table 2: Weighted 8-bit Groups

Bits per individual 80
Optimal fitness 220
Acceptable fitness 215.6
Number of trials 20
Population size 40
Max generations 100
Avg final gen. num 84.3
Avg best fitness 215.5

pendent building block, there is one individual of
maximum fitness, and the fitness landscape everywhere
has the same slope upward towards the maximum. In the
cited paper, two parents are cut by a random 2-dimen-
sional sub-grid, for purposes of exchanging bit groups at
crossover time.

For comparison's sake, first we repeated this experiment.
Then secondly we re-worked this problem as a 1-dimen-
sional problem, by re-representing each grid as a 1-
dimensional bit string, under row-major representation,
and practicing 1-point crossover among parents. Finally,
we also used the same problem to test our new linkless
self-distancing approach to representation and crossover.
We ran 20 trials, allowing up to 2000 generations upon
each trial. Table 3 compares the results of these three
approaches. For the 1-dimensional and 2-dimensional
approaches, all 20 trials exhausted all 2000 generations
without unearthing an individual of acceptable fitness.
Contrast that with our new approach. It invariably found
an individual of acceptable fitness, with average last gen-
eration number equal to 496.0. Moreover, this was
achieved while using a smaller population size. For this
problem, our new approach is unmistakably better and
faster.

3.4. THE 20 QUEENS PROBLEM

We reprise a second problem from [Greene, 2001]. This is
the 20 Queens problem, which is the analogue of the clas-
sic 8 Queens problem from chess. There is a 20 x 20
chessboard, and the goal is to have 20 queens placed into
board squares so that no queen is attacking the others. In
the cited paper, the chessboard surfaces as a 20 x 20 grid
of bits, with bit value 1 meaning the board square is occu-
pied by a queen, whereas value 0 means the square is
empty. Fitness is addressed as follows. Errors are added
up. One or more errors are occurring when any of the fol-
lowing holds: a row or a column contains queens,
or a diagonal or counter-diagonal contains n > 1 queens.
The worst situation occurs when every square (not merely
20 squares) has a queen on it, in which case the total num-
ber of errors equals 2*(E - 1)*(2* E - 1), where E = edge-
size. Here E = 20 and maximum error = 1482. Then the
fitness of an individual is defined as maximum error
minus own error. Maximum fitness is then 1482. In our
experiments we take 98% of that figure, or 1452.36, to be
acceptable fitness.

This is a hard problem, with many constraints to satisfy
and many epistatic interactions between bits. The fitness
landscape for this problem is hard to analyze, but proba-
bly it is rather jagged. Chess players know there are many
individuals of maximum fitness. For instance, given one
solution to this classic puzzle, the 8 symmetries of a
square (obtained by rotations and reflections) provide
more solutions.

The cited paper worked this problem 2-dimensionally. In
doing so, two parents were cut by a random subgrid, for
purposes of crossover. We first re-worked the cited
research. Then we also worked this as a 1-dimensional
problem, by re-representing a board in row-major form as
a 1-dimensional array, and practicing 1-point crossover.
Finally we worked this problem using our new approach.

Table 4 summarizes the results. The 1-dimensional and 2-
dimensional approaches generally, but not always, found
an acceptable individual before exhausting all allowed
generations in a given trial. The average best individuals
found by the three approaches have nearly equal fit-
nesses, but our new approach when applied to this
problem finds an acceptable individual in circa 6 times
fewer generations, and does so using a smaller population
size, as well. For this problem, our new approach is very
much the superior one.

3.5. RE: GRAPH BISECTION

The next two experiments concern graph bisection, so in
this section we discuss that topic. Let a graph G, having n
vertices and some number of edges, be given. For sim-
plicity, we will assume n is even. A bisection of G means
a partitioning of G’s vertices into two subsets of the same
size, n/2. The cut-size of the bisection is defined to be the
number of edges which have an endpoint in each of the
two vertex subsets. The graph bisection problem is to
identify a bisection with the lowest possible cut-size.

Graph bisection has been studied by researchers such as
[Kernighan and Lin, 1970], [Johnson et al., 1989], and
[Laszewski, 1991]. It has also been examined in a series
of papers by Bui and Moon and their colleagues, for
instance [Bui and Moon, 1993], [Bui and Moon, 1995],
and [Bui and Moon, 1996]. Graph bisection has practical
applications, and is also known to be a hard problem [Bui
and Jones, 1992]. Space does not allow a full explication
of the issues of this problem. Our work follows the gen-

Table 3: Targeting a Specific Individual

For each representation, an individual is made up of 576
bits, maximum fitness is 576, acceptable fitness is 564.48.

1-diml 2-diml LSDGA
Number of trials 20 20 20
Population size 50 50 32
Max generations 2000 2000 2000
Avg final gen. num 2000.0 2000.0 496.0
Avg best fitness 544.05 550.9 565.05

n 1≠

Table 4: The 20 Queens Problem

For each representation, an individual consists of 400 bits,
maximum fitness is 1482, acceptable fitness is 1452.36.

1-diml 2-diml LSDGA
Number of trials 20 20 20
Population size 100 100 40
Max generations 2000 2000 1000
Avg final gen. num 1863.1 1565.5 286.5
Avg best fitness 1450.6 1451.55 1453.8

eral development of the past researchers. We refer the
interested reader to the cited papers.

A bisection of the graph puts its vertices into two
“halves”, call them the A and B halves. To search for a
bisection with minimal cut-size, we proceed as follows.
Represent a bisection by using n bits, one for each vertex.
Bit values of 0 versus 1 signify whether the associated
vertex is in the A or B subset. Then we can easily com-
pute cut-size: loop through the list of edges, tallying each
whose two endpoints are in different subsets. Note that
cut-size can be as low as 1, and can be no greater than the
number of edges.

Our attack on a graph bisection problem will use the
approach to representation and crossover which we expli-
cated in section 2. An individual in the population
consists of n bits (n = the number of vertices), moreover,
we will see to it that n/2 of these bits have the value 0 and
the other n/2 have the value 1. We define the fitness of an
individual to be: the number of edges in G, minus the cut-
size of the bisection which corresponds to the individual.
Maximum fitness equals number of edges, minus 1. When
the least possible cut-size of a graph is unknown, as is
usually the case, in our trials we let acceptable fitness
equal maximum fitness. Mating with crossover can pro-
ceed as we described it in section 2, but we need to end it
with two additional steps. The first step is a repair step,
and the second step is an improvement step.

(There is also another consideration made, at the start of
crossover. Our representation admits an isomorphy. The
result of flipping every bit of an individual is what we
may term its complement. An individual and its comple-
ment really represent the same partition of the vertex set
into two subsets. We note that mating an individual with
its (near) complement is likely to produce a chaotically
different child, whereas the child of two (near) identical
partitions should be a (near) duplicate of its parents.
Hence we make it a practice at crossover time that we
mate parent-1 with whichever of parent-2 or its comple-
ment is the closer to parent-1 in Hamming distance.)

Crossover and mutation can produce an individual (child)
for which the A and B subsets are not the same size. This
obliges us to repair the individual, by flipping enough of
the bits with the value (0 or 1) which occurs in excess.

Our repair work is heuristic. Note that to move a vertex to
the other subset (A or B), that is, to flip a single bit,
implies a changed bisection and hence a change in cut-
size. A negative change to cut-size is favorable, for it
makes cut-size become lower, as is our desire. We make a
list of the bits which exhibit the excess value (0 or 1), and
with each such bit we pair the change in cut-size that
would result from flipping it. Repair then takes the form
of looping on 2 steps until the required number of bits
have flipped: (1) identify the listed bit which has the most
favorable change in cut-size, remove it from the list, and
flip this bit; (2) update the change-to-cut-size for those
listed vertices which are adjacent to the flipped one (this
is the only updating which is necessary here, the correct
update is to subtract 2).

(The repair work in [Bui & Moon, 1996] is different.
Their bits are stored in an array which, for the repair step,
is treated as circular. They pick a random index and from
there move forward, flipping those bits which exhibit the
excess value, until enough have been flipped.)

Next we describe the improvement step. The improve-
ment step, which is done to a partition which has already
been balanced into two subsets of the same size, is also
heuristic. The idea goes back to [Kernighan & Lin, 1970].
Similar to the earlier observation, we note that to have
two vertices, one from each subset, exchange sides also
implies a change in cut-size. In the improvement step, a
well-chosen subset of the A-elements, together with a
well-chosen subset, of the same size, of the B-elements,
are identified, then these groups exchange sides. The pro-
cedure is summarized in the 5 steps given next. (1) Make
a list, AList, of the A-elements, pairing each with the
change in cut-size that would result if that vertex were to
change sides; sort AList into increasing order. Similarly
form BList out of the B-elements. Also create a list Best-
Pairs, initially empty.

(2) Now look at a window of the best w elements from the
AList and likewise the w best elements from BList. Con-
stant w is window size; for it we used 10. There are w*w
pairs of vertices, one from A and one from B, formable
from our windows. Identify the pair for which there is the
most favorable change to cut-size if the two vertices were
to exchange sides; append that pair to the end of list Best-
Pairs. (3) Remove these two vertices from AList and
BList. Update the change-to-cut-size of those vertices
adjacent to the two vertices. Re-sort AList and BList. (4)
Loop back to step 2 until enough pairs have been put into
the sequence BestPairs. We follow the advice of Bui and
Moon and let BestPairs grow to length n/6 - 1 where
recall n is the number of vertices in G. (Kernighan and
Lin used the longer length n - 1.) (5) Finally, for k = 1, 2,
3, etc., consider the partial sums

The most favorable such partial sum then identifies the k
elements from A and k from B which are made to
exchange sides in the improvement step.

3.6. BISECTING THE GRAPH U500.10

The graph named U500.10 is a test case devised by
[Johnson et al., 1989]. It is a so-called random geometric
graph, and the authors constructed it as follows. First, 500
points are generated, whose coordinates are random val-
ues in the real unit interval [0, 1]. (The 500 points are
randomly situated in the unit square.) Then a distance
value is calculated, with the property that: when all pairs
of points within that distance of one another are con-
nected by an edge, then the expected (that is, average)
degree of a vertex is 10.

change-to-cut-size for i-th pair in BestPairs()

i 1=

k

∑

Bui and Moon have used this same test case. In particular
we have in mind [Bui and Moon, 1996]. In that paper the
authors provide a detailed comparison of several algo-
rithms, some of their own devising and some from earlier
researchers; the algorithms are tested on a multitude of
graphs, including U500.10. It is fair to say that the over-
all best performing algorithm from this paper is the
authors’ genetic algorithm BFS-GBA (Breadth-First
Search Graph-Bisection Algorithm). Another compared
algorithm is simulated annealing as practiced in [Johnson
et al., 1989], denoted SA.

We tested our graph-bisecting form of LSDGA on the
graph U500.10. The graph’s vertex and edge sets are
available on-line at dimacs.rutgers.edu/pub/dsj/partition.
This graph has 2355 edges, so acceptable fitness is 2354.
In Table 5 we summarize how our own algorithm
LSDGA measured up against BFS-GBA and SA. To date
no one knows the least possible cut-size for U500.10; the
least one known is 26. The entries of Table 5 give the
least and the average cut-sizes that surfaced over trials.
The column for LSDGA comes from our own experi-
ments; the other two columns are copied from [Bui and
Moon, 1996]. Our own algorithm found the same least
cut-size (26) that the other two algorithms did. Also, on
four of our trials our algorithm found a cut-size of 29,
which is very close to the least known cut-size. Our algo-
rithm’s average cut-size (44.77) falls in between those of
the other two algorithms.

Further comparisons between these three algorithms are
difficult to make. The time-costs of SA and BFS-GBA are
compared by Bui and Moon, but the costs are given in
terms of CPU seconds on particular processors. Algo-
rithm BFS-GBA is a genetic algorithm, but it is a steady-
state algorithm whereas ours is generational. Also, the
stopping condition used is entirely different; that algo-
rithm stops evolving “when 80% of the population is
occupied by solutions with the same quality” (p. 846).
Finally, we remain unclear about certain terminology in
the paper.

3.7. BISECTING CATERPILLAR GRAPH CAT352

Figure 1 suggests the structure of a so-called caterpillar
graph. A caterpillar graph is made up of identical star-like
clusters, with the star centers connected one to another in

a linear sequence. [Bui and Moon, 1996] tell us that cater-
pillar graphs are especially difficult for certain graph
bisection algorithms, such as that of [Kernighan and Lin,
1970], and simulated annealing as practiced in [Johnson
et al., 1989]. Bui and Moon experimented with several
sizes of caterpillar graph. The one named cat352 is made
up of stars of 7 vertices, just like in Figure 1. In cat352
there are 50 such stars (giving 350 vertices), plus (we pre-
sume, anyway) two terminating vertices of degree 1 at the
far left and far right. Plainly the minimal cut-size for
graph cat352 is a mere 1, and it corresponds to splitting
the graph between the two central stars.

We tested our algorithm LSDGA on graph cat352. The
number of edges is 351, so our choice of maximum fit-
ness is one less than that, or 350. This is the fitness that is
achievable by the optimal bisection. Our stopping condi-
tion on each of 20 trials was to either unearth the optimal
bisection or stop after 500 generations. On 4 of our 20 tri-
als the optimal bisection was discovered. On the other 16
trials the best bisections we found had cut-sizes of 3 (6
times), 5 (4 times), 7 (3 times), and 9 (3 times). Table 6
summarizes the results, with comparisons to algorithm
BFS-GBA of [Bui and Moon, 1996]. The table does not
offer a comparison to [Johnson et al., 1989] as they did
not use caterpillar graphs. Our best cut-size is the equal of
Bui and Moon, though their average cut-size is better than
ours.

4. CONCLUSIONS

We have presented a new representation and crossover
algorithm for genetic algorithms. Bits are not linked
together at all. On each generation, the current population
is used to calculate a pseudo-distance between bits. Bits
which are close under the pseudo-distance are ones which
appear to belong to a same building block. Under cross-
over, nearby bits get copied in clumps into the children.
Thus our new linkless self-distancing approach does

Table 5: Bisecting Graph U500.10

Omitted entries in the columns occur when the values are
unknown, inappropriate, or are incomparable to LSDGA.

SA BFS-GBA LSDGA
Number of trials - - 20
Population size - - 32
Max generations - - 500
Avg final gen. num - - 500
Best cut-size 26 26 26
Avg cut-size 65.8 32.68 44.77

Figure 1: A Caterpillar Graph Segment

Table 6: Bisecting Graph cat352

Omitted entries in column two occur when the values are
unknown, inappropriate, or are incomparable to LSDGA.

BFS-GBA LSDGA
Number of trials - 20
Population size - 32
Max generations - 500
Avg final gen. num - 431.95
Best cut-size 1 1
Avg cut-size 2.25 4.5

directly what other approaches to learning linkage and
preserving building blocks have only hoped to do indi-
rectly. Experiments were performed on six problems.
These included simple problems, problems with numer-
ous equally fit optima, and very challenging problems in
graph bisection. Our new approach worked very success-
fully on these problems, equaling and often outperforming
other more familiar approaches.

5. FUTURE WORK

Our approach is brand new. There are many questions that
suggest themselves, which we have not yet had time to
pursue. Are there better choices for our system parame-
ters than the ones we have cited? Is there a better measure
of fitness concentration than the entropy calculation we
have used? Is there a Schema Theorem for our approach?
In what ways can premature convergence occur, and how
can it be combatted? Can careful bookkeeping allow us to
adapt the approach to steady-state GA’s? The approach
needs to be extended to the case that the granularity of a
gene is bigger than a single bit. In that vein, there would
be many more than 4 ways that a pair of genes can
assume a pair of values. Will our entropy calculation for
fitness concentration, properly adapted, still succeed? In
short, there are many issues inviting exploration.

References

Bui, T. N., and C. Jones (1992). “Finding Good Approxi-
mate Vertex and Edge Partitions is NP-Hard,”
Information Processing Letters, vol. 42, pp. 153-159.

Bui, T, N., and Moon, B.-R. (1993). “Hyperplane Synthe-
sis for Genetic Algorithms,” in Proceedings of the
Fifth International Conference on Genetic Algo-
rithms, pp. 102-109. Morgan Kaufmann Publishing,
San Mateo, CA.

Bui, T. N., and B.-R. Moon (1995). “On Multi-Dimen-
sional Encoding/Crossover,” in Proceedings of the
Sixth International Conference on Genetic Algo-
rithms, pp. 49-56. Morgan Kaufmann Publishing, San
Francisco, CA.

Bui, T. N., and B.-R. Moon (1996). “Genetic Algorithm
and Graph Partitioning”, IEEE Transaction on Com-
puters, vol. 45, no. 7, pp. 841-855.

Cohoon, J. P., W. N. Martin, and D. S. Richards (1991).
“A Multi-Population Genetic Algorithm for Solving
the k-Partition Problem on Hypercubes,” Proceed-
ings of the Fourth International Conference on
Genetic Algorithms, pp. 244-248.

Goldberg, D., and Lingle, R. (1985). “Alleles, loci, and
the traveling salesman problem”, in Proceedings of
an International Conference on Genetic Algorithms
and Their Applications, pp. 154-159.

Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley Publishing.

Goldberg, D. E., Korb, B., and Deb, K. (1989). “Messy
Genetic Algorithms: Motivation, Analysis, and First
Results,” in Complex Systems, vol. 3, pp. 493-530.

Greene, W. A. (2000). “A Non-Linear Schema Theorem
for Genetic Algorithms,” in the Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO 2000), pp. 189-194.

Greene, W. A. (2001). “Non-Linear Bit Arrangements in
genetic Algorithms,” in 2001 Genetic and Evolution-
ary Computation Conference Late-Breaking Papers,
pp. 138-144.

Harik, G. (1999). Linkage Learning via Probabilistic
Modeling in the ECGA. IlliGAL Report No. 99010;
Illinois Genetic Algorithms Laboratory, University of
Illinois at Urbana-Champaign, Urbana. IL.

Holland, John (1975). Adaptation in Natural and Artifi-
cial Systems. Ann Arbor, MI: University of Michigan
Press.

Johnson, D. S., C. Aragon, L. McGeoch, and C. Schevon
(1989). “Optimization by Simulated Annealing: an
Experimental Evaluation, Part 1: Graph Partition-
ing”, Operations Research, vol. 37, pp. 865-892.

Kernighan, B., and S. Lin (1970). “An Efficient Heuristic
Procedure for Partitioning Graphs,” Bell Systems
Technical Journal, vol. 49, pp. 291-307.

Laszewski, G. (1991). “Intelligent Structural Operators
for the k-Way Graph Partitioning Problem,” Proceed-
ings of the Fourth International Conference on
Genetic Algorithms, pp. 45-52.

Muehlenbein, H., and Paass, G. (1996). “From Recombi-
nation of Genes to the Estimation of Distributions, I:
Binary Parameters,” in Parallel Problem Solving
from Nature IV, pp. 178-187. Springer-Verlag,
Berlin.

Pelikan, M., Goldberg, D. E., and Cantu-Pas, E. (1998).
Linkage Problem, Distribution Estimation, and Baye-
sian Networks. IlliGAL Report No. 98013; Illinois
Genetic Algorithms Laboratory, University of Illi-
nois at Urbana-Champaign, Urbana. IL.

Sehitoglu, O. T., and G. Ucoluk (2001). “A Building
Block Favoring Reordering Method for Gene Posi-
tions in Genetic Algorithms,” in the Proceedings of
the Genetic and Evolutionary Computation Confer-
ence (GECCO 2001), pp. 571-575.

Syswerda, G. (1989). “Uniform Crossover in Genetic
Algorithms”, in Proceedings of the Third Interna-
tional Conference on Genetic Algorithms, pp. 2-9.
Morgan Kaufmann Publishing, San Mateo, CA.

	Abstract
	1. INTRODUCTION
	2. THE LINKLESS SELF-DISTANCING GENETIC ALGORITHM
	2.1. AN INDIVIDUAL
	2.2. CLOSELY RELATED BITS
	2.3. CROSSOVER
	2.4 GENERATIONAL CHANGE
	2.5. STOPPING CONDITIONS

	3. EXPERIMENTS
	3.1. COUNTING WEIGHTED 1’S
	3.2. WEIGHTED 8-BIT GROUPS
	3.3. TARGETING A SPECIFIED INDIVIDUAL
	3.4. THE 20 QUEENS PROBLEM
	3.5. RE: GRAPH BISECTION
	3.6. BISECTING THE GRAPH U500.10
	3.7. BISECTING CATERPILLAR GRAPH CAT352

	Figure 1: A Caterpillar Graph Segment
	4. CONCLUSIONS
	5. FUTURE WORK
	References

	A Genetic Algorithm with Self-Distancing Bits but No Overt Linkage
	William A. Greene
	Computer Science Department
	University of New Orleans
	New Orleans, LA 70148
	bill@cs.uno.edu
	504-280-6755

