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Abstract

We present a novel representation and crossover 
operator for genetic algorithms. Bits are not 
linked to one another. Instead, the current popu-
lation suggests a pseudo-distance between each 
pair of bits; this pseudo-distance really measures 
the degree to which bits appear to participate in a 
building block. Then crossover respects the 
pseudo-distance: it is clumps of nearby bits that 
have their values copied from parent to child. 
Thus our new approach does directly (preserva-
tion of building blocks under crossover) what 
other approaches only hope to do indirectly. Our 
approach is tested on several problems, ranging 
from simple to very challenging, and the results 
compared to standard approaches. In these prob-
lems, the new approach is successful and usually 
outperforms the standard approaches.

1. INTRODUCTION

We assume there is a problem of interest to us, and we 
wish to use a genetic algorithm to search among the solu-
tions to the problem. There is a plenitude of solutions to 
the problem, of varying quality; some are rather good 
solutions, and some are only fair. We assume there is a 
known measurement of the quality of a solution, which 
we term its fitness and which is a non-negative real num-
ber. Individual solutions are identifiable with the property 
values they exhibit, along a known set of properties. Solu-
tions differ one from another by having different values 
for these properties. 

In the standard representation used for genetic algo-
rithms, an individual solution (which we now begin to 
term simply an individual) gets represented by represent-
ing its property values as values, which in this paper we 
will take to be bits, which are linked together in a linear 
sequence, like beads along a strand, that is, like genes 
along a chromosome. Under this representation, which 
mimics a biological model, mating with crossover contin-
ues the mimicry, in particular of haploidal reproduction. 
One or more crosspoints are chosen at random along the 
strand, parental genetic sequences are clipped at those 

points, and parental genetic fragments are exchanged, to 
form the children. Also mutation is easily mimicked, by 
changing an occasional bit value. 

Two bits, as a pair, can assume any one of four bit-pair 
values, namely, (0, 0), (0, 1), (1, 0), and (1, 1). Let us say 
that two bits are closely related, provided that they can 
exhibit a bit-pair value that is rather beneficial to a solu-
tion, in the sense that having this pair of values 
significantly increases the fitness of the solution. This 
notion of a beneficial bit-pair value is an instance of what 
[Holland, 1975] terms a building block.

When we read the proof of the Schema Theorem (see 
[Holland, 1975] or [Goldberg, 1989]), we learn that two 
closely related bits can suffer from a great hazard. To lie 
far apart from one another along the bead strand increases 
the likelihood that the beneficial bit-pair value will be 
destroyed under crossover. One parent may exhibit the 
beneficial bit-pair value, but if a crosspoint is chosen 
between the pair of bits, it can happen that neither child 
exhibits the pair. 

This hazard was recognized at the dawn of genetic algo-
rithms, and since then attempts have been made to 
contend with it. One possibility is reordering bits, with the 
intention of having closely related bits wind up situated 
near one another. [Holland, 1975] noted that the inver-
sion operator (a subsequence of bits gets its order 
reversed) might be useful in reordering bits dynamically. 
[Goldberg, 1989, pp.166-179] argues that for permuta-
tion-based representations (as might be used in the 
traveling salesman problem), certain permutation-based 
crossover operators, such as PMX [Goldberg and Lingle, 
1985], combine the actions of crossover and reordering. 
The messy genetic algorithm mGA of [Goldberg, Korb, 
and Deb, 1989], along with its other distinctive features, 
implicitly permits reordering of bits. Bui and Moon have 
a sequence of papers that deal with ordering and preorder-
ing bits; of particular interest to them are graph problems, 
such as the graph bisection problem (see section 3.5 
below). In [Bui and Moon, 1993] there is a preprocessing 
step which makes the sequence of bits (one for each graph 
vertex) reflect certain vertex adjacencies as they are evi-
denced in, say, breadth-first traversal. Then in [Bui and 
Moon, 1995] they follow a different course; this time the 
bits are placed, not in a one-dimensional sequence, but 



instead at integral points of multi-dimensional real space; 
they argue the latter allows room for a more faithful rep-
resentation of adjacencies. In [Greene, 2000] it is shown 
that under reasonable assumptions, a schema theorem 
obtains when the structure of bits and their linkages is lib-
eralized to be as general as a connected graph, and then in 
[Greene, 2001] there are experiments with such alterna-
tive bit arrangements. [Sehitoglu and Ucoluk, 2001] 
explicate a regime for exchanging bits with their neigh-
bors to the left or right, based upon whether they appear 
to participate in a building block.

(A new school, of probabilistic modeling, takes a com-
pletely different tack, but with the same general goal of 
identifying and exploiting those bits which are closely 
related. This school is exemplified by the research in 
[Muehlenbein and Paass, 1996], [Pelikan, Goldberg, and 
Cantu-Pas, 1998], and [Harik, 1999]. In this school, simu-
lation of biological crossover is abandoned, in favor of a 
generate-and-test approach. The typical regimen is to loop 
on two steps: use the current population to infer some 
probabilistic dependencies between the values of the vari-
ous bits, then use those probabilities to stochastically 
manufacture plausible individuals that will comprise the 
next generation.)

In the current paper, we will take a novel step towards 
correcting the hazard mentioned above. We will stay 
within the tradition that simulates crossover, but our bits 
will not be overtly linked together at all!

Reading the proof of the Schema Theorem suggests the 
following line of reasoning. When parental genetic mate-
rial is inherited, it should be inherited in a certain 
piecemeal way. When parental bit values are copied into 
child bits, closely related bits should be copied in clumps. 
We will loop to copy parental bit values. When an uncop-
ied parental bit is chosen to be the next one copied, we 
will copy not only that bit’s value, but also the values of 
those still uncopied bits which are suitably closely related 
to it. 

Above we alluded to reordering efforts, and non-linear 
linkage schemes. We now describe these as follows. Such 
approaches link or re-link bits one to another, with an eye 
to positioning closely related bits close together (gener-
ally this means a short path length between them). Then it 
should follow that when links are chosen for clipping dur-
ing crossover, there will be a decreased likelihood that 
closely related bits get separated from one another.

The appeal of our approach is that it does directly what 
the other approaches only hope to do indirectly: closely 
related bits tend to clump together when parental genetic 
material is being copied into children. Linking bits one to 
another is a held-over artifact from the biological model 
of a chromosome (especially this is so when the linkage is 
into a linear sequence), and we now dispense with it.

Below we introduce a plausible measurement for close 
relatedness between bits. We will think of this measure-
ment as also giving a pseudo-distance between bits. Our 
genetic algorithm will be generational (an entire new pop-

ulation P(t+1) at time tick t+1 is created from the 
population P(t) at time t, as opposed to a steady-state 
approach). Also, the measurement of close relatedness (or 
pseudo-distance) between bits is re-calculated for each 
generation. We term our approach a linkless self-distanc-
ing genetic algorithm. 

2. THE LINKLESS SELF-DISTANCING 
GENETIC ALGORITHM

In this section we describe the details of our approach, 
LSDGA. Of course, our approach is mostly distinguished 
by a new way of representing an individual in the popula-
tion, then by the algorithm for crossover that follows from 
it.

2.1. AN INDIVIDUAL

An individual is a set of bit-values. The bits are not linked 
together. Each individual in the population consists of the 
same number of bits, and that number is constant over all 
generations of the population. An individual has a fitness, 
which is a non-negative real number. The fitness value is 
problem-dependent.

2.2. CLOSELY RELATED BITS

How can we gauge when two bits are closely related? We 
do not purport to provide a perfect answer to that ques-
tion, but our answer is plausible and persuasive. Future 
research may improve upon our answer. 

As a pair, two bits can assume any one of four different 
bit-pair values, namely, (0, 0), (0, 1), (1, 0), and (1, 1). 
Our sentiment is that two bits are closely related, pro-
vided that they can exhibit a bit-pair value that is rather 
beneficial to an individual, in the sense that having this 
bit-pair value significantly increases the fitness of the 
individual. [Holland, 1975] would say that the two bits 
form a (small) building block.

We think of the current population as a sampling of the 
entire fitness landscape, and as such it offers evidence as 
to which bits are closely related. We consider just the fit-
ter half of the current population (some other fractional 
part of the fitter individuals may be a better choice); 
denote this subset S. Now let two bits b1 and b2 be given. 
Considering just bits b1 and b2, the members of S may 
potentially exhibit any one of the four bit-pair values, and 
of course the members of S have their respective fit-
nesses. If among the members of S, fitness is rather 
disproportionately concentrated above just one of the four 
possible bit-pair values assumable by the bit-pair b1 and 
b2, then that is what we will deem close relatedness 
between b1 and b2. (Put another way, let us consider the 
opposite circumstance. If fitness is evenly distributed 
above the four bit-pair values assumable by b1 and b2, 
then we would say these bits are independent of one 
another, meaning that the value of one has little to do with 
the value of the other, as far as contributing to the fitness 
of an individual.)



Specifically, we do the following. For i = 0, 1, and j = 0, 
1, let Fij be the sum of the fitnesses of those elements of 
population subset S for which bit-pair (b1, b2) assumes 
the value-pair (i, j). Let F = F00 + F01 + F10 + F11. The 
four fractions rij = Fij / F lie in the real unit interval [0, 1], 
and add up to 1.0. We want to detect the situation when 
one of these fractions is rather close to 1.0 (and the other 
three are nearly 0.0). More than one expression would 
reveal such; we use a familiar entropy calculation,

and denote this value by dist(b1, b2). The normalizing 
factor 1/2 guarantees that this value lies in the real unit 
interval [0, 1]. Finally we observe that bits b1 and b2 
more nearly fulfill our notion of being closely related 
exactly when dist(b1, b2) more nearly approximates zero, 
and we will think of dist(b1, b2) as being a pseudo-dis-
tance value.

At this point a reader may interject that a building block 
may consist of more than just two bits. We respond by 
reasoning as follows. If fitnesses are concentrated above 
one of the eight possible bit-triple values assumable by a 
triad of bits, then even more so is fitness concentrated 
above the bit-pair values of any two bits of the triad. This 
is because the latter concentration includes the concentra-
tion above the bit-triple value. On the other hand we also 
caution the reader as follows. For triads, the correspond-
ing concentration metric (measuring the spread of eight 
fractions) should use not 1/2 but 1/3 as its normalizing 
factor. The concentration metric for a triad is not neces-
sarily either greater or less than the concentration metric 
for a pair of bits drawn from the triad.

As remarked earlier, we practice generational evolution. 
Mating with crossover among sundry pairs of members of 
the population P(t) at time t is used to create the next pop-
ulation P(t+1). The first step in this generational rollover 
is to use (the fitter half of) population P(t) to calculate the 
pseudo-distances between all pairs of bits; these distances 
will be used during crossover. Note that pseudo-distances 
are re-computed on each generation. (If an individual con-
sists of 100 bits, there are 100 * 99 / 2 = 4950 bit-pairs, 
and so also that many distances get calculated.) 

During crossover, we want bits that are suitably close 
together in pseudo-distance to get copied in clumps. To 
this end we calculate a cutoff value for pseudo-distance. 
We found the following worked well in our experiments. 
Bit-pair pseudo-distances are grouped into a histogram of 
twenty 5% brackets, then the chosen cutoff is that pseudo-
distance that as an upper bound contains at least 20% of 
the bit-pair pseudo-distances (or sometimes it is 25%).

2.3. CROSSOVER

Crossover is now easily described. Two parents produce 
two children. To copy parental bit values into child bits, 
we loop on four steps. Step 1: choose an uncopied bit b at 

random. Step 2: to it, group those uncopied bits  such 

that . Step 3: for k = 1, 2, copy this 
group of bit-values from parent(k) into child(k). Step 4: 
with 50% probability, interchange the roles of child(1) 
and child(2). (Step 4 means we may expect parts of a par-
ent’s genetic material to wind up in both children.) Let us 
note that the copying of isolated bits (ones not suitably 
close to other bits) resembles uniform crossover 
[Syswerda, 1989]. (In step 2, we sometimes prevent copy-
ing of an entire clump that is too large by making nearby 
bit  jump a 50-50 hurdle before we group it with b.)

It is conceivable that premature convergence of the popu-
lation can occur. Once the (fitter half of the) population 
members closely resemble one another, most bit pairs will 
seem to have fitness concentrated above a particular bit-
pair value, so most bit pairs will appear to be quite close 
to one another, and a child may simply duplicate a par-
ent. In section 2.4, which concerns how the next 
generation of the population is constructed from the cur-
rent one, we take steps to diversify the population.

2.4 GENERATIONAL CHANGE

Our initial population P(0) consists of random 
individuals.

To construct the next generation P(t+1) of the population 
from P(t), we first practice elitism, and have the fittest 
two members of P(t) survive intact into P(t+1). Then 
P(t+1) is filled up to the same size as P(t) by mating with 
crossover. As an aside, population size is kept small, typi-
cally between 25 and 50. Also, we linearly scale the set of 
fitness values present in the current population into a real 
interval of the form [1, maxVF] (for maximum virtual fit-
ness) in such a way that the smallest fitness value in the 
population is mapped to 1, and the largest is mapped to 
maxVF. (Typically maxVF is 2 or 4.) Then, individuals 
are selected for parenting by using a weighted roulette 
wheel based upon the scaled fitnesses (see [Goldberg, 
1989]).

Two parents produce two children. Each child is added to 
P(t+1), but only if it is distinct from the individuals 
already in P(t+1). Next we sort P(t+1) into decreasing 
order of fitness, as a prelude to mutation.

The elite survivors in P(t+1) are spared any mutation. For 
the rest, mutation is graduated and stochastic. A single 
mutation step consists of flipping the value of a randomly 
chosen bit. Each individual is subjected to some number 
of mutation attempts; in our experiments, the maximum 
number of attempts is 40. Mutation is stochastic, in that a 
mutation attempt succeeds to become a completed muta-
tion step only with a 50% probability. Mutation is 
graduated, in that less fit individuals are subjected to more 
mutation attempts. The number of attempts is propor-
tional to the rank of the individual within the (sorted) 
population. Thus the least fit individual is subjected to 40 
mutation attempts, and we expect about 20 of these to 
result in the flipping of a bit in that least fit individual.

This completes the construction of P(t+1).

1 2⁄( ) rij– log2rij⋅( )
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2.5. STOPPING CONDITIONS

Generations of populations P(1), P(2), P(3), …, are 
formed, until some maximum number of generations has 
been reached, or some stopping condition has been met. 
Since we view genetic algorithms as a heuristic approach 
to problem solving, in this research we often content our-
selves when a very good though sub-optimal solution has 
been unearthed. For many of the problems used in our 
experiments, a maximum fitness is known for the prob-
lem, and so we may content ourselves if we reach 98% of 
that value.

3. EXPERIMENTS

We have explored the behavior of our approach on a num-
ber of problems. The problems range from simple ones, to 
very challenging ones drawn from the literature. 

3.1.  COUNTING WEIGHTED 1’S

In this simple experiment, there are 80 bits, and they are 
numbered 1 through 80. The fitness of an individual 
equals the sum of the bit numbers of those bits whose 
value is 1 (versus 0). This problem is not quite the “count-
ing 1's” problem (see Experiment 3.3); we might term it 
“counting weighted 1's”. The maximum fitness is 1 + 2 + 
3 + … + 80 = 80 * 81 / 2 = 3240. There is one individual 
of maximum fitness. The fitness landscape everywhere 
slopes upward towards this maximum. (Why? if we hill-
climb in Hamming space, then changing a 0 to a 1 in an 
individual produces an individual of increased fitness, 
with the degree of increase depending on the bit number.) 
We used 98% of maximum fitness, or 3175.2, as accept-
able fitness. We ran 20 trials of this experiment, using 40 
as our population size, and allowing up to 100 genera-
tions per trial. We would expect the bits having high bit 
numbers to rapidly converge to the value of 1, and indeed 
this is what can be observed when a trial's generations are 
examined sequentially. All but two trials found an indi-
vidual of acceptable fitness before exhausting all 100 
generations. Over the 20 trials, the average fitness of the 
fittest individual found on a trial was 3186.75 and the 
average final generation number was 63.0. So, our new 
approach is successful at finding rather good solutions in 
a reasonable amount of time. Table 1 summarizes the 
results of this experiment.  

3.2.  WEIGHTED 8-BIT GROUPS

This experiment is somewhat similar to the preceding 
one. Again an individual consists of 80 bits, but they are 
no longer numbered. Instead, they are grouped into 10 
groups of eight bits each, and the groups are numbered 1 
through 10. A subgroup of bits makes its own contribu-
tion to fitness. For group number k, , let n(k) 
denote the absolute value | (number of 1's in k-th sub-
group) minus 4 |. Note n(k) is in the range 0..4, and has 
the maximum value 4 when either all (eight) of the sub-
group's bits are 1's or all are 0's. The fitness of an 
individual is then defined to be . The maxi-

mum fitness is 1*4 + 2*4 + … + 10*4 = 220. For this 
problem, there are 210 = 1024 individuals of maximum 
fitness. These individuals exhibit all 0’s or all 1’s in each 
subgroup. As earlier, we used 98% of maximum fitness as 
acceptable fitness. We ran 20 trials of this experiment, 
using 40 as our population size, and allowing up to 100 
generations per trial. We would expect subgroups to con-
verge towards all 1's or all 0's, with convergence 
happening sooner in subgroups having a higher group 
number, and this can be observed when a trial's genera-
tions are examined. This time, 13 of the trials found an 
individual of acceptable fitness before exhausting all 100 
generations. Over the 20 trials, the average fitness of the 
fittest individual found on a trial was 215.5 and the aver-
age final generation number was 84.3. See Table 2.  

3.3.  TARGETING A SPECIFIED INDIVIDUAL

In [Greene, 2001] the following experiment is described. 
An individual is a 2-dimensional 24 x 24 grid of bits. A 
particular individual is distinguished (it resembles the let-
ter capital-A against an opposing background); this 
individual becomes the target. Then, an arbitrary popula-
tion individual has an error, equal to its Hamming 
distance from the target, with a maximum value of 24 * 
24 = 576. Thence the individual has a fitness, defined as 
maximum error minus own error. Thus maximum fitness 
also equals 576, and we use 98% of that, or 564.48, as 
acceptable fitness. We note that this problem is isomor-
phic to a “counting 1's” problem. In a counting 1’s 
problem, the fitness of an individual is the number of bits 
having value 1. For the problem at hand, fitness equals the 
count of bits which have the target’s corresponding bit 
value. In a counting 1’s problem, each bit acts as an inde-

Table 1: Counting Weighted 1’s

Bits per individual 80
Optimal fitness 3240
Acceptable fitness 3175.2
Number of trials 20
Population size 40
Max generations 100
Avg final gen. num 63.0
Avg best fitness 3186.75

1 k 10≤ ≤
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Table 2: Weighted 8-bit Groups

Bits per individual 80
Optimal fitness 220
Acceptable fitness 215.6
Number of trials 20
Population size 40
Max generations 100
Avg final gen. num 84.3
Avg best fitness 215.5



pendent building block, there is one individual of 
maximum fitness, and the fitness landscape everywhere 
has the same slope upward towards the maximum. In the 
cited paper, two parents are cut by a random 2-dimen-
sional sub-grid, for purposes of exchanging bit groups at 
crossover time. 

For comparison's sake, first we repeated this experiment. 
Then secondly we re-worked this problem as a 1-dimen-
sional problem, by re-representing each grid as a 1-
dimensional bit string, under row-major representation, 
and practicing 1-point crossover among parents. Finally, 
we also used the same problem to test our new linkless 
self-distancing approach to representation and crossover. 
We ran 20 trials, allowing up to 2000 generations upon 
each trial. Table 3 compares the results of these three 
approaches. For the 1-dimensional and 2-dimensional 
approaches, all 20 trials exhausted all 2000 generations 
without unearthing an individual of acceptable fitness. 
Contrast that with our new approach. It invariably found 
an individual of acceptable fitness, with average last gen-
eration number equal to 496.0. Moreover, this was 
achieved while using a smaller population size. For this 
problem, our new approach is unmistakably better and 
faster.  

3.4.  THE 20 QUEENS PROBLEM

We reprise a second problem from [Greene, 2001]. This is 
the 20 Queens problem, which is the analogue of the clas-
sic 8 Queens problem from chess. There is a 20 x 20 
chessboard, and the goal is to have 20 queens placed into 
board squares so that no queen is attacking the others. In 
the cited paper, the chessboard surfaces as a 20 x 20 grid 
of bits, with bit value 1 meaning the board square is occu-
pied by a queen, whereas value 0 means the square is 
empty. Fitness is addressed as follows. Errors are added 
up. One or more errors are occurring when any of the fol-
lowing holds: a row or a column contains  queens, 
or a diagonal or counter-diagonal contains n > 1 queens. 
The worst situation occurs when every square (not merely 
20 squares) has a queen on it, in which case the total num-
ber of errors equals 2*(E - 1)*(2* E - 1), where E = edge-
size. Here E = 20 and maximum error = 1482. Then the 
fitness of an individual is defined as maximum error 
minus own error. Maximum fitness is then 1482. In our 
experiments we take 98% of that figure, or 1452.36, to be 
acceptable fitness.

This is a hard problem, with many constraints to satisfy 
and many epistatic interactions between bits. The fitness 
landscape for this problem is hard to analyze, but proba-
bly it is rather jagged. Chess players know there are many 
individuals of maximum fitness. For instance, given one 
solution to this classic puzzle, the 8 symmetries of a 
square (obtained by rotations and reflections) provide 
more solutions.

The cited paper worked this problem 2-dimensionally. In 
doing so, two parents were cut by a random subgrid, for 
purposes of crossover. We first re-worked the cited 
research. Then we also worked this as a 1-dimensional 
problem, by re-representing a board in row-major form as 
a 1-dimensional array, and practicing 1-point crossover. 
Finally we worked this problem using our new approach. 

Table 4 summarizes the results. The 1-dimensional and 2-
dimensional approaches generally, but not always, found 
an acceptable individual before exhausting all allowed 
generations in a given trial. The average best individuals 
found by the three approaches have nearly equal fit-
nesses, but our new approach when applied to this 
problem finds an acceptable individual in circa 6 times 
fewer generations, and does so using a smaller population 
size, as well. For this problem, our new approach is very 
much the superior one.     

3.5.  RE: GRAPH BISECTION

The next two experiments concern graph bisection, so in 
this section we discuss that topic. Let a graph G, having n 
vertices and some number of edges, be given. For sim-
plicity, we will assume n is even. A bisection of G means 
a partitioning of G’s vertices into two subsets of the same 
size, n/2. The cut-size of the bisection is defined to be the 
number of edges which have an endpoint in each of the 
two vertex subsets. The graph bisection problem is to 
identify a bisection with the lowest possible cut-size.

Graph bisection has been studied by researchers such as 
[Kernighan and Lin, 1970], [Johnson et al., 1989], and 
[Laszewski, 1991]. It has also been examined in a series 
of papers by Bui and Moon and their colleagues, for 
instance [Bui and Moon, 1993], [Bui and Moon, 1995], 
and [Bui and Moon, 1996]. Graph bisection has practical 
applications, and is also known to be a hard problem [Bui 
and Jones, 1992]. Space does not allow a full explication 
of the issues of this problem. Our work follows the gen-

Table 3: Targeting a Specific Individual

For each representation, an individual is made up of 576
bits, maximum fitness is 576, acceptable fitness is 564.48.

1-diml 2-diml LSDGA
Number of trials 20 20 20
Population size 50 50 32
Max generations 2000 2000 2000
Avg final gen. num 2000.0 2000.0 496.0
Avg best fitness 544.05 550.9 565.05

n 1≠

Table 4: The 20 Queens Problem

For each representation, an individual consists of 400 bits,
maximum fitness is 1482, acceptable fitness is 1452.36.

1-diml 2-diml LSDGA
Number of trials 20 20 20
Population size 100 100 40
Max generations 2000 2000 1000
Avg final gen. num 1863.1 1565.5 286.5
Avg best fitness 1450.6 1451.55 1453.8



eral development of the past researchers. We refer the 
interested reader to the cited papers. 

A bisection of the graph puts its vertices into two 
“halves”, call them the A and B halves. To search for a 
bisection with minimal cut-size, we proceed as follows. 
Represent a bisection by using n bits, one for each vertex. 
Bit values of 0 versus 1 signify whether the associated 
vertex is in the A or B subset. Then we can easily com-
pute cut-size: loop through the list of edges, tallying each 
whose two endpoints are in different subsets. Note that 
cut-size can be as low as 1, and can be no greater than the 
number of edges.

Our attack on a graph bisection problem will use the 
approach to representation and crossover which we expli-
cated in section 2. An individual in the population 
consists of n bits (n = the number of vertices), moreover, 
we will see to it that n/2 of these bits have the value 0 and 
the other n/2 have the value 1. We define the fitness of an 
individual to be: the number of edges in G, minus the cut-
size of the bisection which corresponds to the individual. 
Maximum fitness equals number of edges, minus 1. When 
the least possible cut-size of a graph is unknown, as is 
usually the case, in our trials we let acceptable fitness 
equal maximum fitness. Mating with crossover can pro-
ceed as we described it in section 2, but we need to end it 
with two additional steps. The first step is a repair step, 
and the second step is an improvement step.

(There is also another consideration made, at the start of 
crossover. Our representation admits an isomorphy. The 
result of flipping every bit of an individual is what we 
may term its complement. An individual and its comple-
ment really represent the same partition of the vertex set 
into two subsets. We note that mating an individual with 
its (near) complement is likely to produce a chaotically 
different child, whereas the child of two (near) identical 
partitions should be a (near) duplicate of its parents. 
Hence we make it a practice at crossover time that we 
mate parent-1 with whichever of parent-2 or its comple-
ment is the closer to parent-1 in Hamming distance.)

Crossover and mutation can produce an individual (child) 
for which the A and B subsets are not the same size. This 
obliges us to repair the individual, by flipping enough of 
the bits with the value (0 or 1) which occurs in excess. 

Our repair work is heuristic. Note that to move a vertex to 
the other subset (A or B), that is, to flip a single bit, 
implies a changed bisection and hence a change in cut-
size. A negative change to cut-size is favorable, for it 
makes cut-size become lower, as is our desire. We make a 
list of the bits which exhibit the excess value (0 or 1), and 
with each such bit we pair the change in cut-size that 
would result from flipping it. Repair then takes the form 
of looping on 2 steps until the required number of bits 
have flipped: (1) identify the listed bit which has the most 
favorable change in cut-size, remove it from the list, and 
flip this bit; (2) update the change-to-cut-size for those 
listed vertices which are adjacent to the flipped one (this 
is the only updating which is necessary here, the correct 
update is to subtract 2).

(The repair work in [Bui & Moon, 1996] is different. 
Their bits are stored in an array which, for the repair step, 
is treated as circular. They pick a random index and from 
there move forward, flipping those bits which exhibit the 
excess value, until enough have been flipped.)

Next we describe the improvement step. The improve-
ment step, which is done to a partition which has already 
been balanced into two subsets of the same size, is also 
heuristic. The idea goes back to [Kernighan & Lin, 1970]. 
Similar to the earlier observation, we note that to have 
two vertices, one from each subset, exchange sides also 
implies a change in cut-size. In the improvement step, a 
well-chosen subset of the A-elements, together with a 
well-chosen subset, of the same size, of the B-elements, 
are identified, then these groups exchange sides. The pro-
cedure is summarized in the 5 steps given next. (1) Make 
a list, AList, of the A-elements, pairing each with the 
change in cut-size that would result if that vertex were to 
change sides; sort AList into increasing order. Similarly 
form BList out of the B-elements. Also create a list Best-
Pairs, initially empty. 

(2) Now look at a window of the best w elements from the 
AList and likewise the w best elements from BList. Con-
stant w is window size; for it we used 10. There are w*w 
pairs of vertices, one from A and one from B, formable 
from our windows. Identify the pair for which there is the 
most favorable change to cut-size if the two vertices were 
to exchange sides; append that pair to the end of list Best-
Pairs. (3) Remove these two vertices from AList and 
BList. Update the change-to-cut-size of those vertices 
adjacent to the two vertices. Re-sort AList and BList. (4) 
Loop back to step 2 until enough pairs have been put into 
the sequence BestPairs. We follow the advice of Bui and 
Moon and let BestPairs grow to length n/6 - 1 where 
recall n is the number of vertices in G. (Kernighan and 
Lin used the longer length n - 1.) (5) Finally, for k = 1, 2, 
3, etc., consider the partial sums

The most favorable such partial sum then identifies the k 
elements from A and k from B which are made to 
exchange sides in the improvement step. 

3.6.  BISECTING THE GRAPH U500.10

The graph named U500.10 is a test case devised by 
[Johnson et al., 1989]. It is a so-called random geometric 
graph, and the authors constructed it as follows. First, 500 
points are generated, whose coordinates are random val-
ues in the real unit interval [0, 1]. (The 500 points are 
randomly situated in the unit square.) Then a distance 
value is calculated, with the property that: when all pairs 
of points within that distance of one another are con-
nected by an edge, then the expected (that is, average) 
degree of a vertex is 10. 

change-to-cut-size for i-th pair in BestPairs( )

i 1=

k

∑



Bui and Moon have used this same test case. In particular 
we have in mind [Bui and Moon, 1996]. In that paper the 
authors provide a detailed comparison of several algo-
rithms, some of their own devising and some from earlier 
researchers; the algorithms are tested on a multitude of 
graphs, including U500.10. It is fair to say that the over-
all best performing algorithm from this paper is the 
authors’ genetic algorithm BFS-GBA (Breadth-First 
Search Graph-Bisection Algorithm). Another compared 
algorithm is simulated annealing as practiced in [Johnson 
et al., 1989], denoted SA.

We tested our graph-bisecting form of LSDGA on the 
graph U500.10. The graph’s vertex and edge sets are 
available on-line at dimacs.rutgers.edu/pub/dsj/partition. 
This graph has 2355 edges, so acceptable fitness is 2354. 
In Table 5 we summarize how our own algorithm 
LSDGA measured up against BFS-GBA and SA. To date 
no one knows the least possible cut-size for U500.10; the 
least one known is 26. The entries of Table 5 give the 
least and the average cut-sizes that surfaced over trials. 
The column for LSDGA comes from our own experi-
ments; the other two columns are copied from [Bui and 
Moon, 1996]. Our own algorithm found the same least 
cut-size (26) that the other two algorithms did. Also, on 
four of our trials our algorithm found a cut-size of 29, 
which is very close to the least known cut-size. Our algo-
rithm’s average cut-size (44.77) falls in between those of 
the other two algorithms.  

Further comparisons between these three algorithms are 
difficult to make. The time-costs of SA and BFS-GBA are 
compared by Bui and Moon, but the costs are given in 
terms of CPU seconds on particular processors. Algo-
rithm BFS-GBA is a genetic algorithm, but it is a steady-
state algorithm whereas ours is generational. Also, the 
stopping condition used is entirely different; that algo-
rithm stops evolving “when 80% of the population is 
occupied by solutions with the same quality” (p. 846). 
Finally, we remain unclear about certain terminology in 
the paper.

3.7.  BISECTING CATERPILLAR GRAPH CAT352

Figure 1 suggests the structure of a so-called caterpillar 
graph. A caterpillar graph is made up of identical star-like 
clusters, with the star centers connected one to another in 

a linear sequence. [Bui and Moon, 1996] tell us that cater-
pillar graphs are especially difficult for certain graph 
bisection algorithms, such as that of [Kernighan and Lin, 
1970], and simulated annealing as practiced in [Johnson 
et al., 1989]. Bui and Moon experimented with several 
sizes of caterpillar graph. The one named cat352 is made 
up of stars of 7 vertices, just like in Figure 1. In cat352 
there are 50 such stars (giving 350 vertices), plus (we pre-
sume, anyway) two terminating vertices of degree 1 at the 
far left and far right. Plainly the minimal cut-size for 
graph cat352 is a mere 1, and it corresponds to splitting 
the graph between the two central stars. 

We tested our algorithm LSDGA on graph cat352. The 
number of edges is 351, so our choice of maximum fit-
ness is one less than that, or 350. This is the fitness that is 
achievable by the optimal bisection. Our stopping condi-
tion on each of 20 trials was to either unearth the optimal 
bisection or stop after 500 generations. On 4 of our 20 tri-
als the optimal bisection was discovered. On the other 16 
trials the best bisections we found had cut-sizes of 3 (6 
times), 5 (4 times), 7 (3 times), and 9 (3 times). Table 6 
summarizes the results, with comparisons to algorithm 
BFS-GBA of [Bui and Moon, 1996]. The table does not 
offer a comparison to [Johnson et al., 1989] as they did 
not use caterpillar graphs. Our best cut-size is the equal of 
Bui and Moon, though their average cut-size is better than 
ours.  

4. CONCLUSIONS

We have presented a new representation and crossover 
algorithm for genetic algorithms. Bits are not linked 
together at all. On each generation, the current population 
is used to calculate a pseudo-distance between bits. Bits 
which are close under the pseudo-distance are ones which 
appear to belong to a same building block. Under cross-
over, nearby bits get copied in clumps into the children. 
Thus our new linkless self-distancing approach does 

Table 5: Bisecting Graph U500.10

Omitted entries in the columns occur when the values are
unknown, inappropriate, or are incomparable to LSDGA.

SA BFS-GBA LSDGA
Number of trials - - 20
Population size - - 32
Max generations - - 500
Avg final gen. num - - 500
Best cut-size 26 26 26
Avg cut-size 65.8 32.68 44.77

Figure 1: A Caterpillar Graph Segment

Table 6: Bisecting Graph cat352

Omitted entries in column two occur when the values are
unknown, inappropriate, or are incomparable to LSDGA.

BFS-GBA LSDGA
Number of trials - 20
Population size - 32
Max generations - 500
Avg final gen. num - 431.95
Best cut-size 1 1
Avg cut-size 2.25 4.5



directly what other approaches to learning linkage and 
preserving building blocks have only hoped to do indi-
rectly. Experiments were performed on six problems. 
These included simple problems, problems with numer-
ous equally fit optima, and very challenging problems in 
graph bisection. Our new approach worked very success-
fully on these problems, equaling and often outperforming 
other more familiar approaches.

5. FUTURE WORK

Our approach is brand new. There are many questions that 
suggest themselves, which we have not yet had time to 
pursue. Are there better choices for our system parame-
ters than the ones we have cited? Is there a better measure 
of fitness concentration than the entropy calculation we 
have used? Is there a Schema Theorem for our approach? 
In what ways can premature convergence occur, and how 
can it be combatted? Can careful bookkeeping allow us to 
adapt the approach to steady-state GA’s? The approach 
needs to be extended to the case that the granularity of a 
gene is bigger than a single bit. In that vein, there would 
be many more than 4 ways that a pair of genes can 
assume a pair of values. Will our entropy calculation for 
fitness concentration, properly adapted, still succeed? In 
short, there are many issues inviting exploration.
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