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In this paper, we analyze planar parametric cubic curves to determine conditions for loops, cusps, or 
inflection points. By expressing the curve to be analyzed as a linear combination of control points, it 
can be transformed such that three of the control points are mapped to specific locations on the 
plane. We call this image curve the canonical curue. Affine maps do not affect inflection points, cusps, 
or loops, so the analysis can be applied to the canonical curve instead of the original one. Since the 
first three points are fixed, the canonical curve is completely characterized by the position of its 
fourth point. The analysis therefore reduces to observing which region of the canonical plane the 
fourth point occupies. We demonstrate that for all parametric cubes expressed in this form, the 
boundaries of these regions are tonics and straight lines. Special cases include Bezier curves, B- 
splines, and Beta-splines. Such a characterization forms the basis for an easy and efficient solution 
to this problem. 

Categories and Subject Descriptors: G.l.l [Numerical Analysis]: Interpolational-spline and 
piecework polynomial interpolations; 1.3.5 [Computer Graphics]: Computational Geometry and 
Object Modelling-curue, surface, solid, and object representations 

General Terms: Algorithms, Design 

Additional Key Words and Phrases: Bezier curves, characterization, spline curves 

1. INTRODUCTION 
This paper describes a simple geometric method for determining whether a 
parametric cubic curve such as a Bezier curve, or a segment of a B-spline, has 
any loops, cusps, or inflection points. We call this determination the character- 
ization of the curve, and these properties the characteristics of the curve. A curve 
with a loop is self-intersecting, one with a cusp has a point where the unit tangent 
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Fig. 1. Cubic B6zier curves showing a loop, cusp, and inflection points. Only the point 
B3 is moving. 

vector is discontinuous, and one with an inflection point has a point where the 
curvature vanishes. 

Characterizing cubic curves has wide-ranging applications. For instance, in 
numerically controlled milling operations, many of the algorithms rely on the 
fact that the trace of the curve is smooth-an assumption that is violated if a 
cusp is present. Inflection points often indicate unwanted oscillations in appli- 
cations such as automobile body design and aerodynamics, and a surface that 
has a cross-section curve possessing a loop cannot be manufactured. 

In most applications, p.arametric cubic curves are expressed as linear combi- 
nations of control points and basis functions. Because the characteristics of the 
curve do not change under affine transformations (the transformations including 
rotation, scaling, translation, and skewing), we can map the curve onto a canon- 
ical form so that the coordinates of three of the control points are fixed. As the 
fourth point moves about the plane, the curve may take on a loop, a cusp, or zero 
to two inflection points, depending only on the position of the moving points, as 
shown in Figure 1. The plane can therefore be partitioned into regions labeled 
according to the characterization of the curve segment when the fourth point is 
in each region, We show that the areas of the plane that define loops, inflection 
points, and cusps are all bounded by straight lines and conic curves. The 
simplicity of this form makes the characterization efficient to compute. 

Previous work in this area has been done by Wang [12], who produced 
algorithms based on algebraic properties of the coefficients of the parametric 
polynomial and included some geometric tests using the B-spline control polygon. 
Su and Liu [ll] have presented a specific geometric solution for the Bezier 
representation, and Forrest [6] has studied rational cubic curves. This paper 
presents a general method for making a geometric characterization of a (nonra- 
tional) parametric cubic that can be applied to any representation that is a linear 
combination of control points and basis functions. In Sections 3 and 4, we present 
the construction of a characterization diagram for Bezier curves. This diagram 
is simpler than the diagra.m of Su and Liu and can be more efficiently imple- 
mented. In Section 5, certain degenerate cases are addressed. Armed with the 
intuition gained in Sections 3 and 4, in Section 6 we describe a simple general 
procedure for constructing characterization diagrams for cubic curves of any 
type. This is done by showing that all characterization diagrams can be obtained 
from a two-dimensional slice through a common three-dimensional space. 

The specific case for Bezier curves is presented before the general method 
strictly for purposes of making the material more accessible to less sophisticated 
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readers who wish to gain a better understanding of B&zier curves. More proficient 
readers may therefore wish to read Section 6 before reading Sections 3 and 4. 

2. BACKGROUND AND PREVIOUS WORK 

The general representation of a parametric cubic polynomial consists of a 
function Q(t) = (X(t), Y(t)), where X(t) and Y(t) are each cubic polynomials 
with derivatives Q’(t) = (X’(t), Y’(t)) and Q”(t) = (X”(t), Y”(t)). Such a 
representation generally defines a curve of infinite length. To define a curve of 
finite length it is necessary to restrict the parameter t typically to the interval 
[0, 11. In this paper, we use the terms cubic curue, parametric cubic, or untrimmed 
curve to refer to the infinite curve, and segment, cubic segment, or trimmed curve 
to refer to a bounded curve. 

The power basis representation for Q(t) is defined as 

Q(t) = C aiti 
i=O 

This is a special case of a more general form where the curve is represented as a 
linear combination of control points and basis functions: 

Q(t) = C Pidi(t), 
i=O 

where the Pi are the control points, and the d<(t) are the basis functions. This 
equation is often represented in matrix form [l]. 

Although planar parametric cubic curves are quite flexible, they are somewhat 
constrained in the diversity of their characterizations. A number of previous 
papers have examined these issues in the context of computer-aided geometric 
design and graphics (cf. [5], [7], [ll] and [12]). Forrest [6] has gone somewhat 
further and examined rational cubic curves. For our purposes, the most relevant 
works are [ll] and [12]. In particular, these authors show that loops, cusps, and 
inflection points are mutually exclusive. Thus, if a nondegenerate parametric 
cubic curve has a cusp, then it cannot have a loop or an inflection point; if it has 
a loop, then it cannot have either a cusp or an inflection point, and so forth. 
Moreover, a nondegenerate parametric cubic curve cannot have more than one 
cusp, one loop, or two inflection points. Further, they show that the presence of 
a loop, a cusp, or inflection points can all be determined by examining 

F(t) = det(Q’(t), Q”(t)) = X’(t)Y”(t) - X”(t)Y’(t), 

which is a function that is proportional to the signed curvature of the curve at 
the point Q(t). (The signed curvature is defined to have a magnitude equal to 
the curvature of the curve, with the sign being chosen as positive if the cross 
product of Q’(t) and Q”(t) points in the z direction.) 

The vanishing of F(t) indicates the presence of inflection points since at such 
points the first and second derivative vectors are linearly dependent, which 
causes the curvature to vanish. Since X(t) and Y(t) are cubic functions, one 
would expect that F(t) is a cubic function. However, using the power basis 
representation of Q(t), it is not difficult to show that the cubic term is zero, 
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Fig. 2. The coordinate system of Su and Liu show- 
ing the construction of the characteristic point R. 

implying that F(t) is a quadratic of the form 

F(t) = At2 + Bt + C 

where 

A = 3 det(a2, (YJ, B = 3 det(crl, CQ), C = det(arl, (Ye). (2) 

Solutions for values of t to the equation F(t) = 0, therefore, indicate the presence 
of inflection points. The discriminant 

A = B2 - 4AC 

therefore becomes an important quantity. Wang, Su, and Liu [ll], [12] show 
that the characterization of the curve can be entirely determined from A, B, 
and C as follows: If A = 0, then there is exactly one inflection point. Otherwise, 
if A > 0, there are exactly two inflection points, if A < 0 there is a loop, 
and if A = 0 there is a cusp. 

Su and Liu adapt the above results to the Bezier representation of the curve. 
Their approach is much the same as ours in that they choose a coordinate system, 
or equivalently an affine map, to fix six of the eight degrees of freedom in the 
equation of the curve (each control point is a position in the plane, and, therefore, 
embodies two degrees of freedom). Su and Liu map B, to (1, 0), B3 to (0, l), and 
the intersections of the lines BoBI and B2B3 to (1,l) as shown in Figure 2. This 
mapping effectively fixes the endpoints and the directions of the tangent vectors 
at t = 0 and t = 1; the remaining two parameters (U, V) are the lengths of the 
tangent vectors at the end.s. The characterization of a cubic curve is, therefore, 
completely determined by the characteristic point R = (U, V). The plane can be 
divided into regions for the segment of the curve corresponding to 0 5 t 5 1 as 
shown in Figure 3. 

There are a number of difficulties with the method of Su and Liu that we 
address in this paper. First, their method suffers from certain degeneracies that 
can be important in applications. For example, curves in which the first and last 
legs of the control polygon are parallel cannot be characterized by their construc- 
tion since the point (1,l) (and hence, (0,O)) are not well defined in this case. 
Depending on the relative lengths of the legs, such curves can either have a loop, 
a cusp, or inflection points. Another (although less severe) degeneracy occurs 
when B, and BB are coincident. Second, the diagram of Figure 3 does not provide 
much intuition concerning the behavior of Bezier curves since the characteristic 
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point must be constructed from the control points, and since the diagram has a
fairly large number of disconnected regions. The diagrams produced by our
method do not require the construction of an additional characteristic point.
Furthermore, the particular diagram we construct using Bézier control points
has fewer regions, has no ambiguous degeneracies, and is easier to interpret.

3. GEOMETRIC CHARACTERIZATION

In this section and the next, we describe the construction of a characterization
diagram for Bézier curves. In Section 6 a much more general method is developed,
and it is shown how all characterization diagrams are related.

The prescription for generating the characterization diagram is to select a
basis, in this case the Bézier basis, and then choose a coordinate system, or
equivalently an affine map, that fixes the coordinates of three of the four control
points. The coefficients of the parametric equation 1 can then be expressed as
linear combinations of the control points, three of which are constant; this is
called the canonical form of the curve. As the fourth point varies, the curve may
take on a loop, a cusp, or zero to two inflection points, depending on the position
of the moving point. The plane can, therefore, be partitioned into regions labeled
according to the characterization of the curve segment when the fourth point is
in each region.

Note that it may not be possible to produce the canonical form. We defer
discussing such degenerate cases until Sections 5 and 6.

The Bézier representation for a planar parametric cubic Q(t) is defined by four
control points in the plane, Bo, B,, Bz, and BB. This representation is linearly
related to the basic definition such that

i
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Fig. 4. Cubic B6zier curves in canonical form. 

We choose a canonical form that maps the first three Bi?zier control points such 
that they fall along the sides of an isosceles triangle, B. = (0, 0), B, = (0, l), and 
BZ = (1,l) as shown in Figure 4. 

We then substitute the coordinates of BO, B1, and B, into Equation 3 to 
determine the X(t) and Y(t) component functions for the canonical curve: 

X(t) = (Bsr - 3)t3 + 3t2 (4) 

Y(t) = B,t3 - 3t2 + 3t. (5) 

These equations can be used to compute the characterizing values A, B, and C 
defined in Equation 2: 

A = 9(Bz, + B,, - 3) (6) 

B = -9(B3, - 3) (7) 

c = -9 (8) 

A = B;, - L?B3, + 4B, - 3 (9) 

Let us look first at the regions of the plane that characterize the untrimmed 
cubic curve. We then trim t.he curve and the diagram for the segment correspond- 
ing to t E [0, 11. 

The untrimmed curve ha.s a cusp if and only if A = 0. For this canonical form, 
this equation describes a parabola, symmetric around x = 1, passing through the 
points (-1, 0), (1, l), and (3,O). We call this curve the cusp curue since, if B3 is 
positioned somewhere along this curve, the parametric cubic has a cusp. The 
cusp curve divides the plane into two regions, one corresponding to loops and 
one corresponding to two .inflection points. The equation A < 0 is true in the 
region below the parabola, indicating that if B, falls in this region the cubic has 
a loop. Therefore, if B, falls in the region above the parabola, A > 0 and the 
curve has two inflection points. 

There are two other characteristics to discuss for the curve, both cases where 
the curve degenerates to a more constrained form. The first is the case in which 
the cubic terms of Equations 4 and 5 simultaneously vanish, implying that the 
cubic curve reduces to a quadratic curve, that is, a parabola. This occurs when 
B3 is located at (3,0). For this reason, we call this point the parabolic point. 

The remaining case occurs when the parametric cubic becomes the graph of a 
cubic function, that is, one of the parametric equations can be reduced to a linear 
function. When this occurs, the degree of F(t) drops from two to one, implying 
at most one root, and hence, at most one inflection point. This situation is 
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indicated by the condition A = 0. On our diagram, this characteristic can therefore
be described by the line:

x + y - 3 = 0 .

We call this line the one inflection point line. It is tangent to the cusp curve at
the parabolic point (3, 0).

These results are summarized in Figure 5. For a Bézier cubic in canonical form,
the position of B3 on this diagram can be used to determine if the curve has a
loop, a cusp, one or two inflection points, or is a parabola. If the parametric cubic
is actually a straight line, all four control points are collinear and cannot be put
into canonical form for this diagram.

4. THE REGIONS FOR THE CUBIC SEGMENT

The characterization diagram for the entire cubic curve was determined without
restricting the domain parameter t. The diagram for the cubic segment is obtained
by “trimming” away the portions of the regions that correspond to values of t
outside the interval [0, 1]. We do this by individually trimming the cusp curve,
the loop region, and the inflection point region.

To trim these regions, we use a number of geometric arguments which are
specific to our choice of the Bézier representation. However, we show in Section
6 how these procedures are actually more general.

One particular geometric property we use that may not be familiar to some
readers is the variation diminishing property [3,4]. Simply stated, it guarantees
that every line intersects the control polygon in at least as many points as it
intersects the curve itself.

4.1 Trimming the Cusp Curve

the variation diminishing property. Since a cusp is a degenerate loop, a line
passing through the cusp can intersect the curve three times, whereas a convex
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polygon can only be cut twice by a line. For our canonical form, if B3 is on the 
cusp curve, the control polygon is always convex when x > 1. The trimmed cusp 
curve, therefore, corresponds to the portion of the parabola where x 5 1. 

4.2 Trimming the Loop Region 

The loop region is trimmed by considering only the region where a loop (i.e., a 
double point) occurs for some value t in [0, 11. The boundaries of the new region 
correspond to the locus of points where a double point occurs either at t = 0 or 
t = 1 as indicated in Figure 6. 

The region boundary corresponding to a double point at t = 0 can be found by 
noting that such a double point is characterized by the existence of a value of t 
on the canonical curve Q(t) in the interval [0, l] such that 

Q(t) - B, = 0. 

If we solve this equation for B3, we get a parametric representation for the 
trimming curve which can then be reduced to algebraic form. We can also use a 
result from 1121 which shows that this curve can be expressed as 

B2 -3AC=O 

The result is a portion of the parabola described by 

x2 - 3x + 3y = 0, x < 0, Y < 0. 

The region boundary corresponding to a double point at t = 1 can be determined 
in a similar fashion. In this case, we seek the existence of a value of t in [0, l] 
such that Q(t) - BB = 0. The corresponding result from [12] is 

(B + 2A)2 - 3A(A + B + C). 

The resulting curve is the ellipse: 

x2 + y2 + xy - 3x = 0, OrX<l,O5 YCl. 

4.3 Trimming the Inflection Point Region 

An untrimmed cubic generally has either a loop or two inflection points (ignoring 
for the moment the cusp curve and the one inflection point line), whereas a cubic 
segment can have zero, one, or two inflection points, depending on whether the 
roots of F(t) fall on the interval [0, 11. We, therefore, expect to partition the 
inflection point region into three cases. Figure 7 is used to analyze the untrimmed 
inflection point region. 

Region 0. Zero Inflection Points. If B3 lies in this region, then the control 
polygon is convex, so a line can intersect the control polygon in at most two 
points. If the curve segment had an inflection point, it would be possible to 
intersect the curve in three points, thereby violating the variation diminishing 
property. Region 0, therefore, corresponds to curves where both inflection points 
lie outside t E [0, 11. 

Region 1. One Inflection Point. If B, lies in this region, the signed curvature 
at Bo is negative, and the signed curvature at B3 is positive, implying that there 
are an odd number of roots in the interior of the curve segment. Since the curve 
ACM Transactions on Graphics, Vol. 8, No. 3, July 1989. 
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Fig. 6. Two curves showing loops appearing at (a) t = 0 and 
(b) t = 1. 

I 
Region 1 

Fig. 7. The untrimmed diagram with the inflection point area broken 
into regions 0, 1, and 2, corresponding to the number of inflection 
points in the interval [0, I]. 

can have a maximum of two inflection points, Region 1 corresponds to curves 
where exactly one inflection point occurs inside the curve segment. 

Region 2. Two Inflection Points. Region 2 of Figure 7 corresponds to curves 
where exactly two inflection points occur inside the curve segment. If B3 lies in 
this region, then the signed curvature is negative at B. and positive at BB, 
implying an even number of roots of F (t) (possibly zero) in the interval t E [0, 11. 
However, it can be shown [lo, 121 that at least one of the roots occurs in the 
interval [0, l] for all points in Region 2, implying that there are at least two roots 
corresponding to two inflection points in the interval. 

Figure 8 shows Figure 5 trimmed for the cubic segment defined by t E [0, 11. 
A region labeled “Arch” has been added to indicate curve segments that have no 
loops, cusps, or inflection points. The loop region has been trimmed to an irregular 
shape, and the inflection point region has been partitioned into regions of 0, 1, 
and 2 inflection points. The one inflection point line has disappeared. Referring 
to Figure 5, we can see that it crosses the regions that correspond to zero or one 
inflection point in the untrimmed diagram. Therefore, it is no longer necessary 
to distinguish it. 

Some intuition for this diagram can be found by looking at the curve sequence 
in Figure 9. The sequence begins with a curve with B3 in the “Arch” region. As 
BB crosses the Y = 1 line,‘it acquires an inflection point at t = 1. As BB moves 
above the Y = 1 line, the inflection point moves into the curve. Moving B3 
counterclockwise until it is once more on the Y = 1 line, the curve acquires a 
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Two Inflection Points 
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Fig. 8. The diagram s#hown in Figure 5 trimmed for the cubic segment defined 
by t E [0, 11. 

second inflection point at t = 1. As B, moves down toward the cusp line, the 
inflection points move together toward the point of high curvature, becoming 
coincident when B3 is on the cusp curve. Moving B3 below the cusp line, the 
curve develops a loop at the point of high curvature. This loop gets bigger as B3 
moves to the right, opening back to an arched curve once B, passes out of the 
loop region. 

5. DEGENERATE FORMS 

The use of our canonical form relies on the ability to map the two internal points 
plus one endpoint onto the isosceles triangle (0, 0), (0, l), (1, 1). There are several 
cases in which this mapping is degenerate because the control points are collinear 
or coincident. The canonical form defines Bo = (0, 0), B1 = (0, l), and B2 = (1,l) 
with B, moving. If these three points are collinear but not collinear with B3, 
then the mapping B3 = (O,O), B2 = (0, l), and B1 = (1, 1) with B. moving 
produces identical results since the shape of a Bezier curve is unaffected if its 
control points are reversed. If all four control points are collinear but disjoint, 
the curve can be drawn as a straight line. However, the motion of t along this 
line varies with the order of the points along the line as shown in Figure 10. The 
curve is only parametrically a straight line if the four points are equally spaced. 

If B, = B2, the curve is a full cubic having an inflection point at each end. If 
B, = B2 and this point equals an endpoint, the trace of the curve is a line, and 
the parameterization varies cubically with Q(t) moving monotonically along the 
curve. The curve has a zero length tangent vector and zero curvature at the end 
with the coincident control points. If B. = B, and Bp = Bs, the trace of the curve 
is a line, the parameterization is still cubic with Q(t) moving monotonically along 
the curve, and the curve has a tangent vector of zero length at each end. Finally, 
if all four points are coincident, the curve collapses to a single point. 
ACM Transactions on Graphics, Vol. 8, No. 3, July 1989. 
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This completes the description of our characterization diagram for Bézier
curves. Further discussion of degenerate situations and a detailed description of
how to implement this particular diagram can be found in [10]. The next section
expands this result to include a large class of similar diagrams.

ACM Transactions on Graphics, Vol. 8, No. 3, July 1989.



158 - M. C. Stone and T. D. DeRose 

6. A MORE GENERAL VIEW 

Su and Liu construct a characterization diagram that is quite different in 
structure from the chara.cterization diagram of Figure 8. Yet another diagram 
with a different structure could be constructed by fixing Bo, Bz, BB and letting 
B1 vary. The diagram obtained in this way would, as indicated by Figure 11, have 
a disconnected loop region. In addition, one could imagine many more variations, 
including the study of ch.aracterization diagrams for other curve types such as 
B-splines, Catmull-Rom splines, or Beta-splines. It is the purpose of this section 
to describe the precise relationship between all such diagrams. One of the 
principle results of this section, and indeed of the entire article, is that all region 
diagrams produced by fixing three control points and letting the remaining point 
vary, no matter what the curve type or which control point varies, can be obtained 
from a projective (that is, a rational linear) transformation of Figure 8. 

Although characterization diagrams such as the ones in Figures 3 and 8 are 
two dimensional, the relationship between various diagrams only becomes ap- 
parent in three dimensions. We refer to the 3-space where all diagrams can be 
unified as characterization space. To see how characterization space is defined 
and used, we recall from Section 2 that the characterization of a curve Q 
can be completely determined from the function F(t) = det(Q’(t), Q”(t)) = 
At2 + Bt + C!, or equivalently, from the numbers A, B, and C. Thus, we associate 
with every planar paramel;ric cubic curve a point (A, B, C) in characterization 
space. The statement that. the curve Q has a cusp if B2 - 4AC = 0 is viewed 
geometrically as saying that the point in characterization space corresponding to 
Q is on the implicit surface defined by B2 - 4AC = 0. This surface is a double 
cone through the origin called the cusp cone. Other surfaces of interest are the 
t = 0 cone defined by B2 -. 3AC = 0 indicating the presence of a loop at t = 0, 
the t = 1 cone defined by (B + 2A)2 - 3A(A + B + C) = 0 indicating the presence 
of a loop at t = 1, and the single inflection point plane defined by A = 0 indicating 
the presence of only one in.tlection point on the untrimmed curve. 

Based on these surfaces, regions of characterization space can be segmented 
into volumes corresponding to curve segments possessing loops, cusps, one or 
two inflection points, or none of the above. Since each of these surfaces is either 
a double cone or a plane, the resulting volumes are relatively simple. 

Two-dimensional characterization diagrams are obtained by taking two- 
dimensional cuts through characterization space. For instance, the diagram of 
Figure 8 corresponds to taking a planar section through characterization space. 
More specifically, Equations 6, 7, and 8 show that as B3 varies, the point 

(A, B, Cl = (W&.x + B3y - 31, -9(& - 31, -9) (10) 

in characterization space traces out the plane C = -9; Figure 8 is, therefore, 
the result of intersecting the volumes in characterization space with the plane 
C = -9. Equivalently, the canonical plane of Figure 8 can be viewed as being 
embedded in characterization space, with the embedding given by eq. 10. The 
fact that the C = -9 plane is parallel to a side of the cusp cone explains why the 
cusp curve in Figure 8 is a parabola instead of some other conic section. Since 
the canonical plane never intersects the C = 0 plane, none of the curves where 
ACM Transactions on Graphics, Vol. 8, No. 3, July 1989. 
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(b) One Inflection Point (4 LOOP 

Fig. 11. Bo, BP, and B3 are mapped to (0, 0), (0, l), (1,l). As B, moves, we see that there 
are two disjoint loop regions. The gray region is the unit square. 

C = 0 can be characterized by the diagram of Figure 8. These curves are 
precisely the curves that cause the degeneracies described in Section 5. 

The diagram one would obtain by fixing BO, B2, and Bd and letting B, vary 
would correspond to a different planar cut through characterization space. In 
particular, direct calculation for the dependence of A, B, and C on Bz shows that 
the embedding for this case is given by 

(A, B, Cl = (9(7&x + 2&y + l), -9(2&x + BI,), -9Bd, 

which is a parametric description for the plane A + 2B + 7C - 9 = 0, meaning 
that the diagram can be described by slicing this plane through characterization 
space. This plane cuts both branches of the cusp cone (the curve of intersection 
being a hyperbola), explaining why the loop regions indicated in Figure 11 are 
disconnected. 

The fact that the characterization diagram produced by moving B3 and the 
characterization diagram produced by moving B2 correspond to planar slices 
through characterization space is not a phenomenon that is peculiar to Bezier 
curves. The diagram obtained by varying one coefficient in any polynomial basis 
corresponds to a planar cut. This implies, for instance, that the diagram produced 
when moving a point in a B-spline, Catmull-Rom, or Beta-spline representation 
of a curve has regions bounded by lines and conic sections (assuming that the 
knots of the B-spline and the shape parameters of the Beta-spline are held fixed). 
Moreover, the determination of which planar section of characterization space is 
appropriate is quite simple. Suppose that all but one of the control points Pi in 
eq. 1 is held fixed. To determine which planar section through characterization 
space to use, compute A, B, and C as a function of the coordinates of a moving 
point, thereby defining the embedding into characterization space. As we show 
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below, A, B, and C are guaranteed to be linear functions of the moving point, 
implying that the diagram in fact corresponds to a planar section. 

From Equation 2, each. of A, B, and C are of the form det(ak, LYE) where k # 1. 
These functions are, therefore, clearly linear if all but one of oo, . . . , o3 are held 
fixed. To show that A, 13, and C are linear if all but one control point is held 
fixed, we recall that the representation of a polynomial curve in one basis can be 
converted into a representation in any other basis by matrix multiplication (cf. 
[l]). If mij denote the coefficients of this matrix, then 

det( (lk, N) = det 
( 

2 mkrpr, c %Ps . 
r s ) 

The fact that determinants are linear in each of their arguments can be used to 
rewrite this as 

det(a!k, LY/) = c c mk,mLs det(P,, ps). (11) 
r s 

This shows that if all but one of the Pi are held fixed, then each of the terms in 
the double summation of eq. 11 is either a constant or a linear function, thereby 
showing that A, B, and C are linear functions. 

The plane A - B + 2C + 1 yields a particularly revealing section through 
characterization space as shown in Figure 12. This plane intersects the cusp 
cone, the t = 0 cone, and the t = 1 cone in ellipses that show the special nature 
of these surfaces. The cusp curve meets each of the other two curves tangentially 
at two points, and all three curves meet tangentially at the parabolic point. The 
common tangent line at the parabolic point corresponds to A = 0, the tangent 
line at the other point of intersection between the cusp curve and the t = 0 trim 
curve corresponds to C = 0, and the tangent line at the other point of intersection 
between the cusp curve and the t = 1 trim curve corresponds to A + B + C = 0. 
Finally, the B = 0 line connects the two points of intersection between the cusp 
curve and the t = 0 curve, and the B + 2A = 0 line connects the two points of 
intersection between the cusp curve and the t = 1 curve. 

Remark. Mathematical purists familiar with projective geometry (cf. [7] and 
181) may have noticed that since the defining equations for the cusp cone, the 
t = 0 cone and the t = 1 cone are homogeneous polynomials of degree two, and 
characterization space is more naturally thought of as a projective 2-space rather 
than as a linear 3-space. That is, for characterization purposes, a curve Q(t) 
can be placed in correspondence with the point in projective 2-space having 
homogeneous coordinates [A, B, C] where A, B, and C are given by 
det(Q’(t), Q”(t)) = At* + Bt + C. 

In this context, planar sections through 3-space are interpreted as choosing an 
affine subspace by sending one of the projective lines to infinity. For the diagram 
of Figure 8, for instance, the line that has been sent to infinity is the C = 0 line. 
As was demonstrated earlier, curves in correspondence with the projective points 
of this line could not be cha.racterized by the diagram. This is not only a problem 
with our canonical form, it is a problem with every canonical form obtained by 
fixing three control points and moving one. This deficiency is a topological 
consequence of the fact that these methods correspond to affine subsets-they 
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Fig. 12. A planar section through characterization space showing the 
critical curves, lines, and tangencies. 

must therefore send some line to infinity and lose the ability to characterize the 
associated curves. The projective setting also makes it clear that every such 
diagram can be created via a projective transformation of Figure 12. This follows 
from the fact that every pair of affine subsets is related by a projective transfor- 
mation in much the same way that every pair of bases are related by a linear 
transformation. 

Interestingly, the characterization diagram of Su and Liu (Figure 3) does not 
correspond to a planar cut through characterization space, but it does correspond 
to a bilinear one. Wang shows that with a suitable choice of coordinates, 

A=3(UV-U-V) 

B=3U(2- V) 

c = U(V - 3), 

where U and V are as indicated in Figure 2. The embedding of Su and Liu’s 
(U, V) plane into characterization space is therefore given by 

(A, II, C) = (3(UV - U - V), 3U(2 - V), U(V - 3)), 

which describes a bilinear surface that maps the corners of the unit square in 
(U, V) space into the points (0, 0, 0), (-2,4, -3), (-2,0, O), and (-2,2,2). The 
nonlinear nature of this surface explains why the characterization diagram of Su 
and Liu (Figure 3) is not a projective transformation of the characterization 
diagram of Figure 8. 

7. CONCLUSIONS 

In this paper, we have developed a simple geometric method for characterizing 
cubic curves based on the positions of the control points. The method is based 
on the idea that three of the four points can be fixed and the shape determined 
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by analyzing the position of the fourth point. Depending on the position of the 
fourth point, the curve scan possess a loop, a cusp, or up to two inflection points. 
The presence of these features is determined by partitioning the plane into 
regions based on the position of the fourth point. A specific example is given for 
Bezier curves. The resulting characterization diagram is seen to be simpler and 
more instructive than the previous diagram of [ll]. 

Of course, there is a large choice of which point to move and which represen- 
tation of the curve to use, each leading to a different characterization diagram. 
It is therefore important to understand at a higher level how these diagrams are 
related. We have answered this question by showing that all characterization 
diagrams result from exacting two-dimensional slices from a common, universal 
three-dimensional space that we call characterization space. It was further shown 
that the diagrams obtained by fixing all but one coefficient in any polynomial 
basis corresponds to a simple planar section through characterization space. 
Figure 8 is an example of such a planar slice, corresponding to a plane parallel 
to one of the axes through characterization space. Finally, it was shown that the 
increased complexity of the diagram of Su and Liu (Figure 3) was a result of the 
fact that it corresponds to a nonplanar slice through characterization space. 
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