

A Conceptual Framework for HPC Operational Data Analytics

EEHPC State of the Practice Workshop 2021, 07.09.2021 | Alessio Netti, Woong Shin, Michael Ott, Torsten Wilde, Natalie Bates

A Conceptual Framework for HPC ODA Introduction

- Operational Data Analytics (ODA) uses monitoring to extract actionable **knowledge** on system **behavior**.
 - Can improve energy efficiency and reliability.
 - More and more data centers use ODA.
- However, ODA is a **broad** and **diverse** field:
 - Predictive tuning of CPU frequencies is ODA.
 - Diagnosing infrastructure failures with ML is ODA.
 - Simulating scheduling policies is ODA.
 - Computing a data center's PUE is ODA.

A Conceptual Framework for HPC ODA Contributions

- There is no common language to reason about ODA.
 - Research gaps and opportunities are difficult to identify.
 - System design and requirements are not standardized.
 - Adoption of ODA by data centers is cumbersome.
- Our **contributions** are the following:
 - A conceptual framework to help classify ODA use cases.
 - An extensive survey and categorization of ODA literature.
 - Demonstration of the framework on state-of-the-art use cases.

A Conceptual Framework for HPC ODA Designing a Framework for ODA

- Many possible **questions** about an ODA use case:
 - What is the functional **complexity** and data center scope?
 - How do we **decompose** it in simple, standard blocks?
 - Have other people already tackled a **similar** problem?
 - What are the deployment requirements and gains?
- We use two state-of-the-art frameworks as a **foundation**:
 - The "4-Pillar Framework for Energy-Efficient HPC Data Centers".
 - The "4 Types of Data Analytics Framework".

A Conceptual Framework for HPC ODA The 4-Pillar Framework

A Conceptual Framework for HPC ODA The 4 Types of Data Analytics

- Model used by large consultancy firms to categorize **data analytics**.
- Consists of 4 *types*, which differ in the **functionality** they offer.
- Some types focus on **historical** events (*hindsight*), others on anticipating **future** ones (*foresight*).
- The types are not necessarily **ranked** by complexity.

A Conceptual Framework for HPC ODA The 4x4 Conceptual ODA Framework

- We **combine** the 4-Pillar and the 4-Type models in a single framework.
- It consists of a 4x4 **matrix**:
 - The *pillars* in the horizontal axis describe the scope of ODA.
 - The *types* in the vertical axis describe ODA functionality.
- Any complex ODA system can be **decomposed** to fit the cells of the framework.

A Conceptual Framework for HPC ODA Applying the ODA Framework

- We now **demonstrate** the framework's effectiveness.
- We conducted a **survey** of ODA research literature:
 - 70+ works analyzed and categorized.
 - ODA examples extracted for each category.
 - Provides an overall picture of the ODA field.
- We **applied** the framework to three state-of-the-art use cases:
 - Focus on complex ODA systems.
 - Discussion of the framework's limitations.

A Conceptual Framework for HPC ODA

Classifying ODA Research Literature

	Building Infrastructure	System Hardware	System Software	Applications
Prescriptive	 Switching between types of cooling Tuning cooling knobs Responding to anomalies 	 Cooling optimization at the system level CPU frequency tuning Tuning hardware knobs 	 Intelligent task placement Plan-based scheduling Power and KPI-aware scheduling 	 Auto-tuning of HPC applications Code improvement and recommendations
Predictive	 Predict data center KPIs Predict cooling demand Models for cooling performance 	 Forecast sensors Component failure prediction Predict instruction mix 	 Simulating HPC systems and schedulers Predicting HPC workloads 	 Predicting job durations Predicting resource usage Predicting performance profiles of code regions
Diagnostic	 Fingerprinting data center-level crises Infrastructure anomaly detection Stress testing 	 Node anomaly detection Root cause analysis at the system level Diagnose network contention issues 	 Detect data locality issues Detect software anomalies Diagnose OS noise 	 Application fingerprinting Identify application performance patterns Diagnose code-level issues
Descriptive	 PUE calculation Facility data processing Facility-level dashboards 	 ITUE calculation System performance indicators System-level dashboards 	 Slowdown calculation Scheduler-level dashboards 	 Job performance models Job data processing Job-level dashboards

A Conceptual Framework for HPC ODA Analytics across Multiple Types

- Infrastructure anomaly detection (*diagnostic*) and cooling set-point tuning (*prescriptive*) at **ENI** [3].
- **Better** *prescriptive* decisions can be made with the help of *predictive* and *diagnostic* components.
- Higher technical complexity.
- Requires **fusion** of heterogeneous disciplines.

A Conceptual Framework for HPC ODA Implementing Multi-pillar ODA

- The **Powerstack** framework for power management (*prescriptive*) using data science (*predictive*) [4].
- Most ODA systems are **closed** and cover a single pillar (or *silo*).
- Multi-pillar designs must be **holistic** and integrate many levels of scope.
- Major operational opportunities.

A Conceptual Framework for HPC ODA ODA beyond Building Infrastructure

- Forecasting (*predictive*) and notifying (*prescriptive*) excessive power swings at **LLNL** [5].
- The electrical grid as an **extension** of the data center's infrastructure.
- Monitoring and control capabilities are **limited**.
- Practical implementation can be challenging.

A Conceptual Framework for HPC ODA Conclusions

- Use of *Operational Data Analytics* (ODA) is becoming more and more **common** in HPC data centers.
- We propose a conceptual **framework** to classify ODA use cases according to their scope (*pillars*) and functionality (*types*).
- We aim to establish a common language to **simplify** discussion, analysis and adoption of ODA by the community at large.
- Thank you for your attention!

Acknowledgements: Alessio Netti was supported by the European Union's Horizon 2020/EuroHPC research and innovation programme under grant agreement No. 956560 (REGALE). This work was supported by, and used the resources of, the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at ORNL, which is managed by UT Battelle, LLC for the U.S. DOE (under the contract No. DE-AC05-000R22725).

EEHPC Working Group | 07.09.2021 | Alessio Netti