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Coinductive predicates express persisting “safety” specifications of transition systems.

Previous observations by Hermida and Jacobs identify coinductive predicates as suitable

final coalgebras in a fibration—a categorical abstraction of predicate logic. In this paper

we follow the spirit of a seminal work by Worrell and study final sequences in a fibration.

Our main contribution is to identify some categorical “size restriction” axioms that

guarantee stabilization of final sequences after ω steps. In its course we develop a

relevant categorical infrastructure that relates fibrations and locally presentable

categories, a combination that does not seem to be studied a lot. The genericity of our

fibrational framework can be exploited for: binary relations (i.e. the logic of “binary

predicates”) for which a coinductive predicate is bisimilarity; constructive logics (where

interests are growing in coinductive predicates); and logics for name-passing processes.

1. Introduction

Coinductive predicates postulate properties of state-based dynamic systems that persist

after a succession of transitions. In computer science, safety properties of nonterminating,

reactive systems are examples of paramount importance. This has led to an extensive

study of specification languages in the form of fixed point logics and model-checking

algorithms.

In this paper we follow (Hermida and Jacobs, 1998; Hermida, 1993)—whose results

are further extended in (Fumex et al., 2011; Atkey et al., 2012), see also (Jacobs, 2012,

Chap. 6)—and take a categorical view on coinductive predicates. Here coalgebras repre-

sent transition systems; a fibration is a “predicate logic”; and a coinductive predicate is

† An earlier version of this paper (Hasuo et al., 2013) has been presented at Mathematical Foundations of

Programming Semantics, Twenty-Ninth Annual Conference (MFPS XXIX), 23-25 June 2013, Tulane
University, New Orleans, Louisiana, USA.
‡ The main part of this work was done when K.C. was an MSc student at Department of Computer

Science, the University of Tokyo.
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identified as a suitable coalgebra in a fibration. Our contribution is the study of final se-

quences—an iterative construction of final coalgebras that is studied notably in (Worrell,

2005; Adámek, 2003)—in such a fibrational setting.

Coalgebras have been successfully used as a categorical abstraction of transition sys-

tems (see e.g. (Rutten, 2000; Jacobs, 2012)): by varying base categories and functors,

coalgebras bring general results that work for a variety of systems at once. Fixed point

logics (or modal logics in general), too, have been actively studied coalgebraically: coalge-

braic modal logic is a prolific research field (see (Ĉırstea et al., 2011)); their base category

is typically Sets but works like (Klin, 2007) go beyond and use presheaf categories for

processes in name-passing calculi; and literature including (Ĉırstea and Sadrzadeh, 2008;

Venema, 2006; Ĉırstea et al., 2009) studies coalgebraic fixed point logics.

Unlike most of these works, we follow (Hermida and Jacobs, 1998; Hermida, 1993)

and parametrize the underlying “predicate logic” too with the categorical notion of fi-

bration. The conventional setting of classical logic is represented by the fibration
Pred
↓

Sets
(see Appendix C for an introduction to fibrations).

fibration
P
↓p
C

Pred
↓

Sets

Rel
↓

Sets

coalgebra invariant bisimulation

final
coalgebra

coinductive
predicate

bisimilarity

However there are various other “logics” modeled as fibrations, and hence the fibra-

tional language provides a uniform treatment of these different settings. An example is

binary relations (instead of unary predicates) that form a fibration
Rel
↓

Sets
(see Appendix C).

In this case coinductive predicates are bisimilarity relations (see the above table, and Ex-

ample 7.2 later).

Another example is predicates in constructive logics. They are modeled by the sub-

object fibration of a topos. In fact, coinductive predicates in constructive logics are an

emerging research topic: coinduction is supported in the theorem prover Coq (based

on the constructive calculus of constructions), see e.g. (Bertot and Komendantskaya,

2008); and, working in Coq, some interesting differences between classically equivalent

(co)inductive predicates have been studied e.g. in (Nakata et al., 2011).

Yet another example is modal logics for processes in various name-passing calculi. They

are best modeled by the subobject fibration of a suitable (pre)sheaf category like SetsI

and SetsF (Stark, 1996; Fiore and Turi, 2001; Fiore and Staton, 2006; Miculan, 2008;

Staton, 2011).

1.1. Coinductive Predicates and Their Construction, Conventionally

In order to illustrate our technical contributions (§3) we here present a special case, with

classical logic and Kripke models. We first introduce syntax.
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Definition 1.1 (Rudimentary logic Rν). In this tiny fragment of the µ-calculus, fixed-

point operators are limited to the greatest one at the outermost position; and moreover

all the formulas are “rank-1,” that is, the fixed-point variable u occurs precisely under

one modal operator.

Rνu 3 α ::= a | a | �u | ♦u | α ∧ α | α ∨ α ; Rν 3 β ::= νu. α . (1)

Here a belongs to the set AP of atomic propositions; a stands for the negation of a; and

u is the only fixed-point variable (with possibly multiple occurrences).

An Rν-formula can be thought of as a recursive definition of a coinductive predicate. Later

we will model such a “definition” categorically as a predicate lifting. Among specifications

expressible in Rν is (may-) deadlock freedom (“there is an infinite path”). It is expressed

by νu.♦u and is our recurring example.

An Rν-formula is interpreted in Kripke models. Let c = (X,→, V ) be a Kripke model,

where X is a state space, → ⊆ X ×X is a transition relation and V : X → P(AP) is a

valuation. The conventional interpretation [νu.α]c of Rν-formulas in the Kripke model c

is given as follows (see e.g. (Bradfield and Stirling, 2006)). Firstly, we interpret α ∈ Rνu
as a function [α]c : PX → PX. Concretely:

[a]c(P ) = {x | a ∈ V (x)} [a]c(P ) = {x | a 6∈ V (x)}
[�u]c(P ) = {x | ∀y ∈ X. (x→ y implies y ∈ P )} [α ∧ α′]c(P ) = [α]c(P ) ∩ [α′]c(P )

[♦u]c(P ) = {x | ∃y ∈ X. (x→ y and y ∈ P )} [α ∨ α′]c(P ) = [α]c(P ) ∪ [α′]c(P )

This function [α]c is easily seen to be monotone, since u occurs only positively in α.

Finally we define [νu.α]c ⊆ X to be the greatest fixed point of the monotone function

[α]c : PX → PX.

The Knaster-Tarski theorem guarantees the existence of such a greatest fixed point

[νu.α]c in a complete lattice PX. However its proof is highly nonconstructive. In contrast,

a well-known iterative construction (Cousot and Cousot, 1979) computes [νu.α]c as the

limit of the following descending chain (see also (Bradfield and Stirling, 2006)). Here >
denotes the subset X ⊆ X.

> ≥ [α]c> ≥ [α]2c> ≥ · · · (2)

An issue now is the length of the chain. If [α]c preserves limits
∧

(which is the case with

α ≡ �u), clearly ω steps are enough and yields
∧
i∈ω
(
[α]ic>

)
as the greatest fixed point.

This is not the case with α ≡ ♦u. Indeed, for the Kripke model c1 below [νu.♦u]c1 6=∧
i∈ω
(
[♦u]ic1>

)
: there is no infinite path from the root; but it satisfies [♦u]ic1> (“there is

a path of length ≥ i”) for each i.

c1
· · ·

(3)

Yet the chain (2) eventually stabilizes, bounded by the size of the poset PX: in each

step before stabilization, at least one element must be thrown away. Therefore the cal-
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culation of [νu.α]c proceeds, in general, via transfinite induction. This is what we call a

state space bound for the chain (2).

Besides a state space bound, another (possibly better and seemingly less known) bound

can be obtained from a behavioral view. One realizes that not only the size of the state

space X but also the branching degree can be used to bound the length of the chain (2).

This is a result similar to the one in (Hennessy and Milner, 1985, Theorem 2.1); the

latter is stated for bisimilarity as a coinductive relation, not for a coinductive predicate.

We formally state (an instance of) the result for the record.

Lemma 1.2 (Behavioral bound). Let c = (X,→, V ) be a finitely branching Kripke

model. For α = ♦u, the chain (2) stabilizes after ω steps and yields [νu.♦u]c as its limit,

that is,
∧
i∈ω
(
[♦u]ic>

)
= [νu.♦u]c.

Proof. The essence of the result lies in the fact that the limit
∧
i∈ω
(
[♦u]ic>

)
is a ♦-

invariant, which we shall prove now. Assume that a state x satisfies
∧
i∈ω
(
[♦u]ic>

)
; we

have to show that x satisfies [♦u]c

(∧
i∈ω
(
[♦u]ic>

))
, that is, there is a successor x′ of x

that satisfies the limit
∧
i∈ω
(
[♦u]ic>

)
.

Since x satisfies [♦u]ic> (“there is a path of length ≥ i”) for each i, for each i ≥ 1,

there is a successor xi of x that satisfies [♦u]i−1
c >. By c being finitely branching, the set

{x1, x2, . . . } of such successors turns out to be finite and there exists a successor x′ of x

such that x′ = xi for infinitely many i. It follows (from [♦u]ic> ≤ [♦u]jc> if j ≤ i) that

this x′ satisfies [♦u]ic> for all i ∈ ω, and hence satisfies
∧
i∈ω
(
[♦u]ic>

)
. This proves that

the limit
∧
i∈ω
(
[♦u]ic>

)
is an invariant, and hence

∧
i∈ω
(
[♦u]ic>

)
≤ [νu.♦u]c.

For the last equality claimed in the lemma, the other direction [νu.♦u]c ≤
∧
i∈ω
(
[♦u]ic>

)
is easy: [νu.♦u]c ≤ [♦u]ic> is easily shown by induction on i. This concludes the proof.

Note that Lemma 1.2 holds however large the state space X is. Moreover it easily gen-

eralizes from νu.♦u to an arbitrary Rν-formula νu.α. Note also that the counterexample

c1 in (3) is not finitely branching and does not contradict with Lemma 1.2.

1.2. Final Sequences in a Fibration

This paper is about putting the observations in §1.1 in general categorical terms. Our

starting observation is that the chain (2) resembles a final sequence, a classic construction

of a final coalgebra.

In the theory of coalgebra a final F -coalgebra is of prominent importance since it is a

fully abstract domain with respect to the F -behavioral equivalence. Therefore a natural

question is if a final F -coalgebra exists; the well-known Lambek lemma prohibits e.g. a

final P-coalgebra for the (full) powerset functor P. What matters is the size of F : when

it is suitably bounded, it is known that a final coalgebra can be constructed via the

following final F -sequence.

1 F1
!oo · · ·F !oo F i1

F i−1 !oo · · ·F i !oo (4)

Here 1 is a final object in C, and ! is the unique arrow. In particular, if F is fini-

tary, a final coalgebra arises as a suitable subobject (or a quotient) of the ω-limit of
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the final sequence (4). These constructions in Sets are worked out in (Pattinson, 2003;

Worrell, 2005); the one in (Worrell, 2005) is further extended to locally presentable cat-

egories (those are categories suited for speaking of “size”) with additional assumptions

in (Adámek, 2003).

Turning back to coinductive predicates, indeed, the fibrational view (Hermida and

Jacobs, 1998; Hermida, 1993) identifies coinductive predicates as final coalgebras in a

fibration. This leads us to scrutinize final sequences in a fibration. Our main result

(Theorem 3.9) is a categorical generalization of the behavioral ω-bound (§1.1)—more

precisely we axiomatize categorical “size restrictions” for that bound to hold.

The conditions are formulated in the language of locally presentable categories (see

e.g. (Adámek and Rosický, 1994); also Appendix B); and the combination of fibrations

and locally presentable categories does not seem to have been studied a lot (an exception

is (Makkai and Paré, 1989, §5.3)). We therefore develop a relevant categorical infrastruc-

ture (§6). Our results there include a sufficient condition for the total category Sub(C)

of a subobject fibration to be locally (finitely) presentable, and the same for a family

fibration Fam(Ω). Via these results, in §7 we list some concrete examples of fibrations

to which our results in §3 on the behavioral bounds apply. They include:
Pred
↓

Sets
(classi-

cal logic);
Rel
↓

Sets
(for bisimulation and bisimilarity);

Sub(C)
↓
C

for C that is locally finitely

presentable and locally Cartesian closed (a topos is a special case); and
Fam(Ω)
↓

Sets
for a

well-founded algebraic lattice Ω.

1.3. Contributions

To summarize, our contributions are: 1) combination of the mathematical observations

in (Hermida, 1993; Hermida and Jacobs, 1998) and (Jacobs, 2012, Chap. 6) for a general

formulation of coinductive predicates; 2) categorical behavioral bounds for final sequences

that approximate coinductive predicates; and 3) a categorical infrastructure that relates

fibrations and locally presentable categories.

Compared to the earlier version (Hasuo et al., 2013) of the current paper, the main

differences are as follows. Here we additionally address inductive predicates over coin-

ductive datatypes (see §5). We identify them as coinductive predicates in the fiberwise

opposite
P(op)

↓p(op)
C

of the original fibration
P
↓p
C , so that the difference between inductive and

coinductive predicates becomes a matter of categorical duality. The examples in §7 are

extended accordingly, studying inductive predicates on top of coinductive ones. Besides,

we include all the proofs that were omitted in (Hasuo et al., 2013) for space reasons.

1.4. Organization of the Paper

In §2 we identify coinductive predicates as final coalgebras in a fibration, following the

ideas of (Hermida, 1993; Hermida and Jacobs, 1998; Jacobs, 2012). The main technical

results are in §3, where we axiomatize size restrictions on fibrations and functors for a
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final sequence to stabilize after ω steps. These results are reorganized in §4 in a fibration

of invariants. We see in §5, which is added to an earlier version of this paper (Hasuo et al.,

2013), that the results in §2–4 apply to inductive predicates too. The next two sections are

devoted to examples: firstly in §6 we develop a necessary categorical infrastructure; and

then in §7 we discuss concrete examples. In §8 we conclude with some directions of future

work. In Appendices we present minimal introductions to the theories of coalgebras,

locally presentable categories and fibrations—the three categorical disciplines that our

technical developments rely on.

2. Coinductive Predicates as Final Coalgebras

In this section we follow the ideas in (Hermida, 1993; Hermida and Jacobs, 1998; Jacobs,

2012) and characterize coinductive predicates in various settings (for different behavior

types, and in various underlying logics) in the language of fibrations. An introduction to

fibrations is e.g. in (Jacobs, 1999); see also Appendix C. In this paper for simplicity we

focus on poset fibrations. It should however not be hard to move to general fibrations.

Convention 2.1 (Fibration). We refer to poset fibrations (where each fiber is a poset

rather than a category) simply as fibrations.

Definition 2.2 (Predicate lifting). Let
P
↓p
C be a fibration and F be an endofunctor on

C. A predicate lifting of F along p is a functor ϕ : P→ P such that (ϕ, F ) is an endomap

of fibrations.

P
ϕ

//

p ��

P
p��

C
F

// C
(5)

This means: that the above diagram commutes; and that ϕ preserves Cartesian arrows,

that is, ϕ(f∗Q) = (Ff)∗(ϕQ). See below.

P

p

��

f∗Q
fQ

// Q ϕ(f∗Q)
ϕ(fQ)

// ϕQ

(Ff)∗(ϕQ) Ff(ϕQ)

88

C X
f
// Y FX

Ff
// FY

(6)

In the prototype example
Pred
↓

Sets
, the above definition coincides (see (Jacobs, 2012))

with the one used in coalgebraic modal logic (see e.g. (Ĉırstea et al., 2011)), the latter

being a (monotone) natural transformation 2( ) ϕ⇒ 2F ( ) : Setsop → Sets. In particular:

the naturality requirement corresponds to the preservation of Cartesian arrows (6); and

monotonicity of ϕ comes from the functoriality of ϕ : P→ P.

We think of predicate liftings as (co)recursive definitions of coinductive predicates

(see Example 2.4). On top of it, we identify coinductive predicates (and invariants) as

coalgebras in a fiber.
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Definition 2.3 (Invariant, coinductive predicate). Let ϕ be a predicate lifting of

F along
P
↓p
C ; and X

c→ FX be a coalgebra in C. They together induce an endofunctor

(a monotone function) on the fiber PX , namely PX
ϕ→ PFX

c∗→ PX , where ϕ restricts to

PX → PFX because of (5).

1 A ϕ-invariant in c is a (c∗ ◦ ϕ)-coalgebra in PX , that is, an object P ∈ PX such that

P ≤ c∗(ϕP ) in PX .

2 The ϕ-coinductive predicate in c is the final (c∗ ◦ ϕ)-coalgebra (if it exists). Its carrier

shall be denoted by JνϕKc. It is therefore the largest ϕ-invariant in c; Lambek’s lemma

yields that JνϕKc = (c∗ ◦ ϕ)(JνϕKc).

Example 2.4 (Rν). The conventional interpretation [νu.α]c (described in §1.1) of Rν-

formulas is a special case of Definition 2.3. Indeed, let us work in the fibration
Pred
↓

Sets
, and

with the endofunctor FK = P(AP)×P( ) on Sets. An FK-coalgebra X
c→ P(AP)×PX

is precisely a Kripke model: c combines a valuation X → P(AP) and the map X → PX
that carries a state to the set of its successors. To each formula α ∈ Rνu we associate a

predicate lifting ϕα of FK. This is done inductively as follows.

ϕa(U ⊆ X) =
(
{V ∈ FKX | a ∈ π1(V )} ⊆ FKX

)
ϕa(U ⊆ X) =

(
{V ∈ FKX | a 6∈ π1(V )} ⊆ FKX

)
ϕ�u(U ⊆ X) =

(
{V ∈ FKX | π2(V ) ⊆ U} ⊆ FKX

)
ϕ♦u(U ⊆ X) =

(
{V ∈ FKX | π2(V ) ∩ U 6= ∅} ⊆ FKX

)
ϕα∧α′(U ⊆ X) =

(
(ϕαU ∩ ϕα′U) ⊆ FKX

)
ϕα∨α′(U ⊆ X) =

(
(ϕαU ∪ ϕα′U) ⊆ FKX

)
(7)

In the above, π1 and π2 denote the projections from FKX = P(AP) × PX. Then it is

easily seen by induction that JνϕαKc in Definition 2.3 coincides with the conventional

interpretation [νu.α]c described in §1.1.

In fact, the predicate liftings ϕα in (7) are the ones commonly used in coalgebraic

modal logic (where they are presented as natural transformations). We point out that

the same definition of ϕα—they are written in the internal language of toposes—works

for the subobject fibration
Sub(C)
↓
C

of any topos C. Therefore the categorical definition of

coinductive predicates (Definition 2.3) allows us to interpret the language Rν in construc-

tive underlying logics. Suitable completeness of C ensures that a final (c∗ ◦ ϕ)-coalgebra

in Definition 2.3 exists.

Proposition 2.5. Let ϕ be a predicate lifting of F along
P
↓p
C ; X

c→ FX be a coalgebra

in C; and P ∈ PX . We have P ≤ JνϕKc if and only if there exists a ϕ-invariant Q such

that P ≤ Q.

The proposition is trivial but potentially useful. It says that an invariant can be used as

a “witness” for a coinductive predicate. This is how bisimilarity is commonly established
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(namely by finding a bisimulation); and it can be used e.g. in (Abramsky and Winschel,

2015, §6) as an alternative to the metric coinduction principle used there.†

Remark 2.6. The coalgebraic modal logic literature exploits the fact that there can be

many predicate liftings (in the form of natural transformations) of the same functor F .

Different predicate liftings correspond to different modalities (such as� vs. ♦ for the same

functor P). This view of predicate liftings is also the current paper’s (see Example 2.4).

In contrast, in fibrational studies like (Hermida, 1993; Hermida and Jacobs, 1998;

Fumex et al., 2011; Atkey et al., 2012), use of predicate liftings has focused on the

validity of the (co)induction proof principle. For such purposes it is necessary to choose a

predicate lifting ϕ that is “comprehensive enough,” covering all the possible F -behaviors.

In fact, it is common in these studies that “the” predicate lifting, denoted by Pred(F ),

is assigned to a functor F . An exception is (Jacobs, 2010).

3. Final Sequences in a Fibration

Here we present our main technical result (Theorem 3.9). It generalizes known behavioral

ω-bounds (like (Hennessy and Milner, 1985, Theorem 2.1); see §1.1); and claims that the

chain (2) for a coinductive predicate stabilizes after ω steps, assuming that the behavior

type functor F and the underlying logic
P
↓p
C are “finitary” in a suitable sense (but no size

restriction on ϕ).

3.1. Size Restrictions on a Fibration

We axiomatize finitariness conditions in the language of locally presentable categories

(see Appendix B for a minimal introduction). Singling out these conditions lies at the

heart of our technical contribution.

Definition 3.1 (LFP category). A category C is locally finitely presentable (LFP) if

it is cocomplete and it has a (small) set F of finitely presentable (FP) objects such that

every object is a filtered colimit of objects in F.

Definition 3.2 (Finitely determined fibration). A (poset) fibration
P
↓p
C is finitely

determined if it satisfies the following.

1 C is LFP, with a set F of FP objects (as in Definition 3.1).

2
P
↓p
C has fiberwise limits and colimits (as in Definition C.9).

3 For arbitrary X ∈ C, let (XI)I∈I be the canonical diagram for X with respect to F
(i.e. I = F/X, see Lemma B.4), with a colimiting cocone (XI

κI→ X)I∈I. Then for any

† To be precise: only if we take PE in (Abramsky and Winschel, 2015)—that is in fact a least fixed-
point specification—as an atomic proposition (and that is essentially what is done in the proofs

in (Abramsky and Winschel, 2015, §6)). Our future work on nested µ’s and ν’s will more adequately

address the situation.
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P,Q ∈ PX ,

P ≤ Q ⇐⇒ κ∗IP ≤ κ∗IQ in PXI
for each I ∈ I.

The intuition behind Cond. 3 is that a predicate P ∈ PX (over arbitrary X ∈ C)

is determined by its restrictions (κ∗IP )I∈I to FP objects XI . One convenient sufficient

condition for Cond. 3 is that the total category P is itself LFP, with its FP objects residing

above the FP objects in C (Corollary 6.2). We note that Cond. 1 guarantees, since LFP

implies completeness, that an (ωop-)limit Fω1 of the final F -sequence (4) exists. However

this does not mean (nor do we need) that Fω1 carries a final F -coalgebra; it fails for

F = Pω, see (Worrell, 2005).

Definition 3.3 (Well-founded fibration). A well-founded fibration is a finitely deter-

mined fibration that further satisfies:

4 If X ∈ F (hence FP), the fiber PX is such that: the category Pop
X consists solely of FP

objects.

Since PX is complete, this is equivalent to: there is no (ωop-)chain P0 > P1 > · · · in

PX that is strictly descending.

We note that the following stronger variant of the condition

4’ For any X ∈ C, there is no strictly descending ωop-chain in PX

rarely holds (it fails in
Pred
↓

Sets
). The original Cond. 4 holds in many examples (as we will

see later in §7) thanks to the restriction that X is FP.

Remark 3.4. Conditions 3–4 mention a fixed set F of FP objects. It is not hard to see

that this is not necessary, and we can take as F the set of all FP objects without loss

of generality. (Stating the conditions in terms of F is an advantage when it comes to

checking them, though.)

Let us first note that, by (Adámek and Rosický, 1994, Remark 1.9), any FP object

Y ∈ C is a split quotient of some X ∈ F, i.e. there exists q : X � Y and i : Y � X with

q ◦ i = idY .

Then we indeed have the following. On Cond. 3, for an FP object Y and κ′ : Y → X,

take X ′ ∈ F with a splitting X ′
q
� Y

i
� X ′. Then we can take I such that XI = X ′ and

κI = κ′ ◦ q. Hence κ∗IP ≤ κ∗IQ in PXI
induces κ′∗P ≤ κ′∗Q in PY because κ′ = κI ◦ i.

On Cond. 4, for an FP object Y , take X ∈ F with a splitting X
q
� Y

i
� X. Then

a strictly decreasing chain Q0 > Q1 > · · · in PY induces a strictly decreasing chain

q∗Q0 > q∗Q1 > · · · in PX . Here the strictness of the latter is by i∗q∗Qn = Qn.

The following trivial fact is written down for the record.

Lemma 3.5. A finitely determined fibration
P
↓p
C is well-founded if PX is a finite category

for each X ∈ F.

3.2. Final Sequences in a Fibration

The following result from (Jacobs, 1999, Proposition 9.2.1) is crucial in our development.
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Lemma 3.6. Let
P
↓p
C be a fibration, with C being complete. Then p has fiberwise limits

if and only if P is complete and p : P → C preserves limits. If this is the case, a limit of

a small diagram (PI)I∈I in P can be given by∧
I∈I

(π∗IPI) over Lim
I∈I

XI .

Here XI := pPI ; (LimI∈IXI
πI→ XI)I∈I is a limiting cone in C; and

∧
I∈I denotes the

the inf in the fiber PLimI XI
. Moreover

∧
I∈I(π

∗
IPI) is a limit of the diagram of shape I,

namely π∗IPI ≤ π∗JPJ holds for any I → J in I.

Figure 1 presents two sequences. Here we assume that
P
↓p
C is finitely determined (Def-

inition 3.2) and that ϕ is a predicate lifting of F . In the bottom diagram (in C), the

P ϕω>1

ss tt
zz

>1 ϕ>1
oo · · ·oo ϕi>1

oo · · ·oo

ϕω+1>1

kk kk
dd

b′

\\

C Fω1

ss tt

πiyy

1 F1!oo · · ·oo F i1
F i−1 !oo · · ·F i !oo

Fω+11

kk kk

Fπi−1

dd
b

``

Fig. 1. Final sequences in a fibration

object 1 ∈ C is a final one (it exists since LFP implies completeness); F1
!→ 1 is the

unique map; Fω+11 := F (Fω1); and b is a unique mediating arrow to the limit Fω1. In

the top diagram (in P), the object >1 is the final object in the fiber P1; by Lemma 3.6

this is precisely a final object in the total category P. Hence this diagram is nothing but a

final sequence for the functor ϕ in P. A limit ϕω>1 of this final sequence exists, again by

Lemma 3.6, and moreover it can be chosen above Fω1. We define ϕω+1>1 := ϕ(ϕω>1).

Lemma 3.7 (Key lemma). Let
P
↓p
C be a well-founded fibration; F : C→ C be finitary;

and ϕ be a predicate lifting of F . Then the final ϕ-sequence “stabilizes” after ω steps

(modulo reindexing via b). Precisely: in Figure 1, we have ϕω+1>1 = b∗(ϕω>1).

Proof. We proceed by steps.

Step a. We observe that, in Figure 1, the top diagram is carried to the one below by

the functor p : P → C. This is straightforward: the arrow ϕ>1 → >1 must be carried

to the unique arrow ! : F1 99K 1; on the mediating arrow b′ in P, since pb′ is again a

mediating arrow in C, it must coincide with b.

Step b. Before moving on, we observe that Cond. 3 in Definition 3.2 yields a seemingly

stronger statement (Cond. 3’ below).

Sublemma 3.8. For a finitely determined fibration
P
↓p
C the following holds.

3’ Let X ∈ C; P,Q ∈ PX ; and (YJ)J∈J be an arbitrary filtered diagram in C such that
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ColimJ YJ = X, with a colimiting cocone (YJ
γJ→ X)J∈J. Then P ≤ Q if and only if

for each J ∈ J, γ∗JP ≤ γ∗JQ in PYJ
.

Proof. (Of Sublemma 3.8) The only nontrivial statement is the “if” part of the direc-

tion 3⇒ 3’. It suffices to show that γ∗JP ≤ γ∗JQ (for each J ∈ J) implies κ∗IP ≤ κ∗IQ (for

each I ∈ I), where κI and I are as in Cond. 3.

Let I ∈ I. Since XI is FP, an arrow κI : XI → X to a filtered colimit X = ColimJ YJ

factors through some YJI
γJI→ X, as in the diagram below.

XI
κI //

hI
**

X = ColimJ YJ

YJI γJI

22

Now we have κ∗IP = h∗Iγ
∗
JI
P ≤ h∗Iγ∗JIQ = κ∗IQ, where the inequality is by the assumption

that γ∗JP ≤ γ∗JQ for each J ∈ J. This proves Sublemma 3.8.

Step c. By Step a we see that ϕω+1>1 ≤ b∗(ϕω>1) by the universality of a Cartesian

arrow. In what follows we shall prove its converse:

b∗(ϕω>1) ≤ ϕω+1>1 in PFω+11. (8)

Let us take a filtered diagram (XI)I∈I in C such that XI ∈ F (for each I ∈ I) and

Fω1 = ColimI∈IXI , with (XI
κI→ Fω1)I∈I being the colimiting cocone. Then we have

Fω+11 = F (Colim
I∈I

XI) = Colim
I∈I

FXI ,

by the assumption that F is finitary; moreover (FXI
FκI→ Fω+11)I∈I is a colimiting

cocone. The diagram (XI)I∈I is filtered, and so is the latter diagram (FXI)I∈I. Thus by

Cond. 3’ in Sublemma 3.8, showing the following proves (8):

(FκI)
∗( b∗(ϕω>1)

)
≤ (FκI)

∗(ϕω+1>1) for each I ∈ I. (9)

Step d. To prove (9) we first prove the following fact: for each I ∈ I there exists iI ∈ ω
such that

κ∗I(ϕ
ω>1) = κ∗I

(
π∗iI (ϕiI>1)

)
in PXI

. (10)

That is: the final sequence in P (Figure 1), when restricted to XI (that is FP), stabilizes

within finitely many steps. Indeed, by Lemma 3.6 the ωop-limit ϕω>1 is described as an

ωop-limit (i.e. an inf of a descending sequence) in PFω1:

ϕω>1 =
∧
i∈ω

π∗i (ϕi>1). (11)

Therefore we have κ∗I(ϕ
ω>1) =

∧
i∈ω κ

∗
Iπ
∗
i (ϕi>1) since reindexing κ∗I preserves fiberwise

limits
∧

. Here the sequence
(
κ∗Iπ

∗
i (ϕi>1)

)
i∈ω in PXI

is also descending. Therefore, by

p being a well-founded fibration (Definition 3.3) and XI being FP, there exists iI ∈ ω at

which the descending sequence
(
κ∗Iπ

∗
i (ϕi>1)

)
i∈ω in PXI

stabilizes, that is,

κ∗I
( ∧
i∈ω

π∗i (ϕi>1)
)

=
∧
i∈ω

κ∗Iπ
∗
i (ϕi>1) = κ∗I

(
π∗iI (ϕiI>1)

)
in PXI

.

Combined with (11), this proves (10).
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Step e. Finally let us prove (9). For each I ∈ I,

(FκI)
∗( b∗(ϕω>1)

)
= (FκI)

∗( b∗(∧
i∈ω

π∗i (ϕi>1)
) )

by (11)

=
∧
i∈ω

(FκI)
∗( b∗(π∗i (ϕi>1)

) )
reindexing preserves

∧
≤
∧
j∈ω

(FκI)
∗( b∗(π∗j+1(ϕj+1>1)

) )
letting i = j + 1 for i ≥ 1

=
∧
j∈ω

(FκI)
∗( (Fπj)

∗(ϕj+1>1)
)

by πj+1 ◦ b = Fπj (see Figure 1)

=
∧
j∈ω

ϕ
(
κ∗Iπ

∗
j (ϕj>1)

)
by Definition 2.2

≤ ϕ
(
κ∗Iπ

∗
iI (ϕiI>1)

)
letting j = iI on the LHS

= ϕ
(
κ∗I(ϕ

ω>1)
)

by (10)

= (FκI)
∗(ϕω+1>1) by Definition 2.2 and ϕω+1>1 = ϕ(ϕω>1).

This proves (9) and concludes the proof of Lemma 3.7.

The object ϕω>1 is a “prototype” of ϕ-coinductive predicates in various coalgebras. This

is part of the main theorem below.

It is standard that a coalgebra X
c→ FX in C induces a cone over the final F -sequence,

and hence a mediating arrow X → Fω1 (see below). Concretely, ci : X → F i1 is defined

inductively by: X
c0→ 1 is !; and ci+1 is the composite X

c→ FX
Fci→ F i+11. The induced

arrow to the limit Fω1 is denoted by cω.

Fω1

tt tt
πizz

1 F1!oo · · ·oo F i1oo · · ·oo

X

jj jj

ci
bb

cω

aa

(12)

Note that Fω1 does not necessarily carry a final F -coalgebra (see Remark 3.12).

Theorem 3.9 (Main result). Let
P
↓p
C be a well-founded fibration; F : C → C be a

finitary functor; ϕ be a predicate lifting of F along p; and X
c→ FX be a coalgebra in C.

1 The ϕ-coinductive predicate JνϕKc in c (Definition 2.3) exists. It is obtained by the

following reindexing of ϕω>1, where cω is the mediating map in (12).

JνϕKc = c∗ω(ϕω>1) (13)

2 Moreover, the predicate JνϕKc is the limit of the following ωop-chain in the fiber PX

>X ≥ (c∗ ◦ ϕ)(>X) ≥ (c∗ ◦ ϕ)2(>X) ≥ · · · , (14)

that stabilizes after ω steps. That is, JνϕKc =
∧
i∈ω(c∗ ◦ ϕ)i(>X).

Proof. We proceed by steps.
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Step a. We first show that the descriptions of JνϕKc in the items 1–2 are the same:

c∗ω(ϕω>1) =
∧
i∈ω

(c∗ ◦ ϕ)i(>X). (15)

We have

c∗ω(ϕω>1) = c∗ω
(∧
i∈ω

π∗i (ϕi>1)
)

by Lemma 3.6

=
∧
i∈ω

c∗ω
(
π∗i (ϕi>1)

)
since reindexing preserves

∧
=
∧
i∈ω

c∗i (ϕ
i>1) by the definition of cω.

(16)

Furthermore, c∗i (ϕ
i>1) in the above is seen to be equal to (c∗ ◦ ϕ)i(>X). This is shown

by induction on i ∈ ω. For i = 0 the claim amounts to !∗(>1) = >X , which holds since

reindexing preserves >. For the step case,

c∗i+1(ϕi+1>1) = c∗(Fci)
∗(ϕi+1>1) by ci+1 = Fci ◦ c

= c∗
(
ϕ
(
c∗i (ϕ

i>1)
))

by Definition 2.2

= (c∗ ◦ ϕ)
(

(c∗ ◦ ϕ)i(>X)
)

by induction hypothesis.

Therefore the equation (15) holds.

Step b. In order to show that
∧
i∈ω(c∗ ◦ ϕ)i(>X) is the ϕ-coinductive predicate in c,

we shall exhibit that the chain (14)—the final (c∗ ◦ ϕ)-sequence in PX—stabilizes after

ω steps. By (15), the claim (c∗ ◦ ϕ)
(∧

i∈ω(c∗ ◦ ϕ)i(>X)
)

=
∧
i∈ω(c∗ ◦ ϕ)i(>X) reduces

to

(c∗ ◦ ϕ)
(
c∗ω(ϕω>1)

)
= c∗ω(ϕω>1). (17)

Step c. Finally we shall prove (17):

c∗
(
ϕ(c∗ω(ϕω>1))

)
= c∗

(
(Fcω)∗(ϕ(ϕω>1))

)
by Definition 2.2

= c∗
(
(Fcω)∗(b∗(ϕω>1))

)
by Lemma 3.7

= (b ◦ Fcω ◦ c)∗(ϕω>1)

= c∗ω(ϕω>1).

(18)

For the last equality we used b ◦ Fcω ◦ c = cω, which is proved by showing that

b ◦ Fcω ◦ c is also a mediating map in (12). Indeed, for each i ≥ 1,

πi ◦ b ◦ Fcω ◦ c = Fπi−1 ◦ Fcω ◦ c see Figure 1

= Fci−1 ◦ c by (12)

= ci by the definition of ci.

This concludes the proof.

Example 3.10 (Rν). We shall continue Example 2.4 and derive from Theorem 3.9 the

behavioral bound result described in §1.1: the chain (2) stabilizes after ω steps, for each

α ∈ Rνu and each finitely branching Kripke model c.

Indeed, the latter is the same thing as a coalgebra X
c→ FfbKX, where FfbK = P(AP)×
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Pω( ). Compared to FK in Example 2.4 the powerset functor is restricted from P to Pω;

this makes FfbK a finitary functor. Still the same definition of ϕα defines a predicate

lifting of FfbK. Theorem 3.9.2 can then be applied to the fibration
Pred
↓

Sets
(easily seen to

be well-founded, Example 7.1), the finitary functor FfbK and the predicate lifting ϕα for

each α. It is not hard to see that the function [α]c : PX → PX in §1.1 coincides with

c∗ ◦ ϕα : PredX → PredX (note that PredX ∼= 2X ∼= PX); thus the chain (2) coincides

with (14) that stabilizes after ω steps by Theorem 3.9.

Remark 3.11. The ω-bound of the length of the chain (14) is sharp.

A (counter)example is given in the setting of Example 3.10, by the predicate lifting ϕ♦u

and the coalgebra (i.e. Kripke structure) c2 below. There bi,i has no successors. Indeed,

while Jνϕ♦uKc2 is {ai | i ∈ ω}, its i-th approximant ((c2)∗i ◦ ϕi♦u)(>X) in (14) contains

bi,0 too.

c2 a0

b0,0 a1

b1,0

b1,1

a2

b2,0

b2,1

b2,2

.

.

.

Remark 3.12. It is notable that Theorem 3.9 imposes no size restrictions on ϕ : P→ P.

Being a predicate lifting is enough. To find an example such that ϕ is not finitary is

future work. Our main theorem would not become trivial even if it turns out that ϕ is

always finitary.

Final F -sequences are commonly used for the construction of a final F -coalgebra. It is

not always the case, however, that the limit Fω1 is itself the carrier of a final coalgebra

(even for finitary F ; see (Worrell, 2005, §5)). One obtains a final coalgebra either by: 1)

quotienting Fω1 by the behavioral equivalence (see e.g. (Pattinson, 2003)); or 2) contin-

uing the final sequence till ω+ω steps. The latter construction is worked out in (Worrell,

2005) (in Sets) and in (Adámek, 2003) in LFP C with additional assumptions). Its

relevance to the current work is yet to be investigated.

We emphasize that a final ϕ-sequence “stabilizes” in ω steps relatively to the underlying

final F -sequence. In fact we can also show that the final ϕ-sequence absolutely stabilizes

in ω+ω steps for some LFP C including Sets; a proof can be done by observing that the

final ϕ-sequence stabilizes as soon as the final F -sequence stabilizes, once we are beyond

ω steps.

To show directly the stabilization of the final ϕ-sequence in ω+ω steps, one may want

to prove that P is strongly LFP as in (Adámek, 2003) and that ϕ is finitary. Neither of

these seems easy.

Coalgebra morphisms are compatible with coinductive predicates. This fact, like Propo-

sition 2.5, is potentially useful in establishing coinductive predicates.
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Proposition 3.13. Let f : X → Y be a coalgebra morphism from X
c→ FX to Y

d→ FY .

In the setting of Lemma 3.7 and Theorem 3.9:

1 If Q ∈ PY is a ϕ-invariant in d, so is f∗Q ∈ PX in c.

2 We have JνϕKc = f∗
(
JνϕKd

)
.

Proof. For the item 1:

f∗Q ≤ f∗d∗(ϕQ) Q is an invariant

= c∗(Ff)∗(ϕQ) f is a homomorphism

= (c∗ ◦ ϕ)(f∗Q) by Definition 2.2.

For the item 2, the coalgebras give rise to mediating arrows X
cω→ Fω1 and Y

dω→ Fω1,

respectively, as in (12). It is easy to see that cω = dω ◦ f (using the universality of the

limit Fω1); using (13) the claim follows.

Remark 3.14. The current paper focuses on finitely presentable objects, finitary func-

tors, etc.—i.e. the ω-presentable setting (see (Adámek and Rosický, 1994, §1.B)). This

is for the simplicity of presentation: the results, as usual (as e.g. in (Klin, 2007)), can

be easily generalized to the λ-presentable setting for an arbitrary regular cardinal λ. In

such an extended setting we obtain a behavioral λ-bound.

4. A Fibration of Invariants

We organize the above observations in a more abstract fibered setting. The technical

results are mostly standard; see e.g. (Hermida, 1993; Hermida and Jacobs, 1998) and (Ja-

cobs, 2012, Chap.6).

We write Coalg(F ) for the category of F -coalgebras.

Proposition 4.1. Let ϕ be a predicate lifting of F along
P
↓p
C . Then the fibration

P
↓p
C is

lifted to a fibration
Coalg(ϕ)
↓p

Coalg(F )
, with two forgetful functors forming a map of fibrations

from the latter to the former.

Proof. It is easy to check each fiber Coalg(ϕ)
X

c→FX is a poset. Let (X
c→ FX)

f→
(Y

d→ FY ) be an arrow in Coalg(F ), and P
s→ ϕP be above Y

d→ FY . A Cartesian

lifting of f is obtained as in the following diagram.

P ϕf∗P
ϕf(P )

// ϕP

f∗P

t

OO

f(P )

// P

s

OO

C FX
Ff

// FY

X

c

OO

f
// Y

d

OO
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Here we used the universality of the Cartesian lifting ϕf(P ) (see Definition 2.2).

The two forgetful functors constitute a map of fibrations: the commutativity (5) is

obvious, and Cartesian liftings in
Coalg(ϕ)
↓p

Coalg(F )
(which we constructed above) are based on

the Cartesian liftings in
P
↓p
C .

The next observation explains the current section’s title.

Proposition 4.2. Let
Coalg(ϕ)
↓p

Coalg(F )
be the lifted fibration in Proposition 4.1. For each coal-

gebra X
c→ FX, the fiber over c coincides with the poset of ϕ-invariants in c. That

is:

Coalg(ϕ)
X

c→FX
++

∼= // Coalg(c∗ ◦ ϕ)
ttPX

.

Proof. Given a ϕ-coalgebra P
s→ ϕP above X

c→ FX, we use the universality of the

Cartesian lifting of c to obtain a (c∗ ◦ ϕ)-coalgebra as in the following diagram.

c∗(ϕP )
c(ϕP )

// ϕP

P

s

::OO

Conversely, given a (c∗ ◦ ϕ)-coalgebra Q
t→ c∗(ϕQ), we obtain a ϕ-coalgebra above

X
c→ FX as the following composite.

c∗(ϕQ)
c(ϕQ)

// ϕQ

Q

t
OO

Then it is straightforward to see that the mappings are monotone and inverse to each

other. The mappings commute with the forgetful functors since they do not change the

carriers.

Therefore Theorem 3.9.1 and Proposition 3.13.2 state the fibration
Coalg(ϕ)
↓p

Coalg(F )
has fiber-

wise final objects. (At least part of) this statement itself is shown quite easily using

the Knaster-Tarski theorem (each fiber is a complete lattice). Our contribution is their

concrete construction as ωop-limits (Theorem 3.9.2).

The following lemma is essentially a special case of Lemma 3.6, but see also (Jacobs,

1999, Proposition 9.2.1 and Exercise 9.2.4).

Lemma 4.3. Let
P
↓p
C be a fibration; and assume that C has a final object. Then

P
↓p
C has

a fiberwise final object if and only if P has a final object that is above the final object of

C.
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By applying the lemma to
Coalg(ϕ)
↓p

Coalg(F )
, we obtain a basic relationship between coinductive

predicates and final coalgebras.

Corollary 4.4. Let ϕ be a predicate lifting of F along
P
↓p
C ; and assume that a final

F -coalgebra exists. The following are equivalent.

1 The coinductive predicate JνϕKc exists for each coalgebra c : X → FX. Moreover they

are preserved by reindexing (along coalgebra morphisms).

2 There exists a final ϕ-coalgebra that is above the final F -coalgebra.

As noted in Remark 3.12, however, our concrete construction of coinductive predicates

does not rely on a final F -coalgebra.

5. Inductive predicates over coinductive datatypes

The central topic of the current paper is coinductive predicates over coinductive datatypes,

the latter identified as coalgebras in the base category C of a fibration
P
↓p
C . Some vari-

ations are possible, namely: inductive/coinductive predicates over inductive/coinductive

datatypes. For example, (Hermida and Jacobs, 1998) focus on: inductive predicates over

inductive datatypes (the latter identified as algebras); and coinductive predicates over

coinductive datatypes (as we have done in the previous sections).

It turns out that, among these four variations, inductive predicates over coinductive

datatypes allow a straightforward adaptation of our current categorical framework by tak-

ing the fiberwise opposite
P(op)

↓p(op)
C

of the fibration
P
↓p
C we are interested in. We present these

results in the current section. The study of the other two variations—inductive predicates

over inductive datatypes, and coinductive predicates over inductive datatypes—is left as

future work. In fact we have preliminary observations that under certain assumptions

these two variations coincide. Their details will be presented in another venue.

The following is the definition of an inductive predicate (on a coinductive datatype).

It is not hard to see that the definition generalizes e.g. the semantics of the µ operator

of the modal µ-calculus in a Kripke model. Later in Lemma 5.4 we will identify it as a

coinductive predicate in the fiberwise opposite.

Definition 5.1 (Inductive predicate). Let ϕ be a predicate lifting along a fibration
P
↓p
C ; and X

c→ FX be a coalgebra in C. The ϕ-inductive predicate in c is the initial (c∗◦ϕ)-

algebra (if it exists). We denote its carrier by JµϕKc. Hence, it is the smallest predicate

P ∈ PX such that P ≥ c∗(ϕP ) in PX .

In what follows we utilize the notion of fiberwise opposite
P(op)

↓p(op)
C

of a fibration
P
↓p
C

((Bénabou, 1975); see also (Jacobs, 1999, Definition 1.10.11)). Intuitively, the fiberwise

opposite p(op) is obtained by opposing the order in each fiber PX but leaving the base

category C, as well as the reindexing structure, as in the original fibration p. The precise
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definition is best stated via indexed categories and the Grothendieck construction. It is

left to the appendix (Lemma C.13).

Some remarks are in order. Firstly, the total category P(op) of the fiberwise opposite
P(op)

↓p(op)
C

is in general different from the opposite category Pop (in the usual sense) of P.

The same applies to the functor p(op), that is different from the opposite functor pop.

We emphasize that in the fiberwise opposite
P(op)

↓p(op)
C

, the base category C stays the same.

We also note that
P(op)

↓p(op)
C

is a fibration, unlike the opposite functor
Pop

↓pop
Cop of p that is

canonically an opfibration.

Notation 5.2. For distinction, we denote reindexing functors in fibrations
P
↓p
C and

P(op)

↓p(op)
C

by f∗ and f#, respectively. They are in fact the same monotone functions between fibers

as posets:

(P(op))Y
f#

// (P(op))X

(PY )op
(f∗)op

// (PX)op

for f : X → Y.

The following result, although straightforward, is essential for the subsequent technical

development.

Lemma 5.3. Let
P
↓p
C be a fibration and F be an endofunctor on C. For a predicate lifting

ϕ : P → P of F along p, there exists a canonical predicate lifting ϕ(op) : P(op) → P(op),

which we call the fiberwise opposite of ϕ, of F along the fibration
P(op)

↓p(op)
C

.

Proof. We give an explicit construction here, although the statement is almost trivial

when stated in terms of indexed categories.

On objects, we define ϕ(op)P = ϕP . For the action on arrows, we first note that an

arrow P → Q in P(op) above f : X → Y exists if and only if P ≤ f#Q in (P(op))X =

(PX)op. Exploiting this fact, ϕ(op)’s action on the arrow P → Q is defined to be the

unique arrow ϕ(op)P → ϕ(op)Q above Ff : FX → FY . The last (unique) arrow exists,

indeed: we have ϕ(op)P ≤ (Ff)#ϕ(op)Q in (P(op))FX by ϕP ≥ ϕf∗Q = (Ff)∗ϕQ in

PFX . Here the last equality is because ϕ is a predicate lifting.

Lemma 5.4. Let P be a predicate over X ∈ C.

1 The object P ∈ PX carries a (c∗ ◦ ϕ)-algebra if and only if P ∈ (PX)op = (P(op))X is

a ϕ(op)-invariant in c.

2 The ϕ-inductive predicate in c is the ϕ(op)-coinductive predicate in c. That is, JµϕKc =

Jν(ϕ(op))Kc as objects in PX .

Proof. The category of (c∗ ◦ ϕ)-algebras in PX is dually equivalent to the category of
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(c# ◦ ϕ(op))-coalgebras in (P(op))X , since the following diagram (in Posets) commutes.

(P(op))X
(ϕ(op))X

// (P(op))FX
c# // (P(op))X

(PX)op
ϕop

X // (PFX)op
(c∗)op

// (PX)op

Thanks to the previous characterization—inductive predicates in
P
↓p
C as coinductive ones

in
P(op)

↓p(op)
C

—we can apply all the results that we have obtained so far to inductive predicates.

Notice again that the base category C has remained the same. The characterization in

Lemma 5.4 can be seen as a generalization of the duality µu. ϕ(u) = ¬νu.¬ϕ(¬u) between

least and greatest fixed points in classical logics—the latter is a special case where fibers

are self-dual, i.e.
P
↓p
C
∼=

P(op)

↓p(op)
C

.

Via the last characterization, our main result (Theorem 3.9) can also be used to show

the stabilization of the ω-chain when calculating inductive predicates (see Corollary 5.8).

The inductive predicate on Fω1 is not a limit nor a colimit in P, but it is a limit in P(op)

(see Definition 5.7).

Definition 5.5 (Co-well-founded fibration). A co-well-founded fibration is a finitely

determined fibration that further satisfies:

4 If X ∈ F (hence FP), the fiber PX is such that: the category PX consists solely of FP

objects.

Since PX is cocomplete, this is equivalent to: there is no (ω-)chain P0 < P1 < · · · in

PX that is strictly ascending.

Lemma 5.6. For a finitely determined fibration
P
↓p
C , its fiberwise opposite

P(op)

↓p(op)
C

is also

finitely determined. Moreover, p(op) is well-founded if and only if the fibration p is co-

well-founded.

Proof. It is trivial that the fibration p(op) satisfies the condition 1 (of Definition 3.2)

if and only if p satisfies it. For the condition 2, p(op) has fiberwise limits and colimits,

because p has fiberwise colimits and limits, respectively. The condition 3 for p(op) is

obviously equivalent to the one for p since reindexing functors κ∗I , κ
#
I are the same as

functions. By (P(op))X = (PX)op, p(op) satisfies the condition 4 if and only if p satisfies

4.

Definition 5.7. Let ⊥1 be the least element of the fiber P1 (hence the greatest in

(P(op))1). We denote by ϕω⊥1 ∈ PFω1 the limit of the following diagram in P(op). It is

easily seen to reside above the final F -sequence in C.

⊥1 ϕ⊥1
oo · · ·oo ϕi⊥1

oo · · ·oo in P(op)

Note here that ⊥1 is the final object in P(op), and the object ϕ⊥1 is the functor ϕ(op)

applied to ⊥1. Therefore the above diagram is the final ϕ(op)-sequence in P(op).
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Using Lemma 3.6, it is not hard to see that ϕω⊥1 =
∨
i∈ω π

∗
i (ϕi⊥1) in the fibration

P
↓p
C , where (πi : F

ω1→ F i1)i∈ω is the limiting cone for the final F -sequence in C.

The following is our main result adapted to inductive predicates. In particular it states

that an inductive predicate is computed as a supremum of an ω-chain.

Corollary 5.8. Let
P
↓p
C be a co-well-founded fibration; F : C → C be a finitary functor;

ϕ be a predicate lifting of F along p; and X
c→ FX be a coalgebra in C.

1 The ϕ-inductive predicate JµϕKc in c exists. It is obtained by the following reindexing

of ϕω⊥1, where cω is the mediating map in (12).

JµϕKc = c∗ω(ϕω⊥1)

2 Moreover, the predicate JµϕKc is the colimit of the following ω-chain in the fiber PX

⊥X ≤ (c∗ ◦ ϕ)(⊥X) ≤ (c∗ ◦ ϕ)2(⊥X) ≤ · · · ,

that stabilizes after ω steps. That is, JµϕKc =
∨
i∈ω(c∗ ◦ ϕ)i(⊥X).

Proof. By Lemma 5.4, Lemma 5.6, and Theorem 3.9.

Corollary 5.9. Let ϕ be a predicate lifting of F along
P
↓p
C ; and

(Coalg(ϕ(op)))(op)

↓p(op)
(op)

Coalg(F )
be the

fiberwise opposite of the lift of the fibration
P(op)

↓p(op)
C

(see Proposition 4.1 and Lemma 5.3).

For each coalgebra X
c→ FX, the following diagram commutes.((

Coalg(ϕ(op))
)(op)

)
X

c→FX
''

∼= // Alg(c∗ ◦ ϕ)

xx

((PX)op)op PX

Proof. Apply Proposition 4.2 for the predicate lifting ϕ(op) along
P(op)

↓p(op)
C

, we obtain

Coalg(ϕ(op))
X

c→FX
++

∼= // Coalg(c# ◦ ϕ(op))
ss

(P(op))X

,

whose opposite categories are the ones in the diagram we want to prove.

Coalgebra morphisms are compatible with inductive predicates just as in Proposi-

tion 3.13. Therefore the inductive predicates JµϕKc form a fiberwise initial object ⊥ =

JµϕK of the fibration p(op)
(op)

.

6. Examples at Large

Here are several results that ensure a fibration to be finitely determined or well-founded,

and hence enable us to apply Theorem 3.9. Some of them are well-known; others—
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especially those which relate fibrations and locally (finitely) presentable categories, in-

cluding Lemma 6.3 and Lemma 6.7—seem to be new.

The following results provide sufficient conditions for a fibration to be finitely deter-

mined (Definition 3.2). Recall that a full subcategory F of P is said to be dense if each

object P ∈ P is a colimit of the canonical diagram F/P π→ F ↪→ P.

Lemma 6.1. Let
P
↓p
C be a fibration with fiberwise limits and colimits and coproducts∐

between fibers. Assume further that C is LFP with a set FC of FP objects (as in

Definition 3.1). If the total category P has a dense subcategory FP such that every R ∈ FP
is above FC (i.e. pR ∈ FC), then p is finitely determined.

Proof. The only nontrivial part is the ⇐ direction of Cond. 3. For that it suffices to

show that arbitrary P ∈ P is a colimit of the diagram (κ∗IP )I∈I. Here I and κI are as in

Cond. 3.

By Lemma C.11 the colimit ColimI∈I κ
∗
IP is described as

∨
I∈I
∐
κI
κ∗IP using a sup∨

in PX , since (XI
κI→ X)I∈I is colimiting. We have

∐
κI
κ∗IP ≤ P as a counit of an

adjunction; therefore ColimI∈I κ
∗
IP ≤ P .

Thus it suffices to show that P ≤ ColimI∈I κ
∗
IP in PX . Let (PJ)J∈J be a diagram in P

such that PJ ∈ FP and there is a colimiting cocone (PJ
gJ→ P )J∈J. Such a diagram exists

since FP is dense.

By the assumption, for each J the object PJ ∈ FP lies above an object in FC. Therefore

the arrow pgJ : pPJ → pP = X is an object of FC/X; since I = FC/X, we can choose

IJ ∈ I such that κIJ = pgJ . Now an arrow PJ
gJ→ P in P induces

PJ ≤ (pgJ)∗P = κ∗IJP (19)

by the universality of Cartesian arrows. We proceed as follows.

P = Colim
J∈J

PJ
(∗)
=
∨
J∈J

∐
pgJ

PJ
(†)
≤
∨
J∈J

∐
κIJ

κ∗IJP ≤
∨
I∈I

∐
κI
κ∗IP

(∗)
= Colim

I∈I
κ∗IP .

For (∗) we used Lemma C.11; (†) holds since IJ is chosen so that κIJ = pgJ and (19)

hold. This concludes the proof.

Corollary 6.2. Let
P
↓p
C be a fibration with fiberwise limits and colimits and coproducts∐

between fibers, where C is LFP with a set FC of FP objects (in Definition 3.1). If the

total category P is also LFP, with a set FP of FP objects (as in Definition 3.1) chosen so

that every R ∈ FP is above FC, then p is finitely determined.

6.1. Subobject Fibrations

The following is one of the results that are nontrivial.

Lemma 6.3. Let C be an LFP category with F being a set of FP objects (as in Defini-

tion 3.1). Then the total category Sub(C) of the subobject fibration is LFP: the set

FSub(C) := {(P � X) | X ∈ F, and there exists a strong epi Z � P such that Z ∈ F}
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consists of FP objects in Sub(C); and every object (Q� Y ) ∈ Sub(C) is a colimit of a

filtered diagram in FSub(C).

Proof. The proof is by steps.

Step a. First we show that Sub(C) is complete and cocomplete. We rely on Lemma C.11.

We start with fiberwise limits in
Sub(C)
↓
C

; the proof is like in (Jacobs, 1999, Exam-

ple 1.8.3(iii)). By Lemma B.6 an LFP category C is complete. This equips each fiber

Sub(X) with arbitrary inf’s
∧

computed as wide pullbacks. A reindexing functor (by

pullbacks) preserves these inf’s since limits commute. Therefore by Lemma C.11 the

total category Sub(C) is complete.

Each fiber (which is a poset) has arbitrary inf’s; hence it is a complete lattice and

arbitrary sup’s also exist.

Next we show that
Sub(C)
↓
C

is a bifibration (Definition C.3). An abstract proof can be

given by Freyd’s adjoint functor theorem (note that each fiber Sub(X) is a complete lat-

tice, and that reindexing f∗ preserves inf’s). Instead we explicitly introduce
∐

exploiting

a factorization structure of LFP C (Lemma B.6.2). Namely, given (P
m
� X) ∈ Sub(X)

and f : X → Y , the opreindexing
∐
f P is defined by the (StrongEpi,Mono)-factorization

of f ◦ m, as below.‡

P // //

��
m
��

∐
f P
��

��

X
f
// Y

(20)

The fact that
∐
f P ≤ Q if and only if P ≤ f∗Q is easily proved using the diagonalization

property of the factorization structure. This establishes
∐
f as a left adjoint to reindexing

f∗. Using Lemma C.11 we conclude that Sub(C) is cocomplete.

Step b. Let Im: C/Y → Sub(Y ) be the image functor defined by the (StrongEpi,Mono)-

factorization (i.e. Im f =
∐
f X for f : X → Y ). In the notation in Lemma B.11.2, we

have

FSub(C) = {Im f | X ∈ F, f ∈ F/X}
= {(P � X) ∈ Sub(C) | X ∈ F, P ∈ FSub(X)}.

The set FSub(C) is small, since F is small and FSub(X) is small for each X ∈ F.

Step c. First we prove that (P
m
� X) ∈ FSub(C) is FP in Sub(C).

Sublemma 6.4. Let (QI
nI

� YI)I∈I be a filtered diagram in Sub(C). Then pointwise

colimits ColimI∈I YI and ColimI∈IQI in C form a colimit of the diagram in Sub(C):

Colim
I∈I

(QI
nI

� YI) =
(

Colim
I∈I

QI → Colim
I∈I

YI

)
.

Proof. (Of the sublemma) On the one hand, by Lemma C.11 the colimit (Q
n
� Y ) =

‡ Opreindexings
∐
f a f∗ do not have to satisfy the Beck-Chevalley condition.
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ColimI∈I(QI � YI) can be explicitly described as

Y = Colim
I∈I

YI , Q =
∨
I∈I

∐
κI
QI , (21)

where (YI
κI→ Y )I∈I is a colimiting cocone. On the other hand, both (QI)I∈I and (YI)I∈I

are I-shaped diagrams in C with a monotransformation (QI
nI

� YI)I . Therefore by (Adámek

and Rosický, 1994, Corollary 1.60), the induced arrow n′ : ColimI QI → ColimI YI is

monic. In Sub(Y ) we have

Q =
∨
I∈I

Im
(
QI

nI→ YI
κI→ Y

)
= Im

((
Colim
I∈I

QI
) n′→ Y

)
by Lemma B.7

= Colim
I∈I

QI the arrow n′ is already monic.

As we have Y = ColimI YI in C, this concludes the proof of the sublemma.

Let (QI
nI

� YI)I∈I be a filtered diagram in Sub(C); (Q
n
� Y ) be its colimit; and

g : (P
m
� X)→ (Q

n
� Y ) be an arrow in Sub(C).

There exists an FP object Z ∈ F and a strong epimorphism p : Z � P by the definition

of FSub(C) and FSub(X). The preservation of filtered colimits is shown as follows.

Colim
I∈I

(
Sub(C)

(
(P

m
� X), (QI

nI

� YI)
))

(∗)∼= Colim
I∈I
{(fI : X → YI , gI : Z → QI) | fI ◦m ◦ p = n ◦ gI}

= Colim
I∈I

(
C(X,YI)×C(Z,YI) C(Z,QI)

)
where C(X,YI)×C(Z,YI) C(Z,QI) is a suitable pullback

∼=
(

Colim
I∈I

C(X,YI)
)
×ColimI∈I C(Z,YI)

(
Colim
I∈I

C(Z,QI)
)

Sets is LFP and hence filtered colimits and finite limits commute

∼= C(X,Colim
I∈I

YI)×C(Z,ColimI∈I YI) C(Z,Colim
I∈I

QI) X,Z are FP in C

= C(X,Y )×C(Z,Y ) C(Z,Q) by Sublemma 6.4

= {(f : X → Y, g : Z → Q) | f ◦m ◦ p = n ◦ g}
(†)∼= Sub(C)

(
(P

m
� X), (Q

n
� Y )

)
where the bijection (∗) is by the diagonal fill-in

Z
p
// // P
��

m
��

// QI
��
nI
��

��

gI

X
fI

// YI
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and (†) follows similarly.

Step d. The following observation on canonical diagrams with respect to F ⊆ C and

FSub(C) ⊆ Sub(C) is useful.

Sublemma 6.5. The forgetful functor

FSub(C)/n
↓

F/Y
is an opfibration.

Proof. Recall that
Sub(C)
↓
C

is a bifibration. Then
FSub(C)
↓
F

is an opfibration, because the full

subcategory FSub(C) ⊆ Sub(C) is closed under opreindexing as depicted in the diagram

Z // // P
��

��

// //
∐
f P
��

��

X
f
// X ′ .

By the diagonal fill-in

P
��

��

// //
∐
f P
��

��

// Q
��
n
��

��

X
f
// X ′ // Y ,

OO

the opreindexing in
FSub(C)
↓
F

lifts to an opreindexing in

FSub(C)/n
↓

F/Y
.

Step e. In the remainder of the proof we show that every object (Q
n
� Y ) ∈ Sub(C)

is a colimit of a filtered diagram in FSub(C). Let us take a filtered diagram (YI)I∈I such

that Y = ColimI∈I YI in C and YI ∈ F (for each I ∈ I).
We shall define a diagram (QJ

nJ

� YqJ)J∈J in FSub(C) and a functor q : J → I. The

(colimiting) cocone (YI
κI→ Y ) induces a functor I→ F/Y , and we obtain an opfibration

J
↓q
I

by change-of-base (Jacobs, 1999, Lemma 1.5.1):

J
q

��

// FSub(C)/n

��

π // FSub(C)

��

I // F/Y π // F ,

in particular, JI ∼= (FSub(C)/n)κI
∼= FSub(YI)/κ

∗
IQ:

J_

q

��

QJ
��

nJ

��

// Q
��

n

��

QJoo

//

��

�� $$
κ∗IQ
��

��

// Q
��
n
��

I , YI κI

// Y , YI κI

// Y .
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Therefore by Lemma B.11.2, we have a filtered colimit∨
J∈JI

QJ = κ∗IQ in Sub(YI). (22)

Moreover, the filtered colimit (22) in Sub(X) forms a filtered colimit

Colim
J∈JI

(QJ � YI) = (κ∗IQ� YI) in Sub(C) (23)

because Sub(YI) ⊆ Sub(C) is closed under filtered colimits. Consequently,

Colim
J∈J

(QJ
nJ

� YqJ) ∼= Colim
I∈I

Colim
J∈JI

(QJ � YI) by Lemma C.12

= Colim
I∈I

(κ∗IQ� YI) by (23)

=

((
Colim
I∈I

κ∗IQ
)
�
(

Colim
I∈I

YI

))
by Sublemma 6.4

∼= (Q
n
� Y ) by Lemma B.8

Step f. Recall that
J
↓q
I

is an opfibration such that the base category I and each fiber

JI are filtered. It is straightforward to show the total category J is also filtered.

It follows from Lemma 6.3 and Corollary 6.2 that the internal logic of a topos that

is LFP is finitely determined. Note that an (elementary) topos is necessarily a locally

Cartesian closed category (LCCC) (see e.g. (Jacobs, 1999, Proposition 5.4.7)).

Corollary 6.6. Let C be LFP and at the same time a topos (or more generally an

LCCC). Then the subobject fibration
Sub(C)
↓
C

is finitely determined.

Proof. By the assumption that C is an LCCC,
Sub(C)
↓
C

has products
∏
f ` f∗ between

fibers (Jacobs, 1999, Corollary 1.9.9). We already proved that each fiber is a complete

lattice. These sup’s (i.e. colimits in a fiber) are preserved by reindexing f∗ since the

latter is a left adjoint f∗ a
∏
f . Namely, the fibration

Sub(C)
↓
C

has fiberwise colimits.

Opreindexings
∐

satisfy the Beck-Chevalley condition since the products
∏

do (Jacobs,

1999, Lemma 1.9.7). Namely, the fibration
Sub(C)
↓
C

has coproducts.

6.2. Family Fibrations

We turn to the family fibration
Fam(Ω)
↓

Sets
over a poset Ω (see Appendix C).

Lemma 6.7. Let Ω be an algebraic lattice, i.e. a complete lattice in which each element

is a join of compact elements. (Equivalently, Ω is LFP when thought of as a category.)

Then the total category Fam(Ω) is LFP: the set

FFam(Ω) :=
{
f : X → Ω | X is finite, and for each x ∈ X, f(x) is compact in Ω

}
(24)
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consists of FP objects in Fam(Ω); and every object (Y, g) ∈ Fam(Ω) is a colimit of

a filtered diagram in FFam(Ω). Noting that f ∈ FFam(Ω) is above a finite set X, by

Lemma 6.1,
Fam(Ω)
↓

Sets
is finitely determined.

Proof. Step a. Let us first see that the fibration
Fam(Ω)
↓

Sets
has fiberwise limits and

colimits and coproducts
∐

between fibers. The former follows from Ω being a complete

lattice; the latter is shown from (Jacobs, 1999, Lemma 1.9.5). In view of Lemma C.11,

it follows that the total category Fam(Ω) is cocomplete.

Step b. Before going on we prove the following.

Sublemma 6.8. Let (YI)I∈I be a filtered diagram in Sets, and J =
∫
Y( ) be its category

of elements, i.e. J has objects {(I, y′) | I ∈ I, y′ ∈ YI} and arrows J
(
(I1, y

′
1), (I2, y

′
2)
)

=

{i ∈ I(I1, I2) | Yi(y′1) = y′2}. Let (YI
κI→ Y )I be a colimiting cocone. For each y ∈ Y , the

following full subcategory of J is filtered:

Jy = {(I, y′) | I ∈ I, y′ ∈ YI , κI(y′) = y}.

Moreover, the category J is a disjoint sum of the full subcategories:

J =
∐

y∈ColimI∈I YI

Jy . (25)

Proof. By Y = {(I, y′) | I ∈ I, y′ ∈ YI}/∼ where (I1, y
′
1) ∼ (I2, y

′
2) if and only if there

exist I ∈ I, i1 : I1 → I, and i2 : I2 → I such that Yi1(y′1) = Yi2(y′2) (in YI).

Step c. We prove that each (X
f→ Ω) ∈ FFam(Ω) is FP in Fam(Ω). Let

(
(YI

gI→ Ω)
κI→

(Y
g→ Ω)

)
I∈I be a colimiting cocone in Fam(Ω) over a filtered diagram I.

By Lemma C.11 we obtain that Y = ColimI∈I YI ; and that

g(y) =
(∨
I∈I

∐
κI
gI

)
(y) =

∨
I∈I

(
(
∐
κI
gI)(y)

)
=
∨
I∈I

( ∨
y′∈κ−1

I ({y})

gI(y
′)
)

=
∨

(I,y′)∈Jy

gI(y
′) for each y ∈ Y .

(26)

The first equality is by Lemma C.11; the second is because the order in the fiber

Fam(Ω)Y = ΩY is pointwise; and the third is by the concrete description (Jacobs, 1999,

Lemma 1.9.5) of
∐

in
Fam(Ω)
↓

Sets
.

Let J and Jy be categories as in Sublemma 6.8. Note that
J
↓
I

is an opfibration with

fibers JI = YI that are discrete.

Colim
I∈I

Fam(Ω)
(
(X

f→ Ω), (YI
gI→ Ω)

)
∼= Colim

I∈I

∏
x∈X

∐
y′∈YI

(
f(x) ≤Ω gI(y

′)
)

by the definition of arrows in Fam(Ω)

∼=
∏
x∈X

Colim
I∈I

∐
y′∈YI

(
f(x) ≤Ω gI(y

′)
)

I is filtered and X is finite
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∼=
∏
x∈X

Colim
(I,y′)∈J

(
f(x) ≤Ω gI(y

′)
)

by Lemma C.12

∼=
∏
x∈X

∐
y∈ColimI∈I YI

Colim
(I,y′)∈Jy

(
f(x) ≤Ω gI(y

′)
)

by (25)

∼=
∏
x∈X

∐
y∈ColimI∈I YI

(
f(x) ≤Ω

∨
(I,y′)∈Jy

gI(y
′)
)

Jy is filtered and f(x) ∈ Ω is compact

∼= Fam(Ω)
(
(X

f→ Ω), (Y
g→ Ω)

)
by (26)

where ( ≤Ω ) denotes the homset Ω( , ), which has at most one element, in the

lattice Ω thought of as a category.

Step d. The collection FFam(Ω) is obviously small.

Step e. We are done if we prove that every object P ∈ Fam(Ω) is a filtered colimit

of its subobjects from FFam(Ω). This easily follows from the fact that the same is true in

Sets (obvious) and in Ω (being an algebraic lattice).

Remark 6.9. It is worth mentioning that the fibrations
Sub(C)
↓
C

(in Lemma 6.3) and

Fam(Ω)
↓

Sets
(in Lemma 6.7) are fiberwise algebraic lattices, in the following sense: each fiber

is an algebraic lattice; and each reindexing f∗ between fibers is a “homomorphism” of

algebraic lattices, which we define to be a monotone map that preserves arbitrary meets

and directed joins. In other words, each reindexing f∗ is a finitary right adjoint func-

tor. We have essentially shown this fact in the proofs for these examples (Lemmas 6.3

and 6.7). Indeed, through the Gabriel-Ulmer duality (Gabriel and Ulmer, 1971), a fini-

tary right adjoint functor f∗ : PY → PX between LFP categories corresponds to a functor∐
f : (PX)FP → (PY )FP that preserves finite colimits, where ( )FP denotes the full sub-

category consisting of all the FP objects. All this indicates that the preservation of

compact elements under the coproduct
∐

is crucial in our developments.

We shall, however, assume Cond. 2, the stronger condition that reindexing arrows

f∗ preserve arbitrary joins, too. This simplifies definitions and emphasizes duality as in

Lemma 5.6.

6.3. Presheaf Categories

Presheaf categories are well-known examples of LFP categories. See (Adámek and Rosický,

1994).

Example 6.10 (Presheaf categories). Let A be small. The presheaf category SetsA

is LFP: the set F of finite colimits of representable presheaves yA, where yA = A(A, ),

satisfies the conditions of Definition 3.1. Indeed, any presheaf X is a filtered colimit

of objects in F since X is a colimit (that is not necessarily filtered) of representable

presheaves (Lemma 6.14).

For the subobject fibration of a presheaf category SetsA, Cond. 4 and 4 in Definition 3.3

(for X ∈ F) reduce to the representable case X = yA.
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Lemma 6.11. The subobject fibration
Sub(SetsA)

↓
SetsA

is well-founded if and only if for all

A ∈ A the poset Sub(yA) has no strictly descending chain. The subobject fibration is

co-well-founded if and only if for all A ∈ A the poset Sub(yA) has no strictly ascending

chain.

Sublemma 6.12. Let (XI)I be a finite diagram in SetsA. If for each I the poset Sub(XI)

has no strictly descending chain, then so does Sub(ColimI XI). If for each I the poset

Sub(XI) has no strictly ascending chain, then so does Sub(ColimI XI).

Proof. (Of Sublemma 6.12) We rely on a presentation of colimits by coproducts and

coequalizers. In a topos (hence a regular category) SetsA coproducts are disjoint (see

e.g. (Jacobs, 1999, Exercise 4.5.1)); thus we have an isomorphism of posets

Sub(X1 + · · ·+Xn) ∼= Sub(X1)× · · · × Sub(Xn).

Let X ⇒ Y
e
� Z be a coequalizer in SetsA. The correspondence e∗ : Sub(Z)→ Sub(Y )

is easily seen to be injective. Indeed, assume P 6∼= P ′ in Sub(Z); then PA 6∼= P ′A in Sets

for some A ∈ A, and since eA : Y A→ ZA is surjective, we have

(e∗P )A = e−1
A (PA) 6∼= e−1

A (P ′A) = (e∗P )A .

Therefore if Sub(Z) has a strictly descending or ascending chain, Sub(Y ) has a strictly

descending or ascending chain respectively. This concludes the proof of the sublemma.

Proof. (Of Lemma 6.11) By Example 6.10, Corollary 6.6, and Sublemma 6.12.

The previous lemma reduces the size problem of the fibration
Sub(SetsA)

↓
SetsA

to that of

Sub(yA). In calculating Sub(yA), we will be using the following well-known characteri-

zation of presheaves as colimits of representables.

Definition 6.13. Let A be a small category and P : A→ Sets be a functor. The category

of elements of P , which is denoted by
∫
P , consists of objects that are pairs

(
A ∈ A, p ∈

PA
)

and arrows (∫
P
) (

(A, p), (B, q)
)

= {f : A→ B | P (f)(p) = q} .

Lemma 6.14. Any presheaf P ∈ SetsA is canonically isomorphic to the colimit of

representable functors indexed by the category of elements: P ∼= Colim(A,p)∈
∫
P yA.

Proof. For each object (A, p) ∈
∫
P , an arrow yA → P is induced by (yA)B =

A(A,B) 3 g 7→ P (g)(p) ∈ PB. It is not difficult to see that these arrows yA → P are

natural in (A, p) ∈
∫
P and form a colimiting cocone. See e.g. (Adámek and Rosický,

1994, Proposition 1.45) for details.

Proposition 6.16 (presented later) will be our principal tool for calculating Sub(yA).

The proposition is inspired by the following cocompletion results (Lemma 6.15), which

will not be themselves used in our subsequent technical developments.

Lemma 6.15. Let A be a small category.
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1 The category SetsA of presheaves is a free cocompletion of the category Aop (with

the unit y : Aop → SetsA), that is, for a functor F : Aop → C to a cocomplete

category C there uniquely (up to natural isomorphisms) exists a cocontinuous functor

G : SetsA → C such that F ∼= G ◦ y.

2 Let P ∈ SetsA be a presheaf. There exists an equivalence of categories SetsA/P ∼=
Sets

∫
P . Hence, the slice category SetsA/P is a free cocompletion of the category

(
∫
P )op.

3 Let A ∈ A be an object. The category SetsA/(yA) is equivalent to the category

SetsA/A. Hence, the slice category SetsA/(yA) is a free cocompletion of the category

(A/A)op = Aop/A,

Proof. The item 1 is well-known: the functor G is given by GP = Colim(A,p)∈
∫
P FA. In

particular, when we take y : Aop → SetsA as F , we obtain G that is naturally isomorphic

to id : SetsA → SetsA. This generalizes Lemma 6.14.

The item 2—with a strong fibrational flavor, via the Grothendieck construction—is

found e.g. in (Mac Lane and Moerdijk, 1992, Exercise III.8.(a)). The equivalence is given

explicitly by

SetsA/P // Sets
∫
P Sets

∫
P // SetsA/P

(Q
α−→ P ) � //

[
(A, p) 7→ (αA)−1({p})

]
R � //

[
A 7→

∐
p∈PAR(A, p)

]
where, in the last entry, we only presented a presheaf in SetsA (an arrow to P is given

obviously by a projection).

The item 3 is obtained from the item 2 and the fact that
∫

(yA) = A/A (an easy

observation).

Proposition 6.16.

1 Let A be small. For any A ∈ A, the subset

{Im(yB
yf−→ yA) | B ∈ A, f : A→ B} ⊆ Sub(yA)

is dense as a full subcategory, that is, for any subpresheaf Q� yA there canonically

exists a family (fI : A → BI)I such that Q =
∨
I Im(yfI). Here Im(α) denotes the

image of an arrow α.

2 Furthermore, assume that every arrow f with domain A ∈ A factors as f = m ◦ e
with an epi e and a split mono m. Then (the image of) the canonical embedding

Quot(A) � Sub(yA) is dense. Here Quot(A) denotes the poset of quotient objects

of A.

Proof. A detailed proof is given in Appendix D.

Corollary 6.17. If the following condition 1 holds for each A ∈ A, then the fibration
Sub(SetsA)

↓
SetsA

is both well-founded and co-well-founded.

1 The subset {Im(yf) | B ∈ A, f : B → A} ⊆ Sub(yA) is finite.

Furthermore, for each A ∈ A, the following condition 2 implies the condition 1 above.
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2 Any arrow f with domain A factors as f = m ◦ e with an epi e and a split mono m,

and moreover, Quot(A) is a finite set.

Proof. By Lemma 6.11, it is enough to show that for each A ∈ A the poset Sub(yA)

is finite.

Assume that A ∈ A satisfies the condition 1: the subset {Im(yf) | B ∈ A, f : B →
A} ⊆ Sub(yA) is finite. By Proposition 6.16.1, we have Sub(yA) = {

∨
I Im(yfI) | (BI ∈

A, fI : B → A)I}, which is also finite.

That the condition 2 implies 1 follows from Proposition 6.16.2.

To determine whether Im(yf) = Im(yg) holds for arrows f and g with the same

domain, the following lemma is useful.

Lemma 6.18. The inclusion relation ≤ on {Im(yf) ∈ Sub(yA) | B ∈ A, f : A→ B} is

the partial order induced by the preorder . on {f | B ∈ A, f : A → B}. The latter is

defined by:

(f : A→ B) . (g : A→ C) if and only if f = h ◦ g for some h : C → B.

Proof. Let f : A→ B, g : A→ C be arrows in A. We first observe that(
Im(yf)

)
D = Im

(
(yB)D

(yf)D−→ (yA)D
)

= {(yf)D(k) | k ∈ (yB)D}
= {k ◦ f : A→ D | k : B → D}

(27)

for D ∈ A.

Assume that Im(yf) ≤ Im(yg) in Sub(yA). In particular, it holds
(
Im(yf)

)
B ⊆(

Im(yg)
)
B as subsets of (yA)B = A(A,B). We have f = idB ◦ f ∈

(
Im(yf)

)
B by (27),

hence f ∈
(
Im(yg)

)
B. Thus, there exists h : C → B such that f = h ◦ g, which is the

definition of f . g.

Conversely, assume that f = h ◦ g for some h : C → B. For any D ∈ A, we have(
Im(yf)

)
D = {k ◦ h ◦ g : A→ D | k : B → D} by (27)

⊆ {k′ ◦ g : A→ D | k′ : C → D}
=
(
Im(yg)

)
D by (27)

as subsets of (yA)D. Therefore Im(yf) ≤ Im(yg).

7. Concrete Examples

Example 7.1 (Pred). The fibration
Pred
↓

Sets
for the conventional setting of classical logic

is easily seen to be well-founded and co-well-founded. In particular, PredX ∼= PX is

finite if X is FP (i.e. finite). Therefore to any finitary F and any predicate lifting ϕ, the

results in §3 apply.

The (interpretations of the) formulas in Rν (see Example 3.10) are examples of coinduc-

tive predicates in
Pred
↓

Sets
. Besides them, the study of coalgebraic modal logic has identified
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many predicate liftings for many functors F (probabilistic systems, neighborhood frames,

strategy frames, weighted systems, etc.; see e.g. (Ĉırstea et al., 2011) and the references

therein). These “modalities” all define coinductive predicates, to which the results in §3
may apply.

Example 7.2 (Rel). The fibration
Rel
↓

Sets
can be introduced from

Pred
↓

Sets
via change-of-

base; concretely, an object of Rel is a pair (X,R) of a set X and a relation R ⊆ X ×X;

an arrow f : (X,R)→ (Y, S) is a function f : X → Y such that xRx′ implies f(x)Sf(x′).

See (Jacobs, 1999, p. 14).

This fibration, similarly to
Pred
↓

Sets
, is easily seen to be well-founded and co-well-founded;

therefore to any finitary F the results in §3 apply. A predicate lifting ϕ along
Rel
↓

Sets
is more

commonly called a relation lifting (Hermida and Jacobs, 1998); by choosing suitable ϕ

for given F (a “sufficiently comprehensive” one) like in (Hermida and Jacobs, 1998), a

ϕ-invariant is precisely an F -bisimulation relation (in the coalgebraic sense), and the

ϕ-coinductive predicate is F -bisimilarity. We expect that the ω-behavioral bound in

Theorem 3.9 can be used to bound execution of bisimilarity checking algorithms by

partition refinement (for many different functors F ).

In the following example, one can think of Ω as a Heyting algebra, and then the

underlying logic becomes constructive.

Example 7.3 (Fam(Ω)). Let Ω be an algebraic lattice that has no strictly descending

(ωop-)chains. Then the family fibration
Fam(Ω)
↓

Sets
is well-founded (see Lemma 6.7). Therefore

to any finitary F the results in §3 apply. It is not hard to interpret the language Rν in this

setting, by defining predicate liftings similar to (7). This gives examples of coinductive

predicates in
Fam(Ω)
↓

Sets
.

Similarly, fibrations
Fam(Ωop)
↓

Sets
are co-well-founded for algebraic lattices Ω by Lemma 5.6,

because the fibrations are fiberwise opposite of well-founded fibrations
Fam(Ω)
↓

Sets
.

7.1. Presheaf Examples

Let F be the category of natural numbers as finite sets (i.e. n = {0, 1, . . . , n − 1}) and

all functions between them; F+ be its full subcategory of nonzero natural numbers;

and I be the category of natural numbers and injective functions. Coalgebras in the

presheaf categories SetsF, SetsF+ and SetsI are commonly used for modeling processes

in various name-passing calculi. For the π-calculus SetsI has been found appropriate (see

e.g. (Stark, 1996; Fiore and Turi, 2001; Fiore and Staton, 2006)); while for the fusion

calculus we do need non-injective functions in F or F+ (see (Miculan, 2008; Staton,

2011)).

Inspired by (Klin, 2007), we are interested in coinductive predicates for such processes.

They are naturally modeled in the subobject fibration of a presheaf category. Here we
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find a distinction: the subobject fibrations of both SetsF and SetsF+ are well-founded

and co-well-founded; but that of SetsI is not well-founded (it is co-well-founded). In view

of Lemma 6.11, the only condition to check is Cond. 4 or 4 for X = yA.

Example 7.4 (Sub(SetsF), Sub(SetsF+)). The subobject fibration
Sub(SetsF+ )

↓
SetsF+

is well-

founded and co-well-founded: this is shown by that the second condition of Corollary 6.17

holds for any A ∈ F+. An important fact here is that in F (or in Sets) a mono with a

nonempty domain splits, and thus every mono in F+ is a split mono.

The subobject fibration
Sub(SetsF)

↓
SetsF

is well-founded and co-well-founded, too. To show

that Sub(y0) is finite, we appeal directly to the first condition of Corollary 6.17: we

observe by Lemma 6.18 that the set {Im(yf) | n ∈ F, f : 0 → n} is equal to the two-

element set
{

Im(y(0
id0→ 0)), Im(y(0

!→ 1))
}

since 0
!→ n and 0

!→ m factor through each

other, for each n,m ≥ 1.

We turn to functors F and ϕ. In modeling processes of name-passing calculi as coal-

gebras in these categories, one typically uses endofunctors F that are constructed from

the following building blocks. Let N ∈ {F,F+, I}.
— Constant functors, binary sum +, binary product ×, and exponentials ( )X . These

are much like for polynomial functors on Sets. An important example of the first is

the name presheaf N = Hom(1, ) ∈ SetsN.

— The abstraction functor δ : SetsN → SetsN given by δX = X( + 1).

— The free semilattice functor Pf for finite branching. This captures Kuratowski finite-

ness and suitable in SetsI. See e.g. (Fiore and Turi, 2001; Staton, 2011).

— In SetsF and SetsF+ , another choice of a “finite powerset functor” K̃ is more appro-

priate. See (Miculan, 2008); also (Staton, 2011, p. 4).

All such functors are known to be finitary (see e.g. (Miculan, 2008)).

Coinductive predicates in this setting can be introduced much like Rν in Example 2.4

(note that SetsN is a topos for N ∈ {F,F+, I}), for properties like deadlock freedom.

Such a language can be extended further through the modalities proposed in (Klin, 2007):

they correspond to constructions specific to presheaves and include the modality 〈a(b)〉
for a binding “input” operation. More examples will be worked out in our future paper.

Example 7.5 (Sub(Setsω),Sub(SetsI)). Consider the presheaf category Setsω over the

ordinal ω as a poset. The fibration
Sub(Setsω)

↓
Setsω

is finitely determined but not well-founded.

It fails to satisfy Cond. 4 in Definition 3.3: let Pn : ω → Sets be the family of presheaves

defined by

Pn(m) :=
(

0 if m < n; 1 if n ≤ m
)

for each n ∈ ω. Then P0 > P1 > · · · is a strictly descending chain in Sub(y0). The same

counterexample works for Sub(SetsI).

In contrast, the fibrations
Sub(Setsω)

↓
Setsω

and
Sub(SetsI)

↓
SetsI

are co-well-founded, by Lemma 6.11

and the following lemma.
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Lemma 7.6. For A ∈ {ω, I} and for any n ∈ A, the poset Sub(yn) is isomorphic to the

opposite of the ordinal ω+ 1 = ω ∪ {ω}. Hence Sub(yn) has no strictly increasing chain.

Proof. Firstly we shall invoke Lemma 6.18. Let f : n→ m be an arrow in A. Note that

the existence of the arrow f induces m ≥ n as natural numbers. For an arrow g : n→ m′

in A, it is easy to see that f factors through g if and only if m′ ≤ m. In particular, arrows

f, f ′ : n⇒ m factor through each other; therefore we may denote by Im(ym) the image

Im(ym
yf→ yn) ∈ Sub(yn). Moreover by Lemma 6.18, we have

Im(ym) ≤ Im(ym′) if and only if m ≥ m′ .

Therefore there exists an isomorphism of posets

I : ωop ∼=−→ {Im(ym) | m ≥ n} = {Im(ym
yf→ yn) ∈ Sub(yn) | m ∈ A, f : n→ m}

defined by I(k) = Im
(
y(n+ k)

)
.

We shall induce an isomorphism (the monotone function J below) between the “co-

completion” of both-hand sides of the isomorphism I. Let DSub(ωop) be the poset of

downward closed subsets of ωop ordered by inclusion, and ω + 1 be the ordinal. Let

h : (ω + 1)op → DSub(ωop) be a function such that

h(k′) =
(
↓ k if k′ = k ∈ ω; ∅ if k′ = ω

)
for k′ ∈ ω+ 1, where ↓ k = {k, k+ 1, . . .} is the downward closure of {k} ⊆ ωop. It is easy

to see that h becomes an isomorphism of posets. Since the poset Sub(yn) is cocomplete,

the isomorphism I induces the diagram

ωop

��
↓( )
��

I
∼=

// {Im(ym
yf→ yn) | m ∈ A, f : n→ m}

��
i
��

DSub(ωop)
J

// Sub(yn)

in Posets, where i is the canonical inclusion, and J(S) =
∨
k∈S I(k) is the sup of the

images under the isomorphism. It is enough to show that J is also an isomorphism of

posets.

On the one hand, the inclusion i is dense as a full subcategory by Proposition 6.16.1,

that is, the monotone function J is surjective. On the other hand, the nullary sup J(∅) = 0

in Sub(yn) is strictly less than any other image J(↓ k) = I(k) = Im
(
y(n+ k)

)
for k ∈ ω.

Hence the monotone function J : DSub(ωop)→ Sub(yn) is an embedding (i.e. a monotone

injection that reflects the order) that extends the embedding i ◦ I : ωop → Sub(yn).

Therefore, the monotone function J is a surjective embedding, that is, an isomorphism

of posets.

In contrast to Setsω, the subobject fibration for Setsω
op

is well-founded and co-well-

founded by Corollary 6.17. Indeed, arrows f : n → m in ωop has an (Epi,SplitMono)-

factorization n� m� m, and Quotωop(n) = {n, n− 1, . . . , 0} is a finite set.

Remark 7.7. Well-foundedness fails in Sub(Setsω), Sub(SetsI), and in Fam(Ω) for Ω

that does have a strictly descending ωop-chain. This means the logics modeled by the
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fibrations are inherently “big.” Still, extensions of our results in §3 are possible from

finitary (i.e. ω-presentable) to the λ-presentable setting for bigger λ, so that they apply

to the (current) nonexamples.

8. Conclusions and Future Work

We have investigated a mathematical theory of coinductive (and inductive) predicates

over coinductive datatypes, formalized categorically using coalgebras and fibrations. Our

technical results are about iterative constructions of coinductive predicates; they are

stated also in abstract categorical terms, using the language of locally presentable cate-

gories.

In this paper we focused on purely coinductive predicates and purely inductive ones.

However in system verification their combination is very commonly used. Such mixture

of induction and coinduction is studied fibrationally in (Hensel and Jacobs, 1997), but

over mixed inductive and coinductive data types, and not over a coalgebra. We believe

a recent lattice-theoretic characterization of nested/alternating least and greatest fixed

points (Hasuo et al., 2016) will provide a handle for suitably extending the current work.

Search for useful coinduction proof principles is an active research topic (see e.g. (Bonchi

and Pous, 2013; Hur et al., 2013)). We are interested in the questions of whether these

principles are sound in a general fibrational setting, and what novel proof principles a

fibrational view can lead to. In fact the well-known technique of coinduction up-to has

been formulated in fibrational terms (Bonchi et al., 2014) and revealed exciting new

applications like nominal automata.

Coalgebraic modal logic is more and more often introduced based on a Stone-like

duality (see e.g. (Klin, 2007)). Fibrational presentation of such dualities will combine the

benefits of duality-based modal logics and the current results. We are also interested in

the relationship to coalgebraic infinite traces (Jacobs, 2004; Ĉırstea, 2011).

Kozen’s metric coinduction (Kozen and Ruozzi, 2009) is a construction of coinductive

predicates by the Banach fixed point theorem and is an alternative to the current paper’s

order-theoretic one. Its fibrational formulation is an interesting future topic.

Practical applications of our categorical behavioral bounds shall be pursued, too. Our

results’ precursor—the bounds for the final sequences in Sets (Worrell, 2005; Adámek,

2003)—have been used to bound execution of some algorithms e.g. for state minimiza-

tion (Adámek et al., 2012; Ferrari et al., 2002; Ferrari et al., 2005). We aim at similar use.

Finally, games are an extremely useful tool in fixed point logics (also in their coalgebraic

generalization, see (Venema, 2006; Ĉırstea and Sadrzadeh, 2008; Ĉırstea et al., 2009);

also (Kupke, 2007)). We plan to investigate the use of games in the current (even more

general) fibrational setting.

Acknowledgments

Special Thanks are due to Bart Jacobs and Claudio Hermida for their inspiring work,

discussions, comments and encouragements. Besides, thanks are due to Kazuyuki Asada,

Keisuke Nakano, Keiko Nakata, Ana Sokolova, and the participants of Dagstuhl Sem-



Coinductive Predicates and Final Sequences in a Fibration 35

inar 12411 “Coalgebraic Logics” (including Samson Abramsky, Vincenzo Ciancia, Co-
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Appendix A. Theory of Coalgebra

Given a category C and an endofunctor F : C → C, an F -coalgebra is a pair of X ∈ C
and an arrow c : X → FX (we shall denote a coalgebra simply by X

c→ FX). The notion

has turned out to be a useful categorical abstraction of state-based dynamic systems.

In an F -coalgebra X
c→ FX, the carrier object X ∈ C is understood as a state space;

the functor F specifies the behavior type; and the arrow c represents actual dynamics. In

the most common setting of C = Sets, examples of functors F (and the corresponding

behavior types) are:

— A× ( ) for A-stream automata;

— P(AP)× P( ) for Kripke models;

— P(AP) × Pω( ) for finitely branching Kripke models, with where Pω is the finite

powerset functor;

— P(A× ) for labeled transition systems;

— D(A× ) for generative probabilistic systems;

and so on. See (Rutten, 2000; Jacobs, 2012) for detailed introduction.

In the theory of coalgebra as a categorical theory of (state-based dynamical) systems,

the notion of final coalgebra plays a prominent role. A final F -coalgebra Z
ζ→ FZ is one

such that, for any F -coalgebra X
c→ FX, there is a unique morphism of coalgebras from

c to ζ.

FX
Fc // FZ

X
c //

c
OO

Z
final ζ
OO (28)

Its system-theoretic significance is that: 1 Z is often the collection of “all possible F -

behaviors”; and 2 the induced arrow c assigns, to each state in X, its behavior. The

“behaviors” here follow a black-box view on systems (it ignores internal states) and

often captures the natural notion of “F -bisimilarity.”

Therefore a question arises if a final F -coalgebra exists. The well-known Lambek lemma

(that ζ is necessarily an iso) prohibits e.g. a final P-coalgebra. What matters here is the

size of F : when it is suitably bounded, a concrete construction of a final coalgebra is

known. It obtains a final coalgebra via a final F -sequence (Here 1 is a final object in C).

1 F1
!oo · · ·oo F i1

F i−1 !oo · · ·F i !oo (29)

In particular, if F is finitary (a size restriction described later), a final coalgebra arises as a

suitable quotient of the limit of the final sequence (4). This construction in Sets is worked

out in (Worrell, 2005); it is further extended to locally presentable categories (those are

categories suited for speaking of “size”) with additional assumptions in (Adámek, 2003).

The current paper’s goal is to apply this construction also to coinductive predicates.

Appendix B. Locally Finitely Presentable Categories

The theory of coalgebra has been mainly developed in the base category C = Sets.

Exceptions include the category of nominal sets or (pre)sheaf categories (e.g. (Fiore and
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Staton, 2006; Fiore and Staton, 2009)) for name-passing calculi, and Kleisli categories

(e.g. (Hasuo et al., 2007; Hasuo, 2010)) for trace semantics and simulation. The current

paper follows (Adámek, 2003; Klin, 2007) and finds locally finitely presentable categories

a convenient abstract setting. Here we follow (Adámek and Rosický, 1994) and list a

minimal set of definitions and results on locally finitely presentable categories.

The following is a categorical formalization of “finiteness” of objects. Examples are

finite sets (in Sets), and algebras presented by finitely many generators and finitely

many equations (in suitable categories of algebras).

Definition B.1 (Finitely presentable object). An object X ∈ C is finitely pre-

sentable (FP) if the functor C(X, ) : C→ Sets preserves filtered colimits.

Definition B.2 (Locally finitely presentable category). A category C is locally

finitely presentable (LFP) if it is cocomplete and it has a (small) set F of FP objects

such that every object is a filtered colimit of objects in F.

Remark B.3. (Adámek and Rosický, 1994, Theorem 1.5) A filtered colimit can be

rewritten as a directed colimit. Hence every object in an LFP category is a directed

colimit of objects in F. Some papers prefer to use directed colimits instead of filtered

colimits in the definition of LFP categories, possibly because of simplicity in notations.

Lemma B.4. Let C be LFP, with a set F of FP objects as in Definition 3.1; and X ∈ C.

The canonical diagram for X with respect to F

F/X π−→ F ↪−→ C (30)

is filtered, and X is its colimit. Here π is the projection from the comma category F/X
of F ↪→ C and 1

X→ C.

Proof. In case F contains all the FP objects up to isomorphisms, our claim would be

(Adámek and Rosický, 1994, Proposition 1.22). In our current general case, almost the

same proof yields our claim, except that we also have to show that the diagram F/X is

filtered.

We shall show that any finite diagram (YI
fI→ X)I∈I in F/X has its cocone (in F/X).

Firstly we construct a cocone in C/X. Let (YI
κI→ Y )I be a colimiting cocone in C. The

arrows (fI)I induce f : Y → X, which forms a colimiting cocone(
(YI

fI→ X)
κI→ (Y

f→ X)
)
I∈I in C/X

by Lemma B.5 below.

The finite colimit Y = ColimI YI of FP objects is FP. Therefore Y is a split quotient of

some object Y ′ in F (Adámek and Rosický, 1994, Remark 1.9). Then we obtain a cocone(
(YI

fI→ X)
i◦κI−→ (Y ′ � Y

f→ X)
)
I∈I in F/X

where i : Y � Y ′ is a section of Y ′ � Y .

Lemma B.5. Let C be a cocomplete category and (XI)I∈I be a diagram in C. There
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exists a canonical isomorphism((
Colim

I
XI

) f→ Y
)
∼= Colim

I

(
XI

fI→ Y
)

in C/Y (31)

for a cocone (XI
fI→ Y )I and the arrow f : ColimI XI → Y that is induced by the

universality of colimits. In other words, the colimiting cocone over (XI)I in C induces a

colimiting cocone over (fI)I in C/Y .

Proof. We have a cocone (fI
κI→ f)I in C/Y induced by the colimiting cocone (XI

κI→
ColimI XI)I in C, since the diagram below commutes and the arrows fI

κI→ f are natural

in I.

XI

fI ��

κI // ColimI XI

f ��

Y Y

To prove the isomorphism (31), we shall show that the induced cocone, say c, is colimiting.

Let c′ be an arbitrary cocone (fI
gI→ f ′)I in C/Y . An arrow g : ColimI XI → X ′ in C

forms an arrow g : c→ c′ of cocones if and only if for any I ∈ I the diagram

XI

fI ��

κI // ColimI XI

f ��

g
// X ′

f ′ ��

��

gI

Y Y Y

(32)

commutes. The universality of colimits in C shows that an arrow g satisfying g ◦κI = gI
for any I ∈ I uniquely exists. Moreover, the arrow g with this condition satisfies f ′◦g = f

since f ′ ◦g ◦κI = f ′ ◦gI = fI . Hence there uniquely exists an arrow g : c→ c′ of cocones.

Lemma B.6. (Adámek and Rosický, 1994, Corollary 1.28 & Proposition 1.61) Let C be

LFP.

1 C is complete.

2 C has (StrongEpi,Mono)- and (Epi,StrongMono)-factorization structures.

For each X ∈ C, the (StrongEpi,Mono)-factorization structure induces the image

functor Im: C/X → Sub(X), which is left adjoint to the forgetful functor Sub(X) →
C/X. An image of a colimit can be calculated as a sup of images.

Lemma B.7. Let C be LFP and (XI
κI→ X) be a colimiting cocone in C. For an arbitrary

cocone (XI
fI→ Y ), we have

Im f =
∨
I

Im fI in Sub(Y )

where f : X → Y is induced by the universality of colimits.

Proof. We have

Im
((

Colim
I∈I

XI

) f→ Y
)

= Im
(

Colim
I∈I

(
XI

fI→ Y
))

=
∨
I∈I

Im
(
XI

fI→ Y
)
.
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The former equality is by Lemma B.5; the latter is because Im: C/Y → Sub(Y ) is a left

adjoint functor.

Lemma B.8. Let C be an LFP category.

1 (Adámek and Rosický, 1994, Proposition 1.59) Filtered colimits commute with finite

limits in C. Precisely, the canonical arrow

Colim
I∈I

Lim
J∈J

XI,J → Lim
J∈J

Colim
I∈I

XI,J

is an isomorphism for a diagram (XI,J)(I,J)∈I×J in C such that I is a filtered category

and J is a finite category.

2 Filtered colimits in C are stable under pullbacks.

Proof. We prove the item 2. Let X = ColimI∈IXI be a filtered colimit and f : Y → X

be an arrow. Apply the item 1 to the diagram( Y
f��

XI κI

// X

)
I∈I

where J =

( ·
��

· // ·

)
. This yields a pullback square

ColimI κ
∗
IY

//

��

ColimI Y
ColimI f��

ColimI XI
ColimI κI

// ColimI X
, that is

ColimI κ
∗
IY

//

��

Y
f��

X X

,

because we have X = ColimI∈IX and Y = ColimI∈I Y for a filtered category I. Since a

pullback of f : Y → X along id: X → X is given by f itself, we obtain ColimI κ
∗
IY = Y ,

as required.

The following notion (which is already in Definition B.1) is about the “size” of functors.

An intuition (when C = Sets) is: a functor F is finitary if F ’s action FX on an arbitrary

set X is determined by its action FX ′ on all the finite subsets X ′ ⊆ X.

Definition B.9 (Finitary functor). A functor F : C → D is finitary if it preserves

filtered colimits.

For an endofunctor F : C→ C, this notion of finitariness is commonly used to bound the

“branching degree” of systems as F -coalgebras. For example, the finite powerset functor

Pω is finitary; the (full) powerset functor P is not.

There are many LFP categories, among which are Sets, the category Posets of posets

and monotone functions, and categories of algebras with finitary operations. See (Adámek

and Rosický, 1994) for more examples.

Example B.10 (Presheaf categories). Let A be a small category. The presheaf cat-

egory SetsA is LFP: the set

F := {finite colimits of representable presheaves yA},
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where yA = A(A, ), satisfies the conditions of Definition B.1.

Lemma B.11. Let C be LFP, with F ⊆ C as in Definition 3.1; and X ∈ C.

1 (Adámek and Rosický, 1994, Proposition 1.57) The slice category C/X is LFP, which

is guaranteed by the set FC/X = F/X of FP objects.

2 The poset Sub(X) of subobjects is LFP (i.e. it is an algebraic lattice, meaning a com-

plete lattice in which each element is a join of compact elements), which is guaranteed

by the set

FSub(X) = {Im f | f ∈ F/X}
= {(P � X) | there exist an object Z ∈ F and a strong epi Z � P} ,

of FP objects (i.e. compact elements) where Im: C/X → Sub(X) denotes the image

functor defined by the (StrongEpi,Mono)-factorization.

Proof. We shall prove the item 2. A proof that Sub(X) is LFP without explicit de-

scription of FSub(X) is found e.g. in (Porst, 2011, Theorem 5).

The lattice Sub(X) is a reflective subcategory of C/X by the reflection Im: C/X →
Sub(X). Thus, Sub(X) ⊆ C/X is closed under filtered colimits by (Adámek and Rosický,

1994, Corollary 1.60). Hence by (Adámek and Rosický, 1994, Theorem 1.39), Sub(X) is

LFP, with FP objects {Im f | f ∈ F/X}.

Appendix C. Fibrations

We follow (Jacobs, 1999), although we focus on the simpler notion of poset fibration.

C.1. Introduction (via Indexed Posets)

This paper’s interest is in coinductive predicates, hence in predicate logic. The most

straightforward formalization of predicate is as a subset P ⊆ X of a set (a “universe”)

X: an element x ∈ X satisfies P if x ∈ P . Accompanying is the natural notion of

entailment: P entails Q if P ⊆ Q. This way we obtain the poset (2X ,⊆) of predicates

over X.

However it is not on a single universe X that we consider predicates. For example,

in a situation where there are two Kripke models c = (X,→, VX), d = (Y,→, VY ) and

a “homomorphism” f : X → Y , a natural question is if the interpretation of a formula

νu.α is preserved by f . (It is; see Proposition 3.13). Here we are comparing the predicate

Jνu.αKc ⊆ X with the predicate Jνu.αKd ⊆ Y reindexed via f : X → Y . The latter is

concretely described as the inverse image

f−1
(
Jνu.αKd

)
=
{
x ∈ X

∣∣ f(x) ∈ Jνu.αKd
}
.

Therefore a reindexing structure is also relevant to predicate logic: a function f : X → Y

induces reindexing f−1 : 2Y → 2X . Additionally, the map f−1 is monotone.

To summarize: 1) predicates on a universe X form a poset; 2) a function f : X → Y

between universes induces a monotone reindexing function from the collection of pred-

icates over X to that over Y . Such a situation is nicely described as a (contravariant)
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functor

Φ : Cop −→ Posets , (33)

where Posets is the category of posets and monotone functions. The functor Φ assigns,

to each “universe” X ∈ C, the poset ΦX of predicates over X. Moreover, f : X → Y in C
induces a reindexing map Φf : ΦY → ΦX. This functor Φ is a special case of an indexed

category (Jacobs, 1999, §1.10).

In the current paper, however, we favor an equivalent presentation of such a structure

by a fibration, since we find the latter to be more amenable to generalization of structures

in ordinary category theory (such as limits). The equivalence between index categories

and fibrations is well-known; here we sketch the Grothendieck construction from the

former to the latter. Its idea is to “patch up” the posets (ΦX)X∈C and form a big

category P, as in the following figure.

ΦX ΦY

• •�ss

•
==

•
aa

Φf←− •
OO

�{{

•
aa ==

•
OO

�ss

X
f

// Y

“patch up”
=⇒

• •**

P

p

��

•
>>

•
``

•
OO

//

•
`` >>

•
OO

44

C X
f

// Y

On the right we add some arrows (denoted by 99K) so that we have an arrow (Φf)(Q)→ Q

in P for each Q ∈ ΦY . (On the left the correspondence p99K depicts the action of the map

Φf .) The above diagram in P should be understood as a Hasse diagram: those arrows

which arise from composition are not depicted.

Formally:

Definition C.1 (The Grothendieck construction). Given Φ: Cop → Posets, we

define the category PΦ by

— its object is a pair (X,P ) of an object X ∈ C and an element P of the poset ΦX;

and

— its arrow f : (X,P )→ (Y,Q) is an arrow f : X → Y in C such that

P ≤ (Φf)(Q).

Here ≤ refers to the order of ΦX.

Thus arises a category P = PΦ that incorporates: the order structure of each of the

posets (ΦX)X∈C; and the reindexing structure by (Φf)f : C-arrow. For fixed X ∈ C, the

objects of the form (X,P ) and the arrows idX between them form a subcategory of P.

This is denoted by PX and called the fiber over X. It is obvious that PX is a poset that

is isomorphic to ΦX.

Moreover, there is a canonical projection functor p : P→ C that carries (X,P ) to X.

C.2. Formal Definition of (Poset) Fibration

We axiomatize those structures which arise in the way described above.
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Definition C.2 ((Poset) fibration). A (poset) fibration
P
↓p
C consists of two categories

P,C and a functor p : P→ C, that satisfy the following properties.

— Each fiber PX is a poset. Here the fiber PX for X ∈ C is the subcategory of P
consisting of objects P ∈ P such that pP = X and arrows f : P → Q such that

pf = idX (such arrows are said to be vertical).

— Given f : X → Y in C and Q ∈ PY , there is an object f∗Q ∈ PX and a P-arrow

fQ : f∗Q→ Q with the following universal property. For any P ∈ PX and g : P → Q

in P, if pg = f then g factors through f(Q) uniquely via a vertical arrow. That is,

there exists a unique g′ such that g = f(Q) ◦ g′ and pg′ = idX .

P

p

��

Q

=⇒

f∗Q
f(Q)

// Q

P
g

99

g′
OO

C X
f
// Y X

f
// Y

— The correspondences ( )∗ and ( ) are functorial:

id∗YQ = Q , (g ◦ f)∗(Q) = f∗(g∗Q),

idY (Q) = idQ , g ◦ f(Q) = gQ ◦ f(g∗Q).

The last equality can be depicted as follows.

P

p

��

f∗(g∗Q)
f(g∗Q)

// g∗Q
gQ
// Q

(g ◦ f)∗Q g◦f(Q)

66

C X
f

// Y
g
// Z

The category P is called the total category of the fibration; C is the base category. The

arrow fQ : f∗Q→ Q is called the Cartesian lifting of f and Q. An arrow in P is Cartesian

(or reindexing) if it coincides with fQ for some f and Q.

In the case where
P
↓p
C is induced by an indexed category Φ: Cop → Posets via Defini-

tion C.1, a Cartesian lifting is obviously given by f∗(Q) = (Φf)(Q).

In the current paper we focus on poset fibrations (which we shall simply call fibrations).

In a (general) fibration a fiber PX is not just a poset but a category, and this elicits a

lot of technical subtleties. Nevertheless, it should not be hard to generalize the current

paper’s results to general, not necessarily poset, fibrations (especially to the split ones).

We shall often denote a vertical arrow in P (i.e. an arrow inside a fiber) by ≤.

The dual notion of a fibration is an opfibration.

Definition C.3. An opfibration
P
↓p
C consists of two categories P,C and a functor p : P→ C

such that
Pop

↓pop
Cop is a fibration. Concretely, in an opfibration

P
↓p
C , for an arrow f : X → Y

in C and P ∈ PX , there is an object
∐
f P ∈ PY and a P-arrow P →

∐
f P satisfying an
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appropriate universal property. This arrow P →
∐
f P in P is said to be opcartesian (or

opreindexing).

A bifibration
P
↓p
C is a fibration as well as an opfibration.

Note that we do not assume the Beck-Chevalley condition for a bifibration. A fibra-

tion with coproducts
∐
f between fibers—introduced later in Definition C.10—carries a

canonical opfibration structure, too.

Lemma C.4. (Jacobs, 1999, Lemma 9.1.2). A fibration
P
↓p
C is a bifibration if and only if

for any arrow f : X → Y in C the reindexing functor f∗ : PY → PX has a left adjoint∐
f a f∗.

C.3. Examples

Example C.5 (Subobject fibration). Let C be a (well-powered) category with finite

limits. The category Sub(C) is defined by: its object is a pair (P,X) of X ∈ C and its

subobject P � X (we write (P � X) ∈ Sub(C)); and its arrow (P � X)
f→ (V � Y )

is a C-arrow f : X → Y that restricts to P → Q. That is, given an arrow f : X → Y in

C,

f is an arrow in Sub(C)

(P
m
� X)

f→ (Q
n
� Y )

⇐⇒ ∃f ′ such that
P

f ′
//

��
m ��

Q
��
n��

X
f
// Y

. (34)

The projection (P � X) 7→ X defines a functor; thus arises the sub-

object fibration
Sub(C)
↓
C

of C. In particular, given X
f→ Y in C and

(Q� Y ) ∈ Sub(Y ), the Cartesian lifting f∗Q is defined by a pullback.

f∗Q
fQ

//
��

m
��

Q
��
n
��

X
f
// Y

A special case is the following most straightforward modeling of predicate logic. It arises

from the contravariant powerset functor 2( ) : Setsop → Posets via Definition C.1.

Example C.6 (
Pred
↓

Sets
). The subobject fibration

Sub(Sets)
↓

Sets
of Sets is denoted by

Pred
↓

Sets
. An

object of its total category is often denoted by (U ⊆ X). Reindexing is given by inverse

images.

More concretely, in the category Pred, an object is a pair (P,X) of a set X and its

subset P ⊆ X; an arrow (P ⊆ X)
f→ (Q ⊆ Y ) is a function X

f→ Y that restricts to

P → Q (i.e. P ⊆ f−1Q).

Example C.7 (Rel). The fibration
Rel
↓

Sets
can be introduced from

Pred
↓

Sets
via the following

change-of-base.

Rel //

��

Pred

��

Sets
X 7→X×X

// Sets
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Concretely, an object of Rel is a pair (X,R) of a set X and a relation R ⊆ X ×X; an

arrow f : (X,R) → (Y, S) is a function f : X → Y such that xRx′ implies f(x)Sf(x′).

See (Jacobs, 1999, p. 14).

Example C.8 (Family fibration). The family fibration
Fam(Ω)
↓

Sets
over a poset Ω is in-

troduced as follows. An object in the fiber Fam(Ω)X is a function f : X → Ω; and an

arrow (X
f→ Ω)

k→ (Y
g→ Ω) in the total category Fam(Ω) is a function k : X → Y such

that f(x) ≤ g(k(x)) for each x ∈ X. See e.g. (Jacobs, 1999, Definition 1.2.1) for more

details.

C.4. Structures in a Fibration

In a fibration
P
↓p
C , a C-arrow X

f→ Y induces a correspondence PY
f∗→ PX via reindexing.

This is easily seen to be a monotone map (i.e. a functor between posets as categories).

Definition C.9 (Fiberwise (co)limits). A fibration
P
↓p
C is said to have fiberwise limits

if:

— each fiber PX has, as a category, all limits (meaning it has arbitrary inf’s
∧

); and

— for each C-arrow X
f→ Y , the reindexing functor PY

f∗→ PX preserves these limits.

In this case each fiber PX has a final object (denoted by >X).

Similarly, a fibration has fiberwise colimits if each fiber has them and they are preserved

by reindexing.

The following notions must be distinguished from “fiberwise (co)products.”

Definition C.10 ((Co)products between fibers). A fibration
P
↓p
C is said to have

products (between fibers) if

— each reindexing functor f∗ : PY → PX has a right adjoint f∗ a
∏
f ; and

— the functors (
∏
f )f satisfy the so-called Beck-Chevalley condition. See (Jacobs, 1999,

§1.9).

Similarly, a fibration has coproducts (between fibers) if each reindexing has a left adjoint∐
f and they satisfy the Beck-Chevalley condition.

The prototype example
Pred
↓

Sets
has fiberwise (co)limits: each fiber is a complete lattice; and∧

and
∨

are preserved by inverse images. It has products
∏

and coproducts
∐

between

fibers, too: specifically
∐
f is given by the direct image of the function f . See (Jacobs,

1999, §1.9).

Throughout the paper we rely on the following result. It extends Lemma 3.6. Note

that colimits are preserved by opreindexings in a bifibration.

Lemma C.11. Let
P
↓p
C be a fibration. Assume that C is complete; then the following are

equivalent.
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1 The fibration p has fiberwise limits.

2 The total category P is complete and p : P→ C preserves limits.

If this is the case, a limit of a small diagram (PI)I∈I in P can be given by∧
I∈I(π

∗
IPI) over LimI∈IXI .

Here XI := pPI ; (LimI∈IXI
πI→ XI)I∈I is a limiting cone in C; and

∧
I∈I denotes the

limit computed in the fiber PLimI XI
.

(Sort of) dually, let
P
↓p
C be a bifibration (such as a fibration with coproducts

∐
between

fibers, see Lemma C.4). Assume that C is cocomplete; then the following are equivalent.

1 Any fiber PX has colimits.

2 The total category P is cocomplete and p : P→ C preserves colimits.

In this case a colimit of a small diagram (PI)I∈I in P can be given by∨
I∈I(

∐
κI
PI) over ColimI XI ,

where XI := pPI and (XI
κI→ ColimI XI)I∈I is a colimiting cocone in C.

In contrast to the above results that are on limits in the total category P of a fibration,

Lemma C.12 allows one to compute limits over P as a diagram. It is well-known that an

iterated limit LimX∈C LimY ∈D F (X,Y ) is isomorphic to the limit Lim(X,Y )∈C×D F (X,Y ).

This kind of isomorphism exists even if the category D “depends” on X ∈ C in the

following sense. (Note that
C×D
↓π1
C

is at the same time a fibration and an opfibration.)

Lemma C.12. Let
P
↓p
C be a fibration and F : P→ E be a functor. If LimP∈PX

FP exists

for each X ∈ C, then we have a canonical isomorphism

Lim
X∈C

Lim
P∈PX

FP ∼= Lim
P∈P

FP ,

where one side exists if the other side does.

Dually, let
P
↓p
C be an opfibration and F : P → E be a functor. If ColimP∈PX

FP exists

for each X ∈ C, then we have a canonical isomorphism

Colim
X∈C

Colim
P∈PX

FP ∼= Colim
P∈P

FP ,

where one side exists if the other side does.

Proof. Let
P
↓p
C be a fibration. For f ∈ C(X,Y ), a canonical arrow

Lim
P∈PX

FP → Lim
Q∈PY

FQ (35)

is obtained via the universality of limits as below:

LimP∈PX
FP

πf∗Q ��

// LimQ∈PY
FQ

πQ
��

F (f∗Q)
F (fQ)

// FQ .
(36)
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Indeed, we have

F (f∗Q)
F (f∗g) ��

F (fQ)
// FQ

Fg��

F (f∗Q′)
F (fQ′)

// FQ′

for g ∈ PY (Q,Q′) because of the naturality of Cartesian liftings.

For each E ∈ E we have

E(E,Lim
X∈C

Lim
P∈PX

FP )

∼= Lim
X∈C

Lim
P∈PX

E(E,FP )

∼= Lim
X∈C

{ (
hP ∈ E(E,FP )

)
P∈PX

| Fg ◦ hP = hP ′ for any g ∈ PX(P, P ′)
}

∼=
{ ((

hP ∈ E(E,FP )
)
P∈PX

)
X∈C

| Fg ◦ hP = hP ′ for any g ∈ PX(P, P ′);

F (fQ) ◦ hf∗Q = hQ for any f ∈ C(X,Y ) and Q ∈ PY
}

the postcomposition of the arrow (35) maps (hP )P to (F (fQ) ◦ hf∗Q)Q by (36)

= {(hP ∈ E(E,FP ))P∈P | Ff ◦ hP = hQ for any f ∈ P(P,Q)}

by the factorization P
g→ f∗Q

f→ Q of f : P → Q into vertical g and Cartesian f

∼= Lim
P∈P

E(E,FP )

= E(E,Lim
P∈P

FP ).

Applying the Yoneda Lemma yields the claim.

C.5. Fiberwise Opposite

Let op: Posets→ Posets be a functor that maps (P,≤) to (P,≤)op = (P,≥). Assuming

a fibration
P
↓p
C is induced—by the Grothendieck construction—by an indexed category

Φ: Cop → Posets, the composite Cop Φ→ Posets
op→ Posets induces a fibration in which

each fiber is opposed. This is what is denoted by
P(op)

↓p(op)
C

in the following lemma.

Lemma C.13 (Fiberwise opposite, (Bénabou, 1975)). Let
P
↓p
C be a fibration. There

exists a canonical fibration
P(op)

↓p(op)
C

such that: (P(op))X = (PX)op; and reindexing functors

coincide, as in the commutative diagram

(P(op))Y
f∗ in p(op)

// (P(op))X

(PY )op
(f∗ in p)op

// (PX)op

for f : X → Y.
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This fibration p(op) is called the fiberwise opposite of p.

Proof. We describe the construction of P(op); it is simple in the current setting where

we focus on poset fibrations. The objects are the same as those of P, and the arrows are

defined by

P(op)(P,Q) = {f : pP → pQ | P ≥ f∗Q}.
It is easy to show that idpP induces an arrow P → P in P(op); this gives the identity

arrow. The composite g ◦ f ∈ P(op)(P,R) of f ∈ P(op)(P,Q) and g ∈ P(op)(Q,R) is given

by composition in C, too.

Appendix D. Omitted Proofs

D.1. Proof of Proposition 6.16

We shall prove the item 1. In the topos SetsA, there exists an (Epi,Mono)-factorization,

which induces the image functor Im: SetsA/P → Sub(P ) that is surjective on objects.

In particular, a subpresheaf of P can be thought of as an image of some arrow with

codomain P .

Let (Q
θ−→ P ) ∈ SetsA/P . By Lemma 6.14, we may assume Q = ColimI∈I(yBI) for

some diagram (BI)I∈I. By Example 6.10 and Lemma B.7, we have Im θ =
∨
I∈I Im θI

where the arrow θI is the composite
(
yBI → ColimI(yBI)

θ→ P
)
.

Letting P = yA, we obtain Im(Q
θ−→ yA) =

∨
I Im(yBI

yfI−→ yA) for a family (fI)I
such that θI = yfI ; such a family (fI)I exists since the functor y is full and faithful.

This proves the item 1.

We shall now prove the item 2. We observe that an epi A � C in A induces a mono

yC � yA in SetsA: this is because the functor y : Aop → SetsA preserves all existing

limits, including the pullback

C

idC

��

idC // C

m

��

C
m // A

in Aop. (The diagram is a pullback if and only if m is a mono in Aop, i.e. an epi in A.)

Thus there is a monotone function Quot(A)→ Sub(yA).

Regarding monos in A, we can show the following sublemma (its only-if direction will

not be used later).

Sublemma D.1. Let m : C → B be an arrow in A. The arrow ym : yB → yC is an epi

in SetsA if and only if the arrow m is a split mono.

Proof. The following are equivalent (folklore): for an arrow e in B,

1 The arrow e is an absolute epi, i.e. F (e) is an epi for any functor F with the domain

B,

2 the arrow ye in SetsB
op

is an epi, and

3 the arrow e is a split epi.
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The sublemma is part of this fact for B = Aop.

To be concrete, we take a retraction r : B → C of a split mono m in A. By r◦m = idC ,

we have ym ◦ yr = idyC , which shows that ym is a (split) epi in SetsA.

Conversely, let m : C → B be an arrow in A such that ym : yB → yC is an epi in

SetsA. Because colimits are computed component-wise in the functor category SetsA,

the function (ym)C : A(B,C) → A(C,C) is surjective. Hence, there exists r ∈ A(B,C)

such that (ym)C(r) = idC ∈ A(C,C), that is, r ◦m = idC . Therefore the arrow m has a

retraction r.

Therefore an (Epi,SplitMono)-factorization A
e
� C

m
� B in A induces an (Epi,Mono)-

factorization yB
ym
� yC

ye
� yA. This yields

{Im(yB
yf→ yA) | B ∈ A, f : A→ B} = {(yC

ye
� yA) ∈ Sub(yA) | C ∈ A, e : A� C}

∼= {(A
e
� C) ∈ Quot(A) | C ∈ A} = Quot(A),

where the last isomorphism holds because the functor y is full and faithful. Hence the

item 2 reduces to the item 1.


