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Abstract. In the last years the number of ontology matching techniques and sys-
tems has significantly increased, and this, in turn, has raised the issue of their
evaluation and comparison. One of the key challenges is how to build large scale
datasets. In fact the number of possible mappings between two ontologies grows
quadratically in respect to the number of nodes in the graphs what, in turn, makes
the manual construction of the reference mappings too demanding for large scale
real world matching tasks. In this paper we present a new mapping dataset TaxME
2 extracted from Google, Yahoo and Looksmart web directories. TaxME 2 is
computed in a semiautomatic way and it is an order of magnitude larger than the
state of the art datasets. Moreover, to our knowledge, it is the only large scale
dataset which can be used to compute both Precision and Recall. We have eval-
uated TaxME 2 exploiting results of twelve state of the art matching systems.
The evaluation results have shown that the data set has the desired key proper-
ties, namely it is discriminative, error-free and hard to solve for state of the art
matching systems.

1 Introduction

Match is a critical operator in many applications. It takes two graph-like structures,
e.g., lightweight ontologies, such as Google 3 and Looksmart 4, or business catalogs,
such as UNSPSC 5 and eCl@ss 6, and produces a mapping between the nodes that
correspond semantically to each other. Many diverse solutions to the matching problem
have been proposed so far, see for example [2, 19, 18, 16, 10, 6, 14]. This in turn has
raised the issues of their evaluation and comparison. One of the key issues in this area
is how to build large scale datasets, where a dataset for matching consists of a large
set of reference mappings holding between two ontologies and in general, graph-like
structures. In fact the number of possible mappings grows quadratically with the number

3 http://www.google.com/Top/
4 http://www.looksmart.com/
5 http://www.unspsc.org/
6 http://www.eclass.de/



of nodes, and this, in turn, makes the manual construction of the reference mappings
too demanding for large scale real world matching tasks. One of the largest state of
the art manually constructed datasets [7] is composed of several hundreds of reference
mappings. The real world part of systematic tests designed in [9] contains tens of them.
The reference mappings in these datasets are composed of positive mappings, namely
the mappings that hold among the graph structures (e.g., car is equivalent to auto).
All the other mappings are assumed to be negative (e.g., car is not related to tree). A
first attempt to automate the process of the reference mappings acquisition is designed
in [1]. This dataset, called TaxME, contains thousands of mappings. However, due to
its inherent limitations (see [1, 9] for detailed discussion) TaxME allows only Recall
estimation. However, Recall can be easily maximized at the expense of a poor Precision,
for instance by returning all possible correspondences, i.e., the cross product of the input
graphs.

In this paper we present a new mapping dataset TaxME 2 which has been extracted
from Google, Yahoo and Looksmart web directories and has been constructed as an ex-
tension of TaxME. Differently from the previous datasets [7, 9] the reference mapping
of TaxME 2 do not contain all the positive mappings holding between web directories.
TaxME 2 contains two large subsets of positive and negative mappings for an overall
number of 4500 mappings, which are computed in a semiautomatic way. TaxME 2 is
order of magnitude larger than the state of the art datasets. At the same time, differ-
ently from its predecessor TaxME, TaxME 2 allows for the estimation of all commonly
used matching quality measures, in particular Precision and Recall. We have evaluated
TaxME 2 exploiting results of twelve state of the art matching systems. The evalua-
tion results highlight the key properties of the dataset, namely that it is discriminative,
error-free and hard to solve.

The rest of the paper is organized as follows. Section 2 presents a short introduction
to the notions of matching and matching evaluation. Section 3 extends the results pre-
sented in [1] and discusses the features and properties of TaxME. Section 4 illustrates
how TaxME 2 has been constructed by suitably extending TaxME and expanding some
of its inherent properties. Section 5 presents the results of our experiments and shows
that TaxME 2 posses the desired mapping dataset properties. Section 6 concludes the
paper.

2 Basic notions

In order to motivate the matching problem and illustrate one of the possible situations
which can arise in the data integration task let us use the (parts of the Google and Ya-
hoo) directories depicted in Figure 1. Suppose that the task is to integrate these two
directories. The first step in the integration process is to identify the matching candi-
dates. For example, ShoppingO1 can be assumed equivalent to ShoppingO2, while
Board GamesO1 is less general than GamesO2. Hereafter the subscripts designate
the directory (either O1 or O2) of the node considered.

We define matching as the process of discovering mappings between two graph-like
structures through the application of a matching algorithm, where a mapping can be
ultimately sought as a pair of nodes that semantically correspond to each other.



Fig. 1. Parts of Google and Yahoo directories

The commonly accepted measures for a quantitative matching evaluation are based
on the well known in information retrieval measures of relevance, namely Precision and
Recall. Consider Figure 2; the calculation of these measures is based on the comparison
between the mappings produced by a matching system (S in Figure 2) and a complete
set of reference mappings H considered to be correct (the area inside the dotted circle
in Figure 2). H is usually produced by humans. Here and further we refer to the set of
all possible mappings (i.e., cross product of two input graphs) as M . Finally, the correct
mappings found by the system are the true positives:

TP = S ∩H (1)

The incorrect mappings found by the system are the false positives:

FP = S − S ∩H (2)

The correct mappings missed by the system are the false negatives:

FN = H − S ∩H (3)

The incorrect mappings not returned by the system are the true negatives:

TN = M − S ∩H (4)

Further we call the mappings in H positive mappings, and the mappings in

N = M −H = TN + FP (5)

negative mappings.
Precision is a correctness measure which varies from [0, 1]. It is calculated as

Precision =
|TP |

|TP + FP |
=

H ∩ S

S
(6)

Recall is a completeness measure which varies from [0, 1]. It is calculated as

Recall =
|TP |

|TP + FN |
=

H ∩ S

H
(7)



Fig. 2. Basic sets of mappings

However, neither Precision nor Recall alone can accurately evaluate the match qual-
ity. In particular, Recall can easily be maximized at the expense of a poor Precision by
returning all possible correspondences, i.e. the cross product of two input graphs. At
the same time, a high Precision can be achieved at the expense of a poor Recall by re-
turning only few (correct) correspondences. Therefore, it is necessary to consider both
measures or a combined measure.

F-measure is a global measure of the matching quality. It varies from [0, 1] and
calculated as a harmonic mean of Precision and Recall:

F −Measure =
2 ∗Recall ∗ Precision

Recall + Precision
(8)

Notice that the complete reference mapping H must be known in advance in order
to calculate both Precision and Recall. This opens a problem of its acqusition. The
problem is that the construction of H is a manual process which, in the case of matching
is quadratic in respect to the size of the graphs to be matched. This process turns to be
unfeasible for large datasets. For instance, in the dataset we have exploited in this work,
namely the Google, Yahoo and Looksmart web directories, each structure has the order
of 105 nodes. This means that construction of H would require the manual evaluation
of 1010 mappings.

3 A dataset for evaluating Recall

We compute an approximation of H proposed in [1]. As from [1] we apply the proposed
methodology to the Google, Yahoo and Looksmart web directories. The key idea is to
rely on a reference interpretation for nodes, constructed by analyzing which documents
have been classified in which nodes. The assumption is that the semantics of nodes can
be derived from their pragmatics, namely by analyzing the documents that are classi-
fied under the given nodes. In particular, the underlying intuition is that two nodes have
equivalent meaning if the sets of documents classified under those nodes have a mean-
ingful overlap. The basic idea is therefore to compute the relationship hypotheses based
on the co-occurence of documents.

Consider the example presented in Figure 3. Let N1 be a node in the first taxonomy
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Fig. 3. TaxME. Illustration of a document-driven similarity assessment.

and N2 be a node in the second taxonomy. D1 and D2 stand for the sets of documents
classified under the nodes N1 and N2 respectively. A2 denotes the documents classified
in the ancestor node of N2; C1 denotes the documents classified in the children nodes
of N1.

A simple equivalence measure is defined as

Eq(N1, N2) =
|D1 ∩D2|

|D1 ∪D2| − |D1 ∩D2|
(9)

Notice that the range of Eq(N1, N2) is [0,∞]. The intuition is that the more D1

and D2 overlap the bigger is Eq(N1, N2) with Eq(N1, N2) becoming infinite with
D1 ≡ D2. Following what described in [1] Eq(N1, N2) is normalized to [0,1]. The
special case of D1 ≡ D2 is approximated to 1.

Given the two nodes N1 and N2 and the related document sets D1 and D2, we
introduce two additional sets: (i) the set of documents classified in the ancestor node
of N2, namely A2, and (ii) the set of documents classified in the children nodes of N1,
namely C1.

The generalization relationship holds when the first node has to be considered more
general of the second node. Intuitively, it happens when the documents classified under
the first node occur in the ancestor of the second node, or the documents classified under
the second node occur in the subtree of the first node. Following this intuition we can
formalize the generalization hypothesis as

Mg(N1, N2) =
|(A2 ∩D1) ∪ (C1 ∩D2)|

|D1 ∪D2|
(10)

The specialization relationship hypothesis Lg(N1, N2) can be easily formulated ex-
ploiting the symmetry of the problem.

The TaxME dataset is computed starting from Google, Yahoo! and Looksmart.
These web directories hold many interesting properties: they are widely known, they
cover overlapping topics, they are heterogeneous, they are large, and they address the
same space of contents. All of this makes the working hypothesis of documents co-
occurrence sustainable. The nodes are considered as categories denoted by lexical la-
bels, the tree structures are considered as hierarchical relations, and the URLs classified



Table 1. Number of nodes and documents processed in the TaxME construction process

Web Directories Google Looksmart Yahoo!
number of nodes 335.902 884.406 321.585
number of urls 2.425.215 8.498.157 872.410

under a given node are taken to denote documents. The following table summarizes the
total amount of processed data.

Let us briefly summarize the five steps process used in the TaxME reference map-
ping construction.

Step 1 All three web directories are crawled, their hierarchical structure and their web
content;

Step 2 The URLs that do not exist in at least one web directory are discarded;
Step 3 The nodes with a number of URLs under a given threshold (10 in the experi-

ment) are pruned;
Step 4 A manual selection is performed with the goal of restricting the assessment of

the similarity metric to the subtrees concerning the same topic; 50 pairs of sub trees
are selected;

Step 5 For each of the subtree pairs selected, an exhaustive assessment of correspon-
dences holding between nodes is performed. This is done by exploiting the equiva-
lence metric defined in Eq. 9 and the corresponding generalization and specializa-
tion metrics. The TaxME similarity metric is computed as the biggest of the three
metrics, namely

SimTaxME = max(Eq(N1, N2), Lg(N1, N2),Mg(N1, N2)) (11)

The distribution of mappings constructed using SimTaxME is depicted in Figure 4,
for varying values of the metric.

Fig. 4. Distribution of mappings according to TaxME similarity metric

Notice that SimTaxME is very robust. The number of mappings is in fact very
stable and grows substantially, of two orders of magnitude, only with a value of the



metric less than 0.1. As a pragmatic decision, the mappings with SimTaxME above 0.5
are taken to constitute the reference mapping TaxME. As a result, TaxME is composed
from 2265 mappings. Half of them are equivalence relationships and half are generaliza-
tion relationships. As depicted in Figure 5, TaxME is an incomplete reference mapping
since it contains only part of the mappings in H . The key difference between Figures
5 and 2 is the fact that a complete reference mapping (the area inside the dotted circle
in Figure 5) is simulated by exploiting an incomplete one (the area inside the dashed
circle in Figure 5).

However, if we assume that TaxME is a good representative of H we can use Eq.
7 for an estimation of Recall. In order to ensure that this assumption holds a set of

Fig. 5. Mapping comparison using TaxME. TP , FN and FP stand for true positives, false neg-
atives and false positives

requirements have to be satisfied:

1. Correctness, namely the fact that TaxME ⊂ H (modulo annotation errors).
2. Complexity, namely the fact that state of the art matching systems experience diffi-

culties when run on TaxME.
3. Discrimination Capability, namely the fact that different sets of mappings taken

from TaxME are hard for the different systems.
4. Incrementality, namely the fact that TaxME allows for the incremental discovery of

the weaknesses of the tested systems7.

As discussed in [1] TaxME satisfies these requirements.
In order to build TaxME 2, however, we need to verify another property of SimTaxME ,

namely its robustness. By robustness we mean the fact that the number of incorrect
mappings is high only for very low values of SimTaxME and decreases very sharply as
soon as these values increase. We need robustness as it highlights the correspondence
between the values of the similarity measure and the human observed similarity. To test
the robustness of SimTaxME , we have randomly selected 100 mappings in 9 intervals
of range 0.1 and one interval of range 0.05 as depicted in Figure 6 and manually evalu-
ated their correctness. This resulted in a relatively small amount of manual work as we
have analyzed around one thousand of mappings. The results are presented in Figure 6.

7 We do not consider this property here as insignificant to our goals.



Fig. 6. Distribution of incorrect mappings. Each column is calculated evaluating 100 randomly
selected mappings

The results of this manual evaluation show that SimTaxME is very robust as:

– it is very stable with a small percentage of incorrect mappings for a very large range
[0.3,1];

– the number of incorrect mappings becomes substantial for very small values of
SimTaxME , namely with threshold less than 0.1.

4 A dataset for evaluating Precision

As from Eq 6 in order to evaluate Precision, as defined in Eq. 6, we need to know FP ,
which in turn, as from Figure 2, requires that we know H . However, as from Section 2,
computing H in the case of a large scale matching task requires an implausible human
effort. Notice also that we can not use an incomplete reference mapping composed from
positive mappings i.e, TaxME, either. In this case, as shown in Figure 5, FP can not
be computed. This is the case because FPunknown = S ∩ (H − TaxME), marked as
a grey area in Figure 5, is not known.

Our proposal in this paper is to construct a reference mapping for the evaluation of
both Recall and Precision, let us call it TaxME 2, defined as

TaxME 2 = TaxME ∪NT2 (12)

where NT2 is an incomplete reference mapping containing only negative mappings (i.e.,
NT2 ⊂ M − H in Figure 5). Of course TaxME 2 must be a good representative of
M and therefore satisfy the three requirements described in the previous section and
satisfied by TaxME. Notice that the request of correctness significantly limits the size of
NT2 since each mapping has to be evaluated by a human annotator (i.e., |NT2| ¿ |M−
H|). At the same time, NT2 must be big enough in order to be the source of meaningful
results. Therefore, we require NT2 to be at least of the same size as TaxME, namely
|NT2| ≥ |TaxME|.

NT2 is computed from the complete mapping set M (as from Figure 2) in the fol-
lowing two macro steps:



– Step 1: Candidate mappings selection. The goal of this step is to select a set M ′

where M ′ ⊆M which contains a big number of ”hard” negative mappings.
– Step 2: Negative mappings selection. The goal of this step is to filter all positive

mappings from M’. In order to achieve this goal M’ is first pruned to the size that
allows manual evaluation of the mappings. Finally the negative mappings are man-
ually selected from the remaining mapping set.

Let us describe Step 1 and Step 2 in more detail.

4.1 Candidate mappings selection

The candidate mapping set M ′ is selected from M , as depicted in Figure 7. The goal of

Fig. 7. Mapping sets in TaxME 2. Gray area stands for FPi a set of FP produced by a matching
system on M

′

this step is to ensure that M ′ contains a big number of “hard” negative mappings. Intu-
itively a “hard” negative mapping is the mapping with high value of similarity measure
which is incorrect according to manual annotation. Given the robustness of SimTaxME

we have decided to exploit SimTaxME as the similarity measure for M ′ construction.
Consider Figures 4 and 6. A big enough number of negative mappings can be obtained
only for values of SimTaxME in the 0-0.2 range. As a pragmatic decision we have
selected M ′ as the mappings having SimTaxME values in the 0.05-0.2 range. As from
Figure 4, this allowed us to obtain 18063+4776=22836 candidate mappings.

4.2 Negative mappings selection

The negative mappings selection step is devoted to the computation of NT2. The process
is structured as follows:

– Step 1: Matching systems selection. The goal of this step is to select a set of match-
ing systems whose results are exploited for constructing NT2. The set of the se-
lected systems should be heterogeneous. By this we mean that the selected systems
should make mistakes on different sets of mappings. Thus, the selected systems



have to be the representatives of the different classes of the existing matching tech-
niques. This also prevents NT2 from being biased towards a particular class of
matching solutions.

– Step 2: Computation of negative mappings. The goal of this step is to compute
NT2by exploiting the results obtained by running the selected matching systems on
M ′. In particular NT2 is computed from FP as NT2 =

⋃
i
FPi, where FPi stands

for the FP produced by running the i-th matching system on M ′ (i.e., incorrect map-
pings in the set S∩M ′). The result of this exercise is depicted in Figure 7, where the
grey area stands for FPi. This construction schema ensures that NT2 will be hard
for all existing systems and discriminative given that the set of matching systems
evaluated on M ′ is representative and heterogeneous. An implicit constraint is that
the number of FPs produced by each of the systems should be comparable. This
prevents the existence of a bias towards a particular class of matching solutions.
Notice that the computation of FP (as from Eq. 2) requires the human annotation
of the systems results.

Based on the classification of the matching systems originally presented in [11] and
then largely extended and augmented in [20] 8 as part of Step 1 we have selected three
matching systems namely COMA [14], Similarity Flooding (SF) [17] and S-Match
(SM) [12]. The first, as from [1, 12], is one of the best syntactic matching systems.
The matching process proposed in COMA has been further extended in [5] and parts
of it have been reused in the number of matching systems including [15]. SF utilizes a
matching algorithm based on the ideas of similarity propagation. SF computes an initial
mapping exploiting a string based matcher. Then the mapping is refined using fix-point
computation and filtered according to some predefined criteria. The ideas of similarity
propagation have been further reused in [10] where the fix point algorithm is exploited
for solving the system of linear equations. The SF mapping filtering techniques have
been further reused in the system described in [13]. S-Match 9 [12] differs from the
SF and COMA as it the implements semantic matching approach, as described in [11],
namely it considers rather concepts than labels at nodes and produces a set of semantic
relations rather than numerical similarity coefficients [0..1]). Other semantic matching
systems, similar to S-Match, are [3, 4].

During Step 2 we have executed COMA, SF and S-Match on M ′. We also have
manually evaluated the mappings found by the systems and selected the FP from them.
Notice that we have not distinguished among different semantic relations while evalu-
ating the matching quality. Therefore, for example, the mapping A v B produced by
S-Match and A1 ≡ B1 produced by COMA have been considered as TP if A ≡ B and
A1 v B1 are TP according to the human judgement. Finally we have computed NT2 as
the union of the FPs produced by the matching systems.

Table 2 provides a quantitative description of the content of NT2, and of the ef-
fort needed to build it. As from the first row of Table 2 the total number of annotated
mappings was 2553+2163+2151=6867. Notice that this is 6 orders of magnitude lower

8 See also http://www.ontologymatching.org/
9 In the evaluation discussed in this paper we have used the basic version of S-Match and not

the enhanced version described in [1].



Table 2. Total number of mappings and number of FP computed by COMA, SF and S-Match on
M

′

COMA SF SM
Found (S) 2553 2163 2151

Incorrect (FP) 870 776 781

than the number of mappings to be considered in the case of complete reference map-
ping. Notice also that the number of mappings per system is very balanced, as required.
Figure 8 shows how the FPs produced by the systems are partitioned.

Fig. 8. Partitioning of the FPs computed by COMA, SF and S-Match on M
′

As from Figure 8, there are no FPs found by SM, COMA and SF, or even by SM
and COMA together. There are the small intersections between the FPs produced by SM
and by SF (0.1%) or by COMA and by SF (2.3 %). These results justify our assumption
that all 3 systems belong to different classes.

The final result is that NT2 consists of 2374 mappings. Notice that the size of NT2

is not equal to the sum of the FPs reported in the second row of Table 2 since, as from
Figure 8, there is some intersection among these sets. The union of NT2 with TaxME
has allowed us to compute a reference mapping TaxME 2, good for the evaluation of
both Recall and Precision, of 2265+2374=4639 mappings.

5 Evaluating the dataset

In this section we present an evaluation of the Complexity and Discrimination Capabil-
ity of TaxME 2. In particular we exploit the results of twelve matching systems (Apfel
[6], CMS [15], ctxMatch2 [4], OLA [10], OMAP [21] and seven systems participated in
OAEI-2006 [8] evaluation). For all the systems we use the default settings or, if appli-
cable, the settings provided by the authors for the OAEI-2005,2006 [9, 8] evaluations.
We also compare the results of the matching systems with the results of the systems ex-
ploited in the dataset construction process (COMA, SF and SM). The evaluation results,
in terms of TP and FP, are presented in Table 3.



Table 3. Number of FP and TP on TaxME 2 dataset

Apfel CMS ctxMatch OLA OMAP COMA SF SM Hmatch Falcon Automs RiMOM OCM COMA++ Prior

FP 670 367 299 1356 1113 870 776 781 632 1513 730 1416 712 1343 1085
TP 269 319 298 724 694 876 218 669 303 1030 330 915 356 608 552

5.1 Complexity

Figure 9 presents the Precision of the systems when evaluated on TaxMe 2. As from

Fig. 9. Evaluation results. Precision on TaxME 2 dataset

Figure 9 the maximum Precision is about 0.5, a value which is significantly lower than
the results obtained with the other datasets. For example, the average Precision demon-
strated by Falcon, FOAM, CMS and OMAP on the real world part of the systematic
tests (problems 301, 302, 303, 304) in the OAEI-2005 evaluation [9] was in the 0.91-
0.93 range.

Figure 10 illustrates the Recall of the matching systems while Figure 11 presents
the F-Measure as an aggregated matching quality measure. The best F-Measure is 0.45

Fig. 10. Evaluation results. Recall on TaxME 2 dataset



Fig. 11. Evaluation results. F-Measure on TaxME 2 dataset

what is significantly lower than the results demonstrated by the systems on the other
datasets.

The results of our evaluation highlight the complexity of TaxME 2. The other in-
teresting observation is that the systems exploited in the dataset construction process
demonstrate a performance which is comparable with the other systems. In fact all
evaluated systems have experienced the same problems as COMA, SF and SM. This
fact justifies that TaxME 2 reflects the inherent properties of real world problems. At
the same time, it is still very hard for the state of the art matching systems.

5.2 Discrimination Capability

Consider Figures 12 and 13. They present the partitioning of the FPs and the TPs

Fig. 12. Partitioning of FPs found by matching systems in TaxME 2 dataset according to the
number of systems which found them

in TaxME 2 according to the results of the matching systems. As from Figure 12 all
matching systems provided the correct results only for 20% of the FPs while 25% of
the FPs are incorrectly found by ten or more matching systems. At the same time 29%
of the TPs are not found by any of the matching systems and 65% of the TPs are



Fig. 13. Partitioning of TPs found by matching systems in TaxME 2 dataset according to the
number of systems which found them

found by 2 or less of the matching systems. Figures 12 and 13 illustrate the fact that the
different systems experience difficulties on different parts of the dataset (i.e., TaxME 2
is discriminative or it is hard for the different systems in the different ways).

6 Conclusion and Future Work

In this paper we have presented a large scale mapping dataset constructed starting from
Google, Yahoo and Looksmart web directories. The dataset allows for the evaluation
of Precision and Recall. Twelve state of the art matching solutions have been evalu-
ated on the dataset. The evaluation results highlight the fact that the dataset posses the
key important properties of Complexity and Discrimination capability. Notice that the
dataset is correct by construction since the final decision for every mapping is taken by
the human annotator.

As a future work we are going to investigate the mapping dataset construction pro-
cess in the case of expressive ontologies. The other promising direction of research is
devoted to the further automation of the mapping dataset construction process. The ulti-
mate goal in this direction is to minimize the human effort while increasing the datasets
size.
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