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ABSTRACT
Federated adversary domain adaptation is a unique distributed min-
imax training task due to the heterogeneous data among different
local clients, where each client only sees a subset of the data that
merely belongs to either the source or target domain. Despite the
extensive research in distributed minimax optimization, existing
communication efficient solvers that exploit multiple steps of the
local update are still not able to generate satisfactory solutions
for federated adversarial domain adaptation because of the gra-
dient divergence issue among clients. To tackle this problem, we
propose a distributed minimax optimizer, referred to as FedMM,
by introducing dual variables to bridge the gradient gap among
clients. This algorithm is effective even in the extreme case where
each client has different label classes and some clients only have
unlabeled data. We prove that FedMM admits benign convergence
to a stationary point under domain-shifted unlabeled data. On a
variety of benchmark datasets, extensive experiments show that
FedMM consistently achieves both better communication savings
and significant accuracy improvements over existing federated op-
timizers based on the stochastic gradient descent ascent (SGDA)
algorithm. When training from scratch, for example, it outperforms
other SGDA based federated average methods by around 20% in
accuracy over the same communication rounds; and it consistently
outperforms when training from pre-trained models.
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1 INTRODUCTION
Federated Learning (FL) is gaining popularity because it enables
multiple clients to train machine learning models without directly
sharing the potentially sensitive data with other clients [11, 13].

A typical FL training pipeline involves exchanging local model
parameters with a centralized server to update the global model pa-
rameter, and its communication overhead has been, in many cases,
identified as the bottleneck [3, 20] of the training pipeline. More-
over, domain shift often exists between clients’ data [23], which
is another inherent characteristic of FL training, where the data
are sampled from different parts of the sample space on different
clients. Because of the aforementioned unique features, FL training
needs efficient optimizers that converge over heterogeneous data
among clients with fewer communication rounds.

For data with distributional shifts, one of the most challenging
settings is that each local client only has access to a subset of
the label classes in order to train the global/common model. In
this situation, the global model’s accuracy suffers considerably
as a result of the gradient/model drift [20]. In the literature of
domain adaptation, this problem is also known as label shift [29,
38]. Under the setting of FL, however, label shift is ubiquitous
due to the imbalance between clients’ label distributions, with
the extreme case being that individual clients have disjoint labels
or only unlabeled data. While domain adversarial training is a
classic technique in centralized settings [7, 31, 43], the distributed
nature of FL makes the direct application of this line of approaches
particularly challenging.

One method is to use the stochastic gradient descent ascent
(SGDA) method [15] directly as if the data are homogeneous and
centralized, where data are aggregated together to find the saddle
point solutions [10, 16] of a minimax problem. However, because
of the potential domain shifts among clients in FL settings, a single
client cannot access an unbiased sample of the gradient from the
global objective function. A natural solution would be to average
each client’s gradients, which exactly corresponds to the FedSGDA
approach in [22]. Its training efficiency, on the other hand, is low
due to the requirement of large communication rounds between
the server and clients. Without considering the issue of domain
shift, there are several works on communication-efficient FL algo-
rithms. A large spectrum of these algorithms are variations of the
classic FedAvg [20]. Following this pipeline, a natural extension of



Figure 1: FedAvgSGDA for CDAN with 2 clients. The ratios for
source and target data allocated to client 1 are 𝑝 and (1 − 𝑝 ) . The
remaining data pertains to client 2. It shows that the performance
of FedAvgSGDA degrades rapidly as the data distribution becomes
imbalanced, which motivates our FedMM algorithm.

FedSGDA is FedAvgSGDA shown in Algorithm 3 in the appendix.
However, if the data are non-i.i.d among clients, especially in the
case of imbalanced label distributions [42], the performance of Fe-
dAvg would be significantly lower than that when all the data were
trained on a single client. As empirically demonstrated in Fig. 1, we
can see that the performance of FedAvgSGDA degrades rapidly as
the data distributions become more and more imbalanced.

Figure 2: A federated adversarial domain adaptation model. Only
the source risk of the client’s local source data (if any) and the do-
main risk of the client’s source/target data are accessible locally. The
source data labels are non-i.i.d.

FedMM. In light of the above challenges, to optimize a federated
minimax objective, we formulate this distributed saddle point opti-
mization as a FederatedMiniMax (FedMM) optimization on a sum of
non-identical distributions. In particular, we use an augmented La-
grange function to enforce the global model consensus constraints.
In each client’s local optimization oracle, FedMM deconstructs the
global sum by solving the augmented Lagrange of each function
individually in a finite number of steps. The collection of Lagrange
dual variables will then locally compensate for the client-to-client
model divergence caused by domain shift. To summarize, our main
contributions are listed as follows.

Contributions:
(i) We present, FedMM, a stochastic federated optimizer tailored

for federated minimax optimizations with non-separable minimiza-
tion and maximization variables, as well as clients with imbalanced

label class distributions. FedMM is effective in the extreme case
where each client has disjoint classes of labels or unlabeled data.

(ii) Under the generic federated saddle point optimization prob-
lem with a nonconvex-concave global objective function assump-
tion, we prove that FedMM converges asymptotically to a stationary
point for the nonconvex-strongly-concave setting under local up-
date residual errors and distribution shifts

(iii) Empirically, we show that FedMM consistently achieves
either significant communication savings or accuracy improve-
ments over the federated SGDA method on a variety of benchmark
datasets with varying adversarial domain adaptation networks. For
example, when training from scratch, it outperforms other SGDA
based federated average methods by around 20% in accuracy over
the same communication rounds.

2 PRELIMINARIES
2.1 Adversarial Domain Adaptation
Domain adaptation refers to the process of transferring knowledge
from a labeled source domain to an unlabeled target domain [2, 42].
Let P and Q be the source and target distributions, respectively.
In a general formulation, the upper bound of the target prediction
error is given by Ben-David et al. [2]

errQ (𝜁 ) ≤ errP (𝜁 ) +𝑑H (P,Q) + min
𝜁 ∗∈F

{errP (𝜁 ∗) + errQ (𝜁 ∗)}, (1)

where errQ (𝜁 ) denotes the population loss of 𝜁 under the target
distribution Q, i.e., errQ (𝜁 ) ≜ E(x𝑖 ,y𝑖 )∼Q [ℓ (𝜁 (x𝑖 ), y𝑖 )], and we
use the parallel notation errP (𝜁 ) for the source domain error. Be-
sides, 𝑑H (P,Q) is a discrepancy-based distance, known as the
H -divergence, and min𝜁 ∗∈F{errP (𝜁 ∗) + errQ (𝜁 ∗)} is the optimal
joint error, i.e., the sum of source and target domain’s population
loss of 𝜁 in a hypothesis class F . For the unsupervised domain
adaptation problem, it has been proven that minimizing the upper
bound, which is the r.h.s in (1), leads to an architecture consisting
of a feature extractor parameterized by 𝜔 , i.e., 𝜁 1𝜔 , a label predictor,
parameterized also by 𝜔 i.e., 𝜁 2𝜔 ( 𝜁𝜔 ≜ 𝜁 2𝜔 ◦ 𝜁 1𝜔 ), 1 and a domain
classifier parameterized by𝜓 , i.e., ℎ𝜓 , as shown in Fig 2 [6, 43]. The
feature extractor generates the domain-independent feature repre-
sentations, which are then fed into the domain classifier and label
predictor. The domain classifier then tries to determine whether
the extracted features belong to the source or target domain. Mean-
while, the label predictor predicts instance labels based on the
extracted features of the labeled source-domain instances.

Minimizing the upper bound in (1) encourages the extracted
features to be both discriminative and invariant to changes between
the source and target domains. The upper bound minimization
corresponding to a saddle point over the parameter space of 𝜔 and
𝜓 has been demonstrated using 𝜔 ≜ argmin𝜔 𝐿1 (𝜔) − 𝜈𝐿2 (𝜔,𝜓 )
and𝜓 ≜ argmin𝜓 𝐿2 (𝜔,𝜓 ) with an equivalent minimax form as

min
𝜔

max
𝜓

𝐹 = min
𝜔

max
𝜓

𝐿1 (𝜔) − 𝜈𝐿2 (𝜔,𝜓 ) . (2)

In the majority of adversarial domain adaptation problems, 𝐿1 (𝜔) ≜
E(x𝑖 ,y𝑖 )∼Q [ℓ (𝜁𝜔 (x𝑖 ), y𝑖 )] is the supervised learning loss on 𝜁 ,𝐿2 (𝜔,𝜓 )

1The parameters of 𝜁 1 and 𝜁 1 are not the same. In this case, we abuse the notation to
simplify the expression.



≜ E(x𝑖 )∼Q𝐷𝑄 (ℎ𝜓
(
𝜁 ′𝜔 (x𝑖 )

)
− E(x𝑖 )∼P𝐷𝑃 (ℎ𝜓

(
𝜁 ′𝜔 (x𝑖 )

)
is the do-

main classification loss, and 𝜈 is the trade-off coefficient between
𝐿1 (𝜔) and 𝐿2 (𝜔,𝜓 ). With the commonly used cross-entropy loss
for 𝐿2, we have 𝐷𝑄 (𝑥) ≜ 1 − log(𝑥) and 𝐷𝑃 (𝑥) ≜ log(1 − 𝑥). Be-
sides, 𝜁 ′𝜔 is the feature and ℎ𝜓 (·) : R𝐷 → [0, 1] is the probabilistic
prediction of the domain label. In general, 𝜁 ′𝜔 and ℎ𝜓 (·) include, but
is not limited to, the following cases: (i) Domain-Adversarial Neural
Networks (DANN) [6]: In DANN, the input of ℎ𝜓 (·) is designed
simply to be the domain invariant feature 𝜁 1𝜔 (x𝑖 ), i.e., ℎ𝜓

(
𝜁 1𝜔 (x𝑖 )

)
.

(ii) Margin Disparity Discrepancy (MDD) [41]: In MDD, the input of
ℎ𝜓 (·) is the concatenation of 𝜁 1𝜔 and argmax𝑐 𝜁𝜔 (x𝑖 ; 𝑐) with 𝑐 the
class type i.e., ℎ𝜓

( [
𝜁 1𝜔 (x𝑖 ) , argmax𝑐 𝜁𝜔 (x𝑖 ; 𝑐)

] )
. (iii) Conditional

Domain Adaptation Network (CDAN) [17]: In CDAN, the input
of ℎ𝜓 is from the cross-product space of 𝜁 1𝜔 (x𝑖 ) and 𝜁𝜔 (x𝑖 ), i.e.,
ℎ𝜓

(
𝜁 1𝜔 (x𝑖 ) ⊗ 𝜁𝜔 (x𝑖 )

)
.

Our FedMM is a generic federated adversarial domain adapta-
tion framework in which each client is equipped with ℎ𝜓 and 𝜁𝜔
depending on the availability of source data, target data, or both.

The objective function in an adversarial domain adaptation prob-
lem is determined by whether the data is from the source domain
or the target domain, i.e.,

𝐹𝑖

(
𝜔,𝜓 ; 𝜉 (𝑖 )

𝑗

)
≜


ℓ (𝜁𝜔 (x𝑖 ) , y𝑖 ) + 𝜈 log(1−

ℎ𝜓
(
𝜁 ′𝜔 (x𝑖 )

)
), if 𝜉𝑖 ∈ P,

𝜈 log(ℎ𝜓
(
𝜁 ′𝜔 (x𝑖 )

)
), if 𝜉𝑖 ∈ Q .

(3)

2.2 Federated Learning under Domain Shifts
We focus on the cross-silo FL adversarial domain adaptation prob-
lem, in which the training dataset is distributed across silos in a
multi-organizational context, such as in healthcare, banking, fi-
nance and so on, where institutions hold users’ data but cannot
share it directly with other institutions for collaborative learning.
As a result, federated adversarial domain adaptation addresses the
problem by training a model among clients from a labeled source
domain to an unlabeled target domain. A centralized server coordi-
nates between the clients to solve the learning task. To express the
federated adversarial domain adaptation objective, we convert the
joint learning objective of (2) into the form of a centralized average
of all the clients’ objective functions, as given by

min
𝜔

max
𝜓

𝑓 (𝜔,𝜓 ) ≜ min
𝜔

max
𝜓

1
𝑁

𝑁∑︁
𝑖=1

𝑓𝑖 (𝜔,𝜓 )

=min
𝜔

max
𝜓

1
𝑁

𝑁∑︁
𝑖=1

𝛼𝑖

∑︁
𝜉
(𝑖 )
𝑗

∈D𝑖

𝐹𝑖

(
𝜔,𝜓 ; 𝜉 (𝑖 )

𝑗

)
,

(4)

where 𝑁 is the number of clients, 𝑓𝑖 (𝜔,𝜓 ) is the loss function at
the 𝑖-th client, 𝛼𝑖 is the weight coefficient, and 𝐹𝑖

(
𝜔,𝜓 ; 𝜉 𝑗

)
is the

loss function w.r.t the data point 𝜉 (𝑖 )
𝑗
≜ {x𝑗 , y𝑗 } with specific form

determined by whether the data is from the source domain or the
target domain.

This novel problem structure introduces several unique chal-
lenges in federated adversarial domain adaptation that do not exist
in existing adversarial domain adaptation problems or the FL litera-
ture: (i) Clients are restricted to compute the minimax optimization

in a distributed manner rather than the centralized minimax opti-
mization. (ii) To train a centralized model, both the set of feature
extractor variables 𝜔 and domain classifier variables 𝜓 are non-
separable cross clients.

(iii) The marginal label distributions are class-imbalanced across
clients due to the imbalanced distribution of source domain data
and target domain data. In extreme cases, each client may only have
access to data from the target domain or the source domain, but
not both.

To address the above unique challenges in federated domain
adaptation, we propose FedMM, a general algorithm that works for
minimax optimization under FL. FedMM is designed for imbalanced
label classes among clients in federated minimax training, a unique
problem in domain adaptation.

3 FEDMM ALGORITHM
In this section, we look at the federated minimax problem by refor-
mulating the centralized problem in (4) into the federated saddle-
point optimization problem with consensus constraints given by

min
𝜔0,𝜔𝑖

max
𝜓0,𝜓𝑖

𝑓 (𝜔,𝜓 ) = 1
𝑁

𝑁∑︁
𝑖=1

𝑓𝑖 (𝜔𝑖 ,𝜓𝑖 )

s.t. 𝜔𝑖 = 𝜔0, 𝜓𝑖 = 𝜓0, ∀𝑖 ∈ [𝑁 ] .
(5)

The corresponding augmented Lagrangian form for each client is
defined as

L𝑖 (𝜔0, 𝜔𝑖 , 𝜆𝑖 ,𝜓0,𝜓𝑖 , 𝛽𝑖 ) ≜ 𝑓𝑖 (𝜔𝑖 ,𝜓𝑖 ) + ⟨𝜆𝑖 , 𝜔𝑖 − 𝜔0⟩

+ 𝜇12 ∥𝜔𝑖 − 𝜔0∥22 − ⟨𝛽𝑖 ,𝜓𝑖 −𝜓0⟩ −
𝜇2
2 ∥𝜓𝑖 −𝜓0∥22, 𝜇1, 𝜇2 > 0.

(6)

The centralized optimization problem in (4) is then transformed
into a saddle-point minimax optimization of augmented Lagrangian
functions over all primal-dual pairs, i.e., {𝜔𝑖 , 𝜔0, 𝜆𝑖 ,𝜓𝑖 ,𝜓0, 𝛽𝑖 } for
all clients 𝑖 ∈ [𝑁 ]:

min
𝜔0,𝜔𝑖

max
𝜓0,𝜓𝑖

L
(
{𝜔𝑖 }𝑁𝑖=0, {𝜓𝑖 }

𝑁
𝑖=0, {𝜆𝑖 }

𝑁
𝑖=1, {𝛽𝑖 }

𝑁
𝑖=1

)
≜ min
𝜔0,𝜔𝑖

max
𝜓0,𝜓𝑖

1
𝑁

𝑁∑︁
𝑖=1

L𝑖 (𝜔0, 𝜔𝑖 ,𝜓0,𝜓𝑖 , 𝜆𝑖 , 𝛽𝑖 ) .
(7)

By fixing the global consensus variables {𝜔0,𝜓0}, the above problem
is separable w.r.t local pairs {𝜔𝑖 ,𝜓𝑖 , 𝜆𝑖 , 𝛽𝑖 } for all 𝑖 ∈ [𝑁 ]. And the
decomposed task could be independently updated on local clients
periodically without global communication. The only problem left
is to align the update of global consensus 𝜔0,𝜓0 and local updates
𝜔𝑖 ,𝜓𝑖 for all 𝑖 ∈ [𝑁 ]. Next, we demonstrate how to achieve dis-
tributed local updates and align local updates with global consensus.
By substituting (6) into (7), we obtain the augmented Lagrangian
functions over all primal-dual parameters:

min
𝜔𝑖

max
𝜓𝑖

L
(
{𝜔𝑖 }𝑁𝑖=0, {𝜓𝑖 }

𝑁
𝑖=0, {𝜆}

𝑁
𝑖=1, {𝛽}

𝑁
𝑖=1

)
=
1
𝑁

𝑁∑︁
𝑖=1

min
𝜔𝑖

max
𝜓𝑖

(
𝑓𝑖 (𝜔𝑖 ,𝜓𝑖 ) + ⟨𝜆𝑖 , 𝜔𝑖 − 𝜔0⟩

+ 𝜇12 ∥𝜔𝑖 − 𝜔0∥22 − ⟨𝛽𝑖 ,𝜓𝑖 −𝜓0⟩ −
𝜇2
2 ∥𝜓𝑖 −𝜓0∥22

)
,

(8)

where 𝜇1 and 𝜇2 are the penalty parameters. The minimax opti-
mization w.r.t the global consensus variable 𝜔0 and 𝜓0 is given



by:

𝜔0 = argmin
𝜔0

1
𝑁

𝑁∑︁
𝑖=1

(
𝑓𝑖 (𝜔𝑖 ,𝜓𝑖 ) + ⟨𝜆𝑖 , 𝜔𝑖 − 𝜔0⟩

+ 𝜇12 ∥𝜔𝑖 − 𝜔0∥22 − ⟨𝛽𝑖 ,𝜓𝑖 −𝜓0⟩ −
𝜇2
2 ∥𝜓𝑖 −𝜓0∥22

)
=
1
𝑁

𝑁∑︁
𝑖=1

(
𝜔𝑖 +

1
𝜇1

𝜆𝑖

)
, (9)

where the closed-form solution is due to the quadratic optimization.
Similarly, we obtain

𝜓0 =
1
𝑁

𝑁∑︁
𝑖=1

(
𝜓𝑖 +

1
𝜇2

𝛽𝑖

)
. (10)

Eqn. (9) and (10) provide guidance for local update alignment with
global consensus. More specifically, in each round, we optimize
each client’s individual 𝜔𝑖 and 𝜓𝑖 , by fixing the global consensus
constraints (𝜔0 and 𝜓0) and dual parameters (𝜆𝑖 and 𝛽𝑖 ). Taking
the (𝑡 + 1)-th round update as an example. Client 𝑖 receives the
global parameters {𝜔𝑡

0,𝜓
𝑡
0} from the server and sets local parame-

ters 𝜔0
𝑖
= 𝜔𝑡

0,𝜓
0
𝑖
= 𝜓𝑡

0 .
2 Then, the local saddle-point optimization

of (8) w.r.t {𝜔𝑖 ,𝜓𝑖 } is updated by multiple-step SGDA to reduce the
communication rounds between a client and the server:

𝜔𝑚+1
𝑖 = 𝜔𝑚

𝑖 − 𝜂1∇𝜔𝑖
L𝑖 (𝜔𝑚

𝑖 ,𝜓𝑚
𝑖 )

= 𝜔𝑚
𝑖 − 𝜂1

[
∇𝜔𝑖

𝑓𝑖 (𝜔𝑚
𝑖 ,𝜓𝑚

𝑖 ) + 𝜇1 (𝜔𝑚
𝑖 − 𝜔𝑡

0) + 𝜆𝑡𝑖

] (11)

𝜓𝑚+1
𝑖 = 𝜓𝑚

𝑖 + 𝜂2∇𝜓𝑖
L𝑖 (𝜔𝑚

𝑖 ,𝜓𝑚
𝑖 )

= 𝜓𝑚
𝑖 + 𝜂2

[
∇𝜓𝑖

𝑓𝑖 (𝜔𝑚
𝑖 ,𝜓𝑚

𝑖 ) − 𝜇2 (𝜓𝑚
𝑖 −𝜓𝑡

0) − 𝛽𝑡𝑖

]
,

(12)

where𝑚 ∈ [𝑀𝑖 ]. We denote 𝜔𝑡+1
𝑖

= 𝜔
𝑀𝑖

𝑖
and 𝜓𝑡+1

𝑖
= 𝜓

𝑀𝑖

𝑖
for the

results of 𝑀𝑖 -th step local update. The dual parameters are then
updated using SGDA by

𝜆𝑡+1
𝑖

= 𝜆𝑡
𝑖
+ 𝜇1 (𝜔𝑡+1

𝑖
− 𝜔𝑡

0), (13)
𝛽𝑡+1
𝑖

= 𝛽𝑡
𝑖
+ 𝜇2 (𝜓𝑡+1

𝑖
−𝜓𝑡

0). (14)
To align with the global consensus constraint obtained in (9) and
(10), we set

𝜔𝑡+
𝑖 = 𝜔𝑡+1

𝑖 +
𝜂𝑡3
𝜇1

𝜆𝑡+1𝑖 ; 𝜓𝑡+
𝑖 = 𝜓𝑡+1

𝑖 +
𝜂𝑡3
𝜇2

𝛽𝑡+1𝑖 . (15)

Note that different from vanilla augmented Lagrangian, we intro-
duce the decay factor 𝜂𝑡3 < 1, which helps FedMM converge with
smaller local steps. Therefore, the global consensus constraint is
satisfied by the global update at the server with

𝜔𝑡+1
0 =

1
𝑁

𝑁∑︁
𝑖=1

𝜔𝑡+
𝑖 , and 𝜓𝑡+1

0 =
1
𝑁

𝑁∑︁
𝑖=1

𝜓𝑡+
𝑖 . (16)

We can now summarize one round of the FedMM algorithm, which
consists of three major steps: (i) Parallel saddle-point optimization
on all local augmented Lagrangian function L𝑖 ’s. One optimization
oracle example is based on SGDA, as shown in (11) and (12). (ii) Local
gradient descent and ascent updates on dual variable ({𝛽𝑖 , 𝜆𝑖 }) as
shown in (14). (iii) Aggregation to update global consensus variables
2We use {𝜔𝑖 ,𝜓𝑖 } to denote the local iterative updates for {𝜔𝑖 ,𝜓𝑖 } to differentiate
symbols of local updates and global updates.

{𝜔0,𝜓0} in (16). After one round of global communication. The
global coordinated value of {𝜔𝑡+1

0 ,𝜓𝑡+1
0 } is then broadcasted back

to each client, triggering next-round updates. The summarized
diagram and algorithm of FedMM is shown in Fig. 3 and Algorithm 1

Algorithm 1 FedMM Algorithm

Require: Initialize 𝜔0
0,𝜓

0
0 , 𝜇1, 𝜇2, 𝜂1, 𝜂2, 𝜂3, {𝑀𝑖 }𝑁𝑖=0,𝑇

1: for 𝑡 = 0, . . . ,𝑇 − 1 do
2: for each client 𝑖 ∈ [𝑁 ] in parallel do
3: 𝜔0

𝑖
= 𝜔𝑡

0; 𝜓0
𝑖
= 𝜓𝑡

0
4: # Local Update:
5: for𝑚 = 0, . . . , 𝑀𝑖 − 1 do
6: # Stochastic Gradient Descent:
7: 𝜔𝑚+1

𝑖
= 𝜔𝑚

𝑖
− 𝜂1 [∇𝜔𝑖

𝑓𝑖 (𝜔𝑚
𝑖
,𝜓𝑚

𝑖
) + 𝜇1 (𝜔𝑚

𝑖
− 𝜔𝑡

0 ) + 𝜆𝑡
𝑖
]

8: # Stochastic Gradient Ascent
9: 𝜓𝑚+1

𝑖
= 𝜓𝑚

𝑖
+ 𝜂2 [∇𝜓𝑖

𝑓𝑖 (𝜔𝑚
𝑖
,𝜓𝑚

𝑖
) − 𝜇2 (𝜓𝑚

𝑖
−𝜓𝑡

0 ) − 𝛽𝑡
𝑖
]

10: end for
11: 𝜔𝑡+1

𝑖
= 𝜔

𝑀𝑖

𝑖
; 𝜓𝑡+1

𝑖
= 𝜓

𝑀𝑖

𝑖
12: # Dual Descent:
13: 𝜆𝑡+1

𝑖
= 𝜆𝑡

𝑖
+ 𝜇1 (𝜔𝑡+1

𝑖
− 𝜔𝑡

0)
14: # Dual Ascent:
15: 𝛽𝑡+1

𝑖
= 𝛽𝑡

𝑖
+ 𝜇2 (𝜓𝑡+1

𝑖
−𝜓𝑡

0)
16: 𝜔𝑡+

𝑖
= 𝜔𝑡+1

𝑖
+ 𝜂𝑡3

𝜇1
𝜆𝑡+1
𝑖

; 𝜓𝑡+
𝑖

= 𝜓𝑡+1
𝑖

+ 𝜂𝑡3
𝜇2
𝛽𝑡+1
𝑖

17: end for
18: # Global Update:
19: 𝜔𝑡+1

0 = 1
𝑁

∑𝑁
𝑖=1 𝜔

𝑡+
𝑖
; 𝜓𝑡+1

0 = 1
𝑁

∑𝑁
𝑖=1𝜓

𝑡+
𝑖

20: end for

Figure 3: The FedMM algorithm addresses the federated ad-
versarial domain adaptation as shown in the flowchart. Each
source and target client has unique local minimax objectives
due to domain distribution differences. Clients conduct local
optimization, upload parameters to the server, and receive av-
eraged parameter updates in parallel, completing one-round
updates.



Figure 4: FedMM is robust to label imbalance. Experiments with
the same setting as that in Fig. 1.

4 EXPERIMENTS
Our experiments have three main goals. (1) We create a feder-
ated domain adaptation benchmark that is communication-efficient
by combining three representative domain adaptation methods:
DANN [6], MDD [41], and CDAN [17]. (2) We demonstrate the
strength of our proposed FedMM algorithm on the Federated do-
main adaptation benchmark, showing how our proposed FedMM
improves model generalization while significantly reducing com-
munication rounds. (3) We investigate the contributions of various
components of our algorithm, such as multi-step local updates,
proximal terms in local objectives, dual variables, and the choice
of 𝜂3. Our experiments are primarily concerned with the training
communication overhead and test accuracy on the label-free target
data set. Appendix B contains detailed descriptions of the dataset
used in this experiment.

Experiment Setup. On MNISTM, we use a three-layer convolu-
tional network as the invariant feature extractor, and the network
models are trained from random initialization on server. On Office-
31, we use the pre-trained MobileNetV2 [28] on ImageNet [27] as
the feature extractor. For a fair comparison, the pre-trained Mo-
bileNetV2 is downloaded from the pre-trained one by [28]. Both
the task classifier and the domain classifier are two-layer fully-
connected neural networks. The domain classifier’s parameter
are trained from random initialization in all settings. The hyper-
parameter settings are provided in Appendix C and our code is
available at
github.com/fedmm/FedMM.

4.1 Ablation Experiment on FedMM
We first investigate how a change in label imbalance affects model
training performance. Consider the case of two clients and set the
ratios for source and target data assigned to client 1 as 𝑝 and 1 − 𝑝 ,
respectively. The commonly used adversarial domain adaptation
models including DANN [6], CDAN [41] , and MDD [17] are tested
separately as the local model. The label imbalance degree varies
from 𝑝 = 0.5 to 𝑝 = 1. FedMM is robust to variations in label
distribution, as shown in Fig. 4, and performs well even in the
worst-case scenario, in which the source domain data and target
domain data are allocated to different clients separately, i.e., 𝑝 = 1.
In practice, 𝑝 = 1 occurs frequently because different silos contain

data from distinct domains. We will focus on the 𝑝 = 1 case for the
remainder of the experiment to test the effectiveness of FedMM.

Unlike the traditional augmented Lagrangian method, FedMM
introduces 𝜂3 < 1 for the FL setting to reduce the need for large
local update steps𝑀𝑖 for convergence. When 𝜂3 = 1, as shown in
Fig.6, large local steps with𝑀𝑖 > 50 are required. With appropriate
𝜂3, one can reduce𝑀𝑖 from 50 to 25 with negligible performance
loss for all three adversarial domain adaptation models. Note that
if 𝜂3 is less than the feasible range, the outcome will be suboptimal.

4.2 FedMM is the State-of-the-Art of Federated
Domain Adaptation

With extensive experiments, we show that FedMM achieves SOTA
performance in terms of accuracy and communication overhead.
We include the following two kinds of baselines:

(i) Recent work on distributedminimax optimization including [4,
26, 30, 35] with extensive studies for different adversarial domain
adaptation tasks shown in Table 1. As MDD is the SOTA network
of centralized domain adaptation in current stage, we only compare
these works on federated domain adaptation with MDD loss.

(ii)Peng et al.[22] proposed FedSGDA to extend FedSGD to SGDA
for federated domain adaptation, where the single step per com-
munication round in SGDA resulted in massive communication
overhead as observed in experiments. Though, to the best of our
knowledge, there is no communication-efficient federated domain
adaptation algorithm. To reduce communication overhead, we in-
spire from the existing multi-step federated minimization optimiz-
ers like FedAvg [20], and FedProx [14], which leads to FedAvgSGDA
and FedProxSGDA in Algorithm 3 as described in Appendix A.

Performance comparison: FedMM has far fewer global com-
munication rounds than FedSGDA, as illustrated in Fig.6. FedMM
saves more than 90% of the rounds required to achieve the same
level of test accuracy on the target domain as FedSGDA in all three
categories of representative domain adaptation networks due to
the deliberately designed FedMM’s local multi-step minimax opti-
mization at each client.

Moreover, FedMM not only reduces communication overhead
but also ensures accuracy. Gradient drift causes severe performance
degradation in multi-step local SGDA on existing baselines. In Fig. 7,
we compare the convergence property of our proposed FedMM
to FedAvgSGDA and FedProxSGDA with 𝑀𝑖 = 20 for different
source/target client settings. While both the FedAvgSGDA and
FedProxSGDA algorithms converge in a communication-saving
manner at the expense of severe performance decay, FedMM consis-
tently outperforms them by more than 20% in terms of test accuracy
for training from scratch with all the three domain adaptation net-
works. The results clearly show how that FedMM addresses the
problem of gradient drifts in multi-steps local minimax, which have
not been observed in any previous FL problems other than federated
adversarial domain adaptation.

We compare FedMM to all of the above baselines on commonly
used domain adaptation tasks on Office-31, including 𝐴 →𝑊 , etc.
six tasks with pretrained model, i.e., MobileNetV2 [28] on ImageNet
[27]. When compared to the training from scratch case in Fig. 7, it is
expected that FedMM’s performance improvement will be reduced.



(a) DANN (b) MDD (c) CDAN

Figure 5: Accuracy heatmap using various pairs of 𝜂3 and𝑀𝑖 . The blank sections represent the settings from which FedMM deviates.

(a) DANN (b) MDD (c) CDAN

Figure 6: Comparisons of convergence for the proposed FedMM with FedSGDA [22] on different number of local steps of𝑀𝑖 = 20 and𝑀𝑖 = 25.
The comparison is based on different adversarial domain networks, i.e., DANN, MDD, and CDAN. Models are trained from scratch on
MNISTM.

Because the feature extractor parameters in these pre-trained mod-
els have approached optimal values. FedMM achieves SOTA with
significant accuracy improvement while save much communica-
tion overhead over single step local update method. Interestingly,
even though other multi-step local update distributed minimax
optimization methods including [4, 26, 30] save the communica-
tion overhead, they do not have a evident performance gain over
FedAvgSGDA.

5 CONVERGENCE ANALYSIS
For a theoretical analysis, finding a global saddle point, i.e.,
min𝑥 max𝑦 𝑓 (𝑥,𝑦), in general is intractable [16]. One approach is
to equivalently reformulate the problem by
min𝑥

{
Φ(𝑥) := max𝑦∈Y 𝑓 (𝑥,𝑦)

}
, and define an optimality notion

for the local surrogate of global optimum ofΦ. A series of theoretical
analyses on the stationary point convergence condition of Φ with
first-order algorithmwere carried out to extend the convex-concave
assumption to assumptions of nonconvex-strongly-concave [18, 24,
34], nonconvex-concave [16, 21], and nonconvex-nonconcave [10].
Convergence analysis for a federated optimizer, such as FedMM that
involves bounding client’s drift from global parameter via primal-
dual method, on the other hand, is more challenging. We establish
our main convergence results and show that FedMM converges
asymptotically to the stationary point for the nonconvex-strongly-
concave case.

Let𝜓★(𝜔) ≜ argmax𝜓 𝑓 (𝜔,𝜓 ) be the optimal value of𝜓 for the
global objective function 𝑓 w.r.t 𝜔 . Then (4) can be reformulated as

min𝜔 𝑓 (𝜔,𝜓 ) = min𝜔 1
𝑁

∑
𝑖 Φ𝑖 (𝜔) with

Φ𝑖 (𝜔) ≜ 𝑓𝑖 (𝜔,𝜓★(𝜔)), Φ(𝜔) ≜ 1
𝑁

𝑁∑︁
𝑖=1

Φ𝑖 (𝜔) . (17)

In this way, we equivalently reformulate the problem as
min𝜔

{
Φ(𝜔) = max𝜙 𝑓 (𝜔,𝜙)

}
. To ease the presentation, we further

define the augmented Lagrange function of Φ𝑖 by

LΦ
𝑖 (𝜔

𝑡
𝑖 , 𝜔

𝑡
0, 𝜆

𝑡
𝑖 ) = Φ𝑖 (𝜔𝑡

𝑖 ) + ⟨𝜆𝑡𝑖 , 𝜔
𝑡
𝑖 − 𝜔𝑡

0⟩ +
𝜇1
2
𝜔𝑡

𝑖 − 𝜔𝑡
0
2 . (18)

5.1 Assumptions
Note that we concentrate on the convergence analysis of the feder-
ated nonconvex-strongly-concave case, which is difficult even in a
centralized setting and has recently received increased attention in
the literature [10, 16, 19]. Thus, we set the standard assumptions
by following the minimax optimization literature [10, 15, 16, 19] to
impose customary conditions on the gradients of local functions.

Assumption 1. (Lipschitz continuous gradients) For all 𝑖 ∈ [𝑁 ],
there exists positive constants 𝐿11, 𝐿12, 𝐿21, and 𝐿22 such that for any
𝜔,𝜔 ′ ∈ R𝑑1 , and𝜓,𝜓 ′ ∈ R𝑑2 , we have∇𝜔𝑖

𝑓𝑖 (𝜔,𝜓 ) − ∇𝜔𝑖
𝑓𝑖 (𝜔 ′,𝜓 )

 ≤ 𝐿11
𝜔 − 𝜔 ′∇𝜔𝑖

𝑓𝑖 (𝜔,𝜓 ) − ∇𝜔𝑖
𝑓𝑖 (𝜔,𝜓 ′)

 ≤ 𝐿12
𝜓 −𝜓 ′ ,∇𝜓𝑖

𝑓𝑖 (𝜔,𝜓 ) − ∇𝜓𝑖
𝑓𝑖 (𝜔 ′,𝜓 )

 ≤ 𝐿21
𝜔 − 𝜔 ′∇𝜓𝑖

𝑓𝑖 (𝜔,𝜓 ) − ∇𝜓𝑖
𝑓𝑖 (𝜔,𝜓 ′)

 ≤ 𝐿22
𝜓 −𝜓 ′ .



(a) DANN: 1-source/1-target clients (b) MDD: 1-source/1-target clients (c) CDAN: 1-source/1-target clients

(d) DANN: 1-source/2-target clients (e) MDD: 1-source/2-target clients (f) CDAN: 1-source/2-target clients

(g) DANN: 2-source/1-target clients (h) MDD: 2-source/1-target clients (i) CDAN: 2-source/1-target clients

Figure 7: Comparisons of convergence for the proposed FedMM with FedAvgSGDA and FedProxSGDA. In the legend, we use
FedAvg+ and FedProx+ to denote FedAvgSGDA and FedProxSGDA, respectively, for simplification. Models are trained from
scratch on MNISTM with different number of source and target clients

Assumption 2. (Strongly concave 𝑓𝑖 (·,𝜓𝑖 )) For all 𝑖 ∈ [𝑁 ], 𝑓𝑖 (𝜔,𝜓 )
are strongly concave on 𝜓 with constant 𝐵 > 0 such that for any
𝜔 ∈ R𝑑1 , and𝜓,𝜓 ′ ∈ R𝑑2 , we have〈

∇𝜓 𝑓𝑖 (𝜔,𝜓 ) − ∇𝜓 𝑓𝑖 (𝜔,𝜓 ′),𝜓 −𝜓 ′〉 ≤ −𝐵
𝜓 −𝜓 ′2 . (19)

Assumption 3. The 𝜅-Lipschitz continuity of𝜓★(𝜔), i.e.,𝜓★
(
𝜔𝑡−1
𝑖

)
−𝜓★ (

𝜔𝑡
𝑖

) ≤ 𝜅
𝜔𝑡−1

𝑖 − 𝜔𝑡
𝑖

 , ∀𝑡 ∈ [𝑇 ] . (20)

Next, we make the following assumptions that𝑀𝑖 in FedMM is
chosen that local objective are sufficiently trained that 𝜔𝑡

𝑖
,𝜓𝑡

𝑖
is 𝜖

stationary on L𝑖 .

Assumption 4. (Sufficient local training) For all 𝑖 ∈ [𝑁 ], after
𝑀𝑖 -step update, the gradients w.r.t. 𝜔𝑖 and𝜓𝑖 are finite and denoted
by ∇L𝑖 (𝜔𝑡

𝑖 ,𝜓
𝑡
𝑖 )
 ≤ 𝜖 ∀𝑡 ∈ [𝑇 ] . (21)

Theorem 1. (Convergence on Φ(𝜔)) With Assumption 1, 2, 20 and
4 holds. Then there exist positive constants 𝐸1, 𝐸2, and 𝐸3, which are
independent of𝑇 , such that after𝑇 rounds of global updates, the upper
bound for the accumulate descent of Φ(𝜔𝑡

0) is given by

Φ(𝜔0
0 ) − Φ(𝜔𝑇

0 ) ≤ −𝐸1
𝑇∑︁
𝑡=1

∇Φ (
𝜔𝑡
0
)2 + 𝐸3𝑇𝜖

+𝐸2
𝑁∑︁
𝑖=1

𝜓 0
𝑖 −𝜓★ (𝜔0

𝑖 )
2 + 𝐸3

∑︁
𝑖≠𝑗

𝜔0
𝑖 − 𝜔0

𝑗

2 . (22)

In particular, this implies lim sup𝑡→∞
∇Φ (

𝜔𝑡
0

) = 𝑂 (𝜖) with a

local residue gradient error bound, i.e.,
∇L𝑖 (𝜔𝑡

𝑖
,𝜓𝑡

𝑖
)
2 ≤ 𝜖..

Remark Because the l.h.s. of (22) admits a lower bound, so is
the r.h.s. As a result, lim sup𝑇→∞

∑𝑇
𝑡=1

∇Φ (
𝜔𝑡
0

)2 must converge,



Office-31 Domain Adaptation Tasks
𝐴 →𝑊 𝐷 →𝑊 𝑊 → 𝐷 𝐴 → 𝐷 𝐷 → 𝐴 𝑊 → 𝐴

Optimizer Network CR↓ ACC↑ CR↓ ACC↑ CR↓ ACC↑ CR↓ ACC↑ CR↓ ACC↑ CR↓ ACC↑
DANN 10 60.1 13 86.1 8 93.6 7 63.5 24 33.7 18 40.5
CDAN 17 62.9 13 86.8 7 94.2 21 65.1 34 40.3 14 45.5FedAvgSGDA
MDD 31 73.2 27 93.6 11 97.8 22 72.1 31 47.9 18 51.7

DANN 59 60.3 40 84.9 29 93.7 56 65.3 48 36.9 88 40.3
CDAN 78 55.3 49 83.4 16 94.0 13 67.7 95 47.1 85 43.3FedSGDA†
MDD 255 76.4 188 94.7 92 98.3 400 75.3 300 49.2 321 52.7

[4] MDD 26 72.9 32 92.5 21 96.3 25 71.9 30 47.2 20 51.0
[26] MDD 35 71.5 30 93.0 15 95.1 25 73.0 35 48.8 22 51.9
[30] MDD − − 29 82.3 17 78.9 − − − − − −
[35]† MDD 150 77.0 121 95.0 62 98.0 220 74.0 210 51.2 253 50.7

DANN 13 65.5 15 89.6 14 96.7 7.5 67.8 39 44.3 25 48.7
CDAN 29 64.7 9 93.4 10 94.0 32 66.9 17 51.4 13 59.6FedMM
MDD 23 79.7 18 95.9 19 98.5 22 78.8 19 60.3 15 55.5

Table 1: Comparison of communication round (CR) (×100) and accuracy (acc) for different optimizers on Office-31 data sets for
different domain adaptation tasks (𝐴 →𝑊 ,. . . ,𝑊 → 𝐴). The Optimizer’s name labeled with † denotes the method with only
one step local update in each CR, and all others involve multiple local updates. We uniformly use a local steps of𝑀𝑖 = 10 in
multi-step local update algorithms. The symbol - denotes the optimizer fails to converge.

which implies that Φ
(
𝜔𝑡
0

)
converges to a 𝜖-stationary point. More

specifically, dividing both sides of (22) by𝑇 and taking lim sup𝑇→∞,

we obtain lim sup𝑇→∞

∑𝑇
𝑡=1∥∇Φ(𝜔𝑡

0)∥2
𝑇

≤ 𝐸3𝜖
𝐸1

, which implies that∑𝑇
𝑡=1

∇Φ (
𝜔𝑡
0

)2 = 𝑂 (𝑇𝜖) and for sufficiently large 𝑡 ,
∇Φ (

𝜔𝑡
0

)2 =
𝑂 (𝜖). In the special case of 𝜖 = 0, i.e., strict optimality is obtained
at each local client, this result shows that the limiting point is a
stationary point.

6 RELATEDWORK
Distributed minimization: Since the invention of FedSGD and
its communication efficient version FedAvg [20], several work have
been developed to address the suboptimality of FedAvg over non-
i.i.d data, including FedProx [14], FedPD [40], SCAFFOLD [12],
FedNova [32], dynamic gradient aggregation [5], and FedDyn [1].
These works aim to minimize a sum of non-identical functions,
where each function can only be accessed locally. Auto-FedAvg [33]
adjusted weights at the aggregation during training. These results
cannot be directly applied to federated saddle point optimization
problems, such as the federated adversarial domain adaptation,
which seeks a federated minimax optimization. Similarly, off-the-
shelf distributed augmented Lagrangian minimization methods
and convergence analyses in Jakovetić et al. [8, 9], Yue et al. [37]
fails to address the unique challenges in FL minimax optimization
including the domain adaptation problem.

Distributed minimax: Several works [4, 25, 26] have improved
communication efficiency in FedAvg-based minimax optimization,
including the federated GAN. However, FedAvgSGDA is sensitive to
data imbalance in our federated domain adaptation problem, unlike

in the federated GANwhere the binary classification functionworks
well since there is no label-imbalanced problem. Note that the FLRA
algorithm in Reisizadeh et al. [26] also corresponds to FedAvgSGDA,
and its convergence analysis cannot be directly adapted to our
setting because each local client in our study is optimized on the
augmented Lagrangian local function rather than the pure local risk
minimization objective. There are also works on federated domain
adaptation with the specific assumption that a centralized labeled
dataset is available on the server [36]. Other works, including [30,
35, 39], look into fully distributed minimax optimization without a
centralized server. Note that the work in Zhang et al. [39] assumes
only one participating client each time which is not realistic under
FL settings.

7 CONCLUSIONS
We have proposed FedMM for federated adversarial domain adap-
tation. FedMM is designed specifically for federated minimax op-
timizations with non-separable minimization and maximization
variables, as well as clients with uneven label class distributions.
We have symptomatically performed a theoretical analysis on the
convergence property of our proposed FedMM. Experiments show
that FedMM outperforms state-of-the-art algorithms in terms of
communication rounds and test accuracy on various benchmark
datasets.
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