Selective Caching: A Persistent Memory Approach
for Multi-Dimensional Index Structures

Muhammad Attahir Jibril*, Philipp Gotze*, David Broneske®, and Kai-Uwe Sattler*
*TU Ilmenau, Germany
Email: {muhammad-attahir.jibril, philipp.goetze, kus}@tu-ilmenau.de
fovG University Magdeburg, Germany & Anhalt University of Applied Science
Email: david.broneske @ovgu.de
This work was partially funded by the DFG as part of SPP 2037 (SA 465/51-1 & SA 782/28).

Abstract—Since the proposal of Persistent Memory, research
has focused on tuning a variety of data management problems to
the inherent properties of Persistent Memory— namely persistence
but also compromised read/write performance. These properties
particularly affect the performance of index structures, since they
are subject to frequent updates and queries. Nevertheless, the
main research focuses on adapting B-Trees and its derivatives to
Persistent Memory properties, aiming to reach DRAM processing
speed exploiting the persistence property of Persistent Memory.
However, most of the found techniques for B-Trees are not
directly applicable to other tree-based index structures or even
multi-dimensional index structures.

To exploit Persistent Memory properties for arbitrary index
structures, we propose selective caching. It bases on a mixture
of dynamic and static caching of tree nodes in DRAM to reach
near-DRAM access speeds for index structures. In this paper,
we investigate the opportunities as well as limitations of selective
caching on the OLAP-optimized main-memory index structure
Elf. Our experiments show that selective caching is keeping up
with pure DRAM storage of EIf while guaranteeing persistence.

I. INTRODUCTION

After the introduction of SSDs, Persistent Memory (PM) is
the novel disruptive technology in the field of data storage [1].
PM does not only change the architecture of a database system
(i.e., storage hierarchy and persistence methods) [2] but also
influences the processing speed of systems. Depending on the
memory technique (cf. Table I), the density and latency be-
tween reading and writing differ. However, their commonality
is a notable difference between read and write latency.

Although first performance numbers suggested that reads
on PM are almost as fast as on DRAM, the real behavior
is different. This paper is based on Optane DCPMM, which
under heavy load cannot keep up with the latency of DRAM.
This circumstance suggests that PM is just filling up the gap
between SSD and DRAM [2]. Hence, the question arises on
how to exploit a system architecture where PM bridges the gap
between SSD and DRAM in all data structures of the DBMS.

Recent solutions for the architectural challenges of PM—
especially for index structures — is handled by keeping the
essential part of the data structure in PM and, for faster access,
a reconstructible part in DRAM. Especially PM-tuned B™-
Tree structures and algorithms (e.g., NVTree [3], FPTree [4],
FAST&FAIR [5], wBT-Tree [6], CDDS-Tree [7]) can rely on
the property that all data is redundantly stored in the leaf

nodes. These nodes can be easily used to reconstruct parts of
the upper tree that are kept in DRAM. Such selective persis-
tence [4] can be used to balance between reconstruction effort
(more levels of the tree stored in PM) and query/maintenance
effort (more levels of the tree stored in DRAM).

Despite their simplicity, the persistence approaches for B+-
Trees are not directly applicable to other index structures.
Especially multi-dimensional index structures lack — due to
the amount of stored data — the possibility to reconstruct upper
tree nodes from the stored data in leaf nodes. Hence, new
methods need to be designed to holistically support PM for
multi-dimensional index structures.

In this paper, we present selective caching as a first step
to exploit PM for multi-dimensional index structures. As a
representative, we use EIf [8] as a multi-dimensional index
structure. Due to its explicit memory layout for main-memory-
optimized database systems, it is the perfect fit for optimiza-
tion towards PM. The idea of selective caching is to persist
the whole data structure in PM and buffer nodes of the data
structure in DRAM in order to improve query performance.
Overall, our experiments show that when being well config-
ured, selective caching reaches query performance that is close
to DRAM performance while keeping persistence guarantees
untouched. In summary, we contribute the following:

« We present selective caching — an approach for caching
tree nodes statically and dynamically in DRAM.

e As a baseline, we evaluate the impact of PM storage
compared to keeping the whole EIf in DRAM. This
evaluation shows clear deficiencies for PM-only storage.

o« We evaluate different configurations of our selective
caching approach for different query types. Our results
show that the deficiencies by PM can be effectively
countered by our selective caching approach.

II. BACKGROUND

In this section, we first introduce the necessary background
to understand PM characteristics and working. Afterwards, we
introduce the selected multi-dimensional index structure EIf.

A. Persistent Memory Characteristics

The most common PM technologies are PCM [9], STT-
MRAM [10], and memristor [11]. However, up to now only

TABLE I: Main characteristics of different memory/storage
technologies [13] (cf. [14]-[17])

DRAM Optane DC PM NAND Flash
Idle read latency 80 ns 175 ns 25 s
Loaded rand. lat. 120 ns 400 ns N/A
Write latency 80 ns 100 ns —2 pus 500 ps
Write endurance >10% N/A 10* — 10°
Density 1X 2X —4X 4—-8X

the 3D XPoint technology has reached the market and is
available as Optane DC Persistent Memory Modules (DCP-
MMs) [12]. What all technologies have in common is byte-
addressability, persistence, and DRAM-like performance. They
can be directly accessed through the memory bus using the
CPU’s load and store instructions without the need for OS
caches. Furthermore, they scale better in terms of capacity,
while DRAM is soon hitting its limits. In the remainder of the
paper, we focus on Optane DCPMMs due to their availability.
Table I classifies this product in comparison to today’s typical
DRAM and NAND flash. The latencies for DRAM and PM
are measured on our system (see Section V). Due to a
write-combining buffer within the PM modules it is difficult
to measure actual write latencies. Currently, there are two
possible operating modes of the DCPMMs, namely Memory
and App Direct (or a mixture). The former mode extends the
main memory capacity by utilizing DRAM as a cache above
PM. There are no persistence guarantees in Memory mode,
but existing in-memory applications work out of the box with
it. The App Direct mode provides persistence and allows the
full utilization of the device. However, developers still have to
handle failure-atomicity, concurrency, and performance.

On the software part, we used the Persistent Memory
Development Kit (PMDK) [18] to access and manage data
on PM. Several included libraries offer different abstraction
levels and relieve some common steps from the developer. In
this work, we used the C++ bindings of the libpmemobj library
whereby we obtain general-purpose transactions and object
management. In the following, the used terms and concepts of
this library are briefly explained.

Persistent Memory Pools: PM is managed by the operating
system using a PM-aware file system that grants applications
direct access to PM as memory-mapped files. These files are
called pools in this context. libpmemobj provides interfaces to
easily create, open, manage and close those pools.

Persistent Pointers: A persistent pointer to a persistent data
object contains an 8-byte ID of the persistent memory pool
and an 8-byte offset of the object within this pool. Since the
actual address of a memory-mapped region can differ for each
instance of the application, persistent pointers are used to map
back objects in the virtual address space of the application.

Root Object: A root object is an object to which all other
data structures in the pool are attached. It is allocated from
the pool, initially zeroed, has a user-defined size, and always
exists. A persistent pointer to the root object is kept at a known
offset, which enables the application to recover its data.

Persistent Properties: Another template class within PMDK
is called persistent property. By wrapping a variable with this
property, all modifications are atomically registered without
adding any extra storage overhead.

Section IV-A explains where these concepts are used in EIf.

B. The EIf Storage Layout

Elf is a multi-dimensional structure that clusters column
values according to their prefix. Elf is well suited for analytical
workloads due to its main-memory optimized storage layout.
In the following, we outline Elf’s key design choices, which
is necessary for understanding our PM adaptations to EIf.

Design Principles and Optimizations: Conceptually, EIf is
a prefix tree similar to ART [19], which works however on
the granularity of column values instead of digits. Hence, each
level in the tree corresponds to the values of a specific column.
In each node, the entries are sorted ultimately introducing
a total order into the data allowing pruning within a node.
In Figure 1.b, we visualize the conceptual Elf built for the
example table in Figure l.a consisting of four columns and
three tuples. As data-sensitive optimizations, EIf features two
different node types: DimensionLists, labeled (1) and (2),
as inner nodes that hold sorted column values of several tuples
and MonoLists as a special type of DimensionList,
labeled (3), (4), and (5), that represent values of a single tuple
spanning across several columns. The idea of MonoLists
is that whenever there is no branch-out on deeper levels,
the linked lists are merged to a single MonoList, thus
eliminating pointers and distributed storage. To this end, on
the upper level, EIf is similar to a column store. On deeper
levels, it slowly converges towards a row-store-like layout.
This effectively compresses the data set [20].

Another optimization that is specially designed for read-
intensive analytical workloads is the linearization of ElIf,
which we show in Figure 1.c. Here, each DimensionList
and MonoList is stored in a contiguous array. What used
to be pointers are now offsets within the array itself. This
optimization, which has also been applied for B-Trees [21], has
proven to accelerate selections in EIf by a factor of 10 [20].

III. RELATED WORK

PM-based Data Structures: Most prior work of PM-based
data structures focuses on BT-Trees ([3], [4], [6], [7], [22])
targeting OLTP systems. Their main consensus is to leave
nodes unsorted and generally reduce writes. However, most
of these approaches have chosen a PM-only placement. There
is also some work on radix trees [23], LSM-Trees [24], [25]
and hash maps [26], [27]. To the best of our knowledge, so far
only [28] considers a multi-dimensional layout and analytical
queries. It is based on a clustering approach and unsorted
blocks covering a three-tier architecture (DRAM, PM, SSD).
However, in contrast to Elf, this approach is only suitable as
a storage layout and cannot serve as an index. Furthermore,
since the index is not fixed in [28], a combination with EIf
is also possible. Since former experiments work on emulated
PM, in [14], the authors re-evaluated some of the BT -Tree

(a) Table (b) EIf (c) Linearized EIf Array
Column C,
0 1 2 3 4 5 6 7 8 9
o] 4 Lt e \
C,|C,[Cqh|C 1 i @ v | @y
112173174 Column C, - [0 [4 1 [14 11 (8 23] 0 1
Tl 0 1.1 0 1 -(-4-) ___________ (5) ~_ B |
T, 1 Jo2] o[- _Colomn G =N 0 o %2 0 1 T
T3/ 0 (23|00 Column C, 2— e E T TR

Fig. 1: Example table (a), conceptual EIf (b), and the OLAP and main-memory optimized storage layout of EIf (c).

variants on real hardware. In [13], the underlying primitives
of these trees are analyzed on actual PM technology as well.

Selective Persistence: To keep up the performance of per-
sistent data structures compared to volatile counterparts, only
necessary fractions of data is stored in PM. The remaining
part is placed in DRAM and rebuilt upon recovery. In the
FPTree [4], the leaf nodes are placed in PM using a persistent
linked-list, while the inner nodes are placed in DRAM and
rebuilt upon recovery. Consequently, only accessing the leaves
is more expensive compared to the volatile counterpart while
using only a minimal portion of DRAM. The HiKV [29]
runs on hybrid memory: a hash index is placed in PM and
a BT-Tree in DRAM. Thus, it allows for fast searching of the
hash index for basic key-value operations (Put, Get, Update,
Delete) which require locating the key-value item. However,
for operations (Scan) that benefit from sorted indexing, the
hybrid index employs a B+Tree, whose updating involves
many writes due to sorting as well as splitting and merging of
leaf nodes. The B+Tree is thus placed in DRAM. Furthermore,
instead of designing individual hybrid data structures, in [30]
and [31] the authors investigate general-purpose multi-tier
buffer management covering DRAM, PM, and SSDs. This is
a similar direction as we strive for with our dynamic caching
approach (Section IV-B).

IV. SELECTIVE CACHING FOR ELF

In this section, we first present our baseline implementa-
tions, which are naive translations of the EIf to PM. After-
wards, we discuss our improvement of selective caching as a
strategy to exploit available DRAM as a cache.

A. Naive PM-based Approaches

As naive PM approaches, there are two options: the Elf
can be stored in PM only, which means full persistence but
also a possible performance degeneration under heavy load.
The exact impact is an objective of the first experiment of our
evaluation. The second possibility (hybrid EIf) is to create a
redundant copy of Elf in DRAM, which would give the best
query performance but is twice the size.

Pure PM-based Elf: To make EIf suitable for PM, we rely
on PMDK and used its features described in the previous
section. We visualize the usage of these features in Figure 2.
The persistent tree is stored as a data object residing in a
persistent memory pool. On opening, the position of the EIf
object is determined by following the root and subsequent

— — <> virtual pointer
PM Pool — persistent pointer

root ptr |—> root I—» ELF

elf l— elf array pptr

- —elf array vptr

p<dim sizes>
p<# dims>

Al
0 [04 -1 [16] 1

08 -2 [12] -0 [10]

1 Ty -0 (14 -0 T -0 [18 -1 [20] [.]

0 T3

Fig. 2: Organization of persistent EIf in PM pool

object persistent pointer. We then always access the persistent
Elf via the current virtual object pointer. The linearized EIf
array is stored separately and reachable from the EIf object.
Similarly, the virtual address of the array is stored to avoid
costly persistent dereferencing. Another drawback of persistent
pointers is that they are twice the size of virtual pointers.
Actually, it is not necessary to store volatile pointers in the
persistent pool, but it helps with the visualization of our
utilization of them. To ensure atomicity, we used libpmemobj
transactions in memory allocations for the persistent Elf object,
the persistent Elf array, and the index build. We additionally
wrap the member variables of the persistent EIf class, such
as the sizes and the number of dimensions, with the persistent
property class. Although in our experiments we do not modify
the tree after initially building it, this is reasonable for later
inserts or in-place updates. Due to its size, the data array is
not wrapped as one persistent property. Instead, the modified
ranges in the array need to be manually added to a transaction.

Hybrid Elf: In the hybrid Elf, we propose a volatile copy of
the EIf to be created in DRAM upon the initial build of the
persistent Elf (or reproduced as necessary upon subsequent
restarts). All queries are then run on the volatile Elf. We argue
that with the hybrid Elf, we get better query performance at
DRAM latency. Moreover, we save the cost of rebuilding EIf
in events of system failure or restart, and we can alternatively
execute queries on the persistent Elf in case available DRAM
space is not sufficient to hold the volatile EIf.

However, the hybrid Elf has a considerable performance and
memory overhead. The performance overhead is the extra time
required for constructing the volatile copy of Elf on DRAM,
which we expect to be negligible compared with the initial
build time of the persistent Elf. Moreover, since Elf is aimed
to support initial builds and periodic insertions for its primary
fields of application like data warehousing, there would be

recurrent copying of EIf to DRAM. The memory overhead of
hybrid EIf is the DRAM space used to hold the volatile copy.

B. Selective Caching

Cached EIf: In case that keeping a full volatile copy of
persistent Elf in DRAM (ref. hybrid Elf) needs too much
space, we propose to cache crucial parts of Elf that are most
frequently traversed in query executions in DRAM. There are
two strategies to build up such a DRAM cache:

o Dynamic Caching: The first naive way is to cache every
traversed DimensionList in a hash map. This could
be extended by a replacement strategy (e.g., LRU) to limit
the cache size. However, CPU caches are already dynamic
caches and, hence, an additional dynamic cache has to be
well designed to give an edge over CPU caches.

o Static Caching: Instead of dynamically caching, an
alternative is to cache a fixed (static) part of EIf such
as the first x dimension levels. Hence, we do not have to
probe the cache and the persistent Elf but know directly
which part is in DRAM and which is in PM.

Static caching creates an FPTree-like hybrid layout [4],
keeping inner nodes in DRAM and leaf nodes in PM. Based
on this, the dynamic approach could be additionally applied
to the lower dimensions, which would result in a split cache.

Another idea to populate the cache is to use probabilities for
traversing each DimensionList. The DimensionList
of the first dimension (and only it) has a probability of 1
because traversals always begin from it. Every MonoList
has a probability of the inverse of the number of inserted
tuples because each MonoList is traversed to retrieve only a
single TID. All other DimensionLists have probabilities
as per the data and its prefix redundancies. After obtaining a
‘tree’ of probabilities, we choose which DimensionLists
to cache in DRAM in addition to the first DimensionList,
which depends on cutoff probabilities and the available DRAM
memory space for caching the EIf. This approach is either
implemented dynamically as part of an eviction policy or
statically at the time the tree is built.

Overall, our two introduced approaches for selective caching
(i.e., dynamic and static caching) have different advantages,
which we investigate in the following section. However, selec-
tive caching in EIf comes at a price: query execution consists
of switching between PM and DRAM, which incurs penalties
of more cache misses especially for the dynamic parts.

V. EVALUATION

In our experiments, we investigate the performance of Elf
for the beforementioned persistent variants. We focus on the
building time as well as three query types, namely exact-
match, range, and partial-match. Obviously, the persistent EIf
will be slower than the volatile counterpart. Hence, we want to
quantify this overhead. Thereafter, we validate the optimiza-
tion techniques proposed in Section IV-B, which should reduce
the overhead. As a result, we show that with sophisticated
optimizations, a DRAM-like performance is possible.

TABLE II: Experimental setup.

PROCESSOR 2x Intel® Xeon® Gold 5215, 10 cores / 20 threads
each, max. 3.4 GHz

CACHES 32 KB L1d, 32 KB Lli, 1024 KB L2, 13.75 MB
LLC

MEMORY 384 GB DDR4, 1.5 TB Intel® Optane™ DCPMM

OS & COMPILER CentOS 7.7, Linux 5.4.8 kernel, cmake 3.15.3, GCC

8.3.1 (-03), PMDK 1.7

A. Query Workloads

All our workloads were run on a table of 100 million rows
and 10 dimensions using a uniform access distribution over all
inserted tuples. This represents a worst-case scenario for our
caching since a cached node of the EIf is less likely reused
for subsequent queries. Each dimension is of integer type'
(in the range of 0 and 100) resulting in approximately 4 GB.

The experiments were repeated at least ten times in a single-
threaded environment to obtain reliable measurements. Besides
the building, the three tested query types are briefly explained
below. The throughput of these queries is depicted as queries
per second (qps).

Exact-Match Query: The exact-match query takes one equal-
ity predicate for each dimension and returns the TID of the
tuple whose values exactly match. In each run, we first selected
random tuples from the table within a specified range, then
used the 10 dimension values of each tuple for constructing a
single exact-match selection predicate each.

Range Query: The range query returns a list of TIDs, as
per the selection predicates, unlike the exact-match query that
returns at most a single TID. Two sets of 10 values define
the lower and upper boundaries of the selection predicates
for the respective 10 dimensions. In each run, we selected
random pairs of tuples whose dimension values served as
lower and upper boundaries and then ran the range query on
the constructed EIf.

Partial-Match Query: A partial-match is a special form of
range query. The lower and upper boundaries are used in the
search only for preselected dimensions. All other dimensions
are evaluated for all values, by setting the boundaries for
evaluation to 0 and maximum values of the dimensions.

B. Experimental Setup

Our experiments were conducted on a dual-socket Intel
Xeon Gold 5215 server as outlined in Table II. Each socket
is equipped with 6 DCPMMs interleaved to one region and
namespace. The PM modules are operating in App Direct
mode via an ext4 file system and dax mount option. All
experiments allocate their resources always on the same socket
to preclude NUMA effects.

C. DRAM vs. PM

At first, we want to investigate the performance overhead
of the pure PM-based EIf against its DRAM counterpart.

Notably, wider data types increase the used DRAM-cache size, but also
put more pressure on CPU caches. Hence, the DRAM cache becomes even
more valuable as a layer between CPU caches and PM.

In Figure 3, the corresponding measurements are depicted. As
expected, DRAM exhibits a better performance than PM. The
overhead for building the EIf and for executing the three query
types yield to 15%, 230%, 95%, and 115%, respectively. Our
results show that the performance gap between DRAM and
PM is wider for queries — especially exact-match queries —
than for building. Our explanation is that the sequential access
pattern (when building the EIf) is still better supported on PM
than a random one (when querying the EIf). Particularly during
a build, the write-combining buffer of PM seems to be quite
efficient if there is only a single sequentially writing thread.
Notably, range and partial-match queries lead to better ex-
ploitation of the caches due to common DimensionLists
being traversed. This is not the case for most exact-match
queries due to their tiny query windows.

D. Optimizations

As a first optimization step, we evaluate the build and
recovery performance of the hybrid EIf. In this case, the
query performance will be the same as for DRAM. The actual
measurement we did here is the cost of copying the Elf data
array to DRAM. For our setup with 100M tuples (~ 4 GB),
this took 1825 ms. The total build time, thus, increases to
63,4 s which is a mere 3% overhead. Furthermore, recovery
improves by a factor of around 30. This solution is therefore
highly recommended if there is enough DRAM.

Since the last condition is not always given especially
for analytical tasks, we next evaluate the different caching
approaches described above. We compare the throughput of
the three query types for the approaches over a time course
expressed in queries run up to that point. Before starting the
measurements, we let the system warm up for 10,000 queries.
We show the results for the persistent Elf without DRAM
caching, the naive dynamic caching, static caching of first
x dimension levels as well as the combination of dynamic
and static caches. In Figure 4a the results of the exact-match
queries are shown. The access distribution in this experiment
is uniform over all available tuples.

An unlimited dynamic cache initially performs quite well.
However, as expected, at a specific DRAM cache size it is
outperformed by the pure persistent Elf due to too many
CPU cache misses. Caching the first level statically leads also
already to initial better performance. After around 1M queries,
the persistent Elf and the static approach behave nearly equally
since the CPU caches contain the same data. Adding the

330%
0.5M
qaps

I PM N DRAM

w
S}
S}

100% 100% 100%

(in % of DRAM perf.)
= N
o o
(o] (o]

Normalized Runtime

1.7M
aps

exact-match

Query Type

33.4
aps

range

3.9
aps

partial-match

Fig. 3: Build and Query performance of EIf.

== w/o caching === static 1 level + dynamic
== naive dynamic

- static 1 level

- static 3 levels
=== static 3 levels + dynamic

Throughput (in M gps)

run Queries
(a) Exact-match queries.

N
o
T 15
c
r
Z
4 10
=}
Q
ey
[Y)] ‘-.r-iunﬁ-""-r-niuiir-n-lr=
3 5 e
o ——
C -
- -
'_
10° 10t 102 103 104
run Queries
(b) Range queries.
—~
2.0
Q.
o
oy
1.5
N\
+
=)
[eR
€1.0
oD
5
o
-
SO 5-------—-------------‘----
'_

100 10! 102 103
run Queries
(c) Partial-match queries.

Fig. 4: Throughput progression of Cached EIf variants.

dynamic cache on top now drastically improves the initial
performance. Once again, however, this throughput cannot be
sustained and eventually also drops below the pure persistent
variant. When putting the first three dimension levels statically
into the cache, the potential of this approach becomes visible
as we can achieve nearly DRAM performance (cf. Figure 3).
Hence, we conclude that more statically cached levels lead to
much better throughput. The limit here is determined by the
DRAM buffer size. For a static cache of 1, 2 and 3 dimension
levels the cache size results in approximately 1 KB, 120 KB,
and 12 MB, respectively. Compared to the total size of Elf this
is merely 0, 3% space overhead. The dynamic variants should
be limited in any case, although the question of the optimal
eviction policy remains open.

The above experiments were executed on the complete tuple
range. Since analytical queries may possess a certain selectiv-
ity, we varied it in the following experiment. In Figure 5 the
average throughput when running 1 million queries is shown
considering the uncached and the best performing caching

== Ww/0 caching

P~ -
8_33 = static 3 levels

w° == static 3 levels + dynamic
S =

o 2

Cc

L r \~-

=~ e e EEETTE =

1

[} 20

30 40 50
(in % of total

10
Selectivity tuples)
Fig. 5: Throughput of EIf variants for exact-match queries
varying the selectivity.

approaches from before. Obviously, a higher selectivity leads
to better performance. What is decisive, however, is the relative
distance between the approaches. While at a selectivity of 50%
the best caching approach is 1.4 times faster, at 1% it is even
1.7 times faster. This confirms that the previous experiment is
already the worst case for the caching approaches.

In our last micro-benchmark, we considered range and
partial-match queries. Since these are long-running queries, the
number of queries run for warm up and the actual measure-
ment is much lower. The results are visualized in Figures 4b
and 4c. The dynamic approach and combinations with it
perform much worse for these kinds of queries. The reason for
this is that the range queries caused by the probing and warm-
up make the dynamic cache too large. The static approach,
on the other hand, shows nearly the same performance as no
caching. Hence, there is at least no performance disadvantage
for range-based scans using a static DRAM cache.

VI. CONCLUSION

In this paper, we investigated various approaches to ac-
celerate OLAP queries on multi-dimensional index structures
utilizing PM. Particularly, we proposed selective caching mix-
ing static and dynamic caching approaches of tree nodes
in DRAM. The results of our experiments revealed that,
especially for exact-match queries, it is possible to achieve
DRAM-like performance with our hybrid approaches.

Due to these promising results, we aim for an application
of selective caching on further index structures, because it is
a comprehensive method for arbitrary index structures or even
data structures. However, the granularity of cached objects
may differ and sweet spots have to be identified by a suitable
cost model. Another idea for future work is to split the cache
into a static and dynamic part with a fitting eviction policy
that should be further analyzed. With higher selectivity, we
are convinced that this will also increase the throughput of
range-based queries. Another interesting direction to examine
is the performance of the DRAM-based Elf when using PM
in Memory mode. This would mean no more persistence, but
significantly more memory capacity.

REFERENCES

[1] 1. Oukid and L. Lersch, “On the Diversity of Memory and Storage
Technologies,” CoRR, vol. abs/1908.07431, 2019.

[2] P. Gotze, A. van Renen et al., “Data Management on Non-Volatile
Memory: A Perspective,” DB-Spektrum, vol. 18, no. 3, pp. 171-182,
2018.

[3]
[4]

[5]
[6]
[7]

[8]

[9]
[10]

[11]

[12]

[13]
[14]
[15]

[16]

(17]
[18]

[19]

[20]

[21]

(22]

(23]

[24]
[25]

[26]

[27]

[28]

[29]
[30]

(31]

J. Yang, Q. Wei et al., “NV-Tree: Reducing Consistency Cost for NVM-
based Single Level Systems,” in USENIX FAST, 2015, pp. 167-181.

I. Oukid, J. Lasperas et al., “FPTree: A Hybrid SCM-DRAM Persistent
and Concurrent B-Tree for Storage Class Memory,” in SIGMOD, 2016,
pp- 371-386.

D. Hwang, W. Kim et al., “Endurable Transient Inconsistency in Byte-
Addressable Persistent B+-Tree,” in USENIX FAST, 2018, pp. 187-200.
S. Chen and Q. Jin, “Persistent B+-Trees in Non-Volatile Main Memory,”
PVLDB, vol. 8, no. 7, pp. 786-797, 2015.

S. Venkataraman, N. Tolia et al., “Consistent and Durable Data Struc-
tures for Non-Volatile Byte-Addressable Memory,” in USENIX FAST,
2011, pp. 61-75.

D. Broneske, V. Koppen et al., “Accelerating Multi-Column Selection
Predicates in Main-Memory - The Elf Approach,” in /[EEE ICDE, 2017,
pp. 647-658.

H. P. Wong, S. Raoux et al., “Phase Change Memory,” PIEEE, vol. 98,
no. 12, pp. 2201-2227, 2010.

M. Hosomi, H. Yamagishi et al., “A Novel Nonvolatile Memory
with Spin Torque Transfer Magnetization Switching: Spin-RAM,” IEEE
IEDM, pp. 459-462, 2005.

D. B. Strukov, G. S. Snider et al., “The missing memristor found,”
Nature, vol. 453, no. 7191, pp. 80-83, 2008.

I. Cutress and B. Tallis, “Intel Launches Optane DIMMs Up To 512GB:
Apache Pass Is Here!” https://www.anandtech.com/show/12828/intel-
launches-optane-dimms-up-to-512gb-apache-pass-is-here, 2018,
accessed January 15, 2020.

P. Gotze, A. K. Tharanatha, and K. Sattler, “Data Structure Primitives on
Persistent Memory: An Evaluation,” CoRR, vol. abs/2001.02172, 2020.
L. Lersch, X. Hao et al., “Evaluating Persistent Memory Range Indexes,”
PVLDB, vol. 13, no. 4, pp. 574-587, 2019.

A. van Renen, L. Vogel et al., “Persistent Memory I/O Primitives,” in
DaMoN @ SIGMOD, 2019, pp. 12:1-12:7.

S. Mittal and J. S. Vetter, “A Survey of Software Techniques for Using
Non-Volatile Memories for Storage and Main Memory Systems,” IEEE
TPDS, vol. 27, no. 5, pp. 1537-1550, 2016.

D. S. Rao, S. Kumar et al., “System software for persistent memory,”
in EuroSys, 2014, pp. 15:1-15:15.

Intel Corporation, “Persistent Memory Development
http://pmem.io/pmdk, 2019, accessed: January 15, 2020.

V. Leis, A. Kemper, and T. Neumann, “The Adaptive Radix Tree:
ARTful Indexing for Main-Memory Databases,” in /IEEE ICDE, 2013,
pp. 38-49.

D. Broneske, V. Koppen et al., “Efficient Evaluation of Multi-Column
Selection Predicates in Main-Memory,” IEEE TKDE, vol. 31, no. 7, pp.
1296-1311, 2019.

J. Rao and K. A. Ross, “Making B*t-Trees Cache Conscious in Main
Memory,” in SIGMOD, 2000, pp. 475-486.

J. Arulraj, J. Levandoski et al., “BzTree: A High-Performance Latch-
free Range Index for Non-Volatile Memory,” PVLDB, vol. 11, no. 5,
pp. 553-565, 2018.

S. K. Lee, K. H. Lim et al., “WORT: Write Optimal Radix Tree for
Persistent Memory Storage Systems,” in USENIX FAST, 2017, pp. 257—
270.

L. Lersch, I. Oukid et al., “An analysis of LSM caching in NVRAM,”
in DaMoN @ SIGMOD, 2017, pp. 9:1-9:5.

S. Kannan, N. Bhat et al., “Redesigning LSMs for Nonvolatile Memory
with NoveLSM,” in USENIX ATC, 2018, pp. 993-1005.

D. Schwalb, M. Dreseler et al., “NVC-Hashmap: A Persistent and
Concurrent Hashmap For Non-Volatile Memories,” in IMDM @ VLDB,
2015, pp. 4:1-4:8.

M. Nam, H. Cha et al., “Write-Optimized Dynamic Hashing for Persis-
tent Memory,” in USENIX FAST, 2019, pp. 31-44.

P. Gotze, S. Baumann, and K. Sattler, “An NVM-Aware Storage Layout
for Analytical Workloads,” in HardBD & Active @ ICDE, 2018, pp.
110-115.

F. Xia, D. Jiang et al., “HiKV: A Hybrid Index Key-Value Store for
DRAM-NVM Memory Systems,” in USENIX ATC, 2017, pp. 349-362.
A. van Renen, V. Leis er al., “Managing Non-Volatile Memory in
Database Systems,” in SIGMOD, 2018, pp. 1541-1555.

J. Arulraj, A. Pavlo, and K. T. Malladi, “Multi-Tier Buffer Management
and Storage System Design for Non-Volatile Memory,” CoRR, vol.
abs/1901.10938, 2019.

Kit,”

