
An Investigation of Atomic Synchronization for
Sort-Based Group-By Aggregation on GPUs

Bala Gurumurthy
David Broneske

University of Magdeburg
firstname.lastname@ovgu.de

Martin Schäler
University of Salzburg

martin.schaeler@sbg.ac.at

Thilo Pionteck
Gunter Saake

University of Magdeburg
firstname.lastname@ovgu.de

Abstract—Using heterogeneous processing devices, like GPUs,
to accelerate relational database operations is a well-known
strategy. In this context, the group by operation is highly
interesting for two reasons. Firstly, it incurs large processing
costs. Secondly, its results (i.e., aggregates) are usually small
reducing data movement costs whose compensation is a major
challenge for heterogeneous computing. Generally for group by
computation on GPUs, one relies either on sorting or hashing.
Today, empirical results suggest that hash-based approaches
are superior. However by concept, hashing induces an un-
predictable memory access pattern being in conflict with the
architecture of GPUs. This motivates studying why current sort-
based approaches are generally inferior. Our results indicate that
current sorting solutions cannot exploit the full parallel power
of modern GPUs. Experimentally, we show that the issue arises
from the need to synchronize parallel threads that access the
shared memory location containing the aggregates via atomics.
Our quantification of the optimal performance motivates us to
investigate how to minimize the overhead of atomics. This results
in different variants using atomics, where the best variants almost
mitigate the atomics overhead entirely. The results of a large-
scale evaluation reveal that our approach achieves a 3x speed-up
over existing sort-based approaches and up to 2x speed-up over
hash-based approaches.

I. INTRODUCTION

As data set sizes remain to grow exponentially [1], com-
puting common database operations, such as join, aggregation
or selection, becomes highly time-consuming. One well estab-
lished strategy to keep pace with the vast amount of data is
utilizing heterogeneous massively-parallel processing devices,
such as GPUs [2]–[4].

In this paper, we address the problem of parallelizing a
group-by operation followed by a subsequent aggregate.
A corresponding example query is shown in Example I.1. The
rational for studying this problem is twofold. Firstly, compared
to other database operations, like joins, group-by operations
are less affected by the data movement problem. The data
movement problem occurs whenever data is shipped to or
retrieved from a heterogeneous processing device. This may
incur a major cost factor [5]–[7]. Secondly, computing the
grouping and aggregate is highly compute intensive [8]–[10].

Example I.1 (SQL query with grouped aggregate).
SELECT count(*), l_returnflag FROM lineitem

GROUP BY l_returnflag ORDER BY l_returnflag;

This work was partially funded by the DFG (SA 465/51-1 & SA 465/50-1.)

However, massively parallelizing a grouping and subsequent
aggregate is challenging – independent of the processing
device. The reason is that the data of one group is arbitrarily
distributed over the data set and, thus, one requires for some
kind of synchronisation between the threads. Relying on a
GPU increases the difficulties, as a GPU’s architecture is not
designed for efficient inter-thread communication, which is
e.g., done by atomic operations.

1 101 102 103 104 105 106 107 108

2

4

6

Groups

T
hr

ou
gh

pu
t

(G
iB

/S
ec

)

Naive global atomics Boost.Compute Hashing

Fig. 1: Throughput of different group-by approaches on a RTX
2080 Ti GPU on 227 uniformly random input values

Generally, for grouped aggregation on GPUs one relies
either on sorting or hashing [11] with empirical results sug-
gesting that hash-based approaches are superior [10], [12].
In Fig. 1, we depict the throughput of a recent hash-based
grouped aggregation and a sorting based grouped aggrega-
tion (i.e., Boost.Compute). We observe selecting the best
algorithm depends on the number of groups. For reasonable
group numbers between 102 and 106, hashing is best. For
smaller numbers, Boost.Compute has the highest throughput.
Adding a third approach, a naive sort-based aggregation using
atomic operations (i.e., hardware-blocks), we observe that
its throughput increases monotonically until each value is
assigned uniquely to a group. From 106 distinct groups it offers
even the best performance.

Despite this remarkable result, our hypothesis is still that
in current sort-based solutions, all threads aggregate data
simultaneously and block each other in the case of small
group sizes. Hence, one does not exploit the massive parallel
power that modern GPUs offer. To this end, we first inves-
tigate whether the synchronisation overhead is the decisive



bottleneck. Then, we aim at proposing a solution that mitigates
the synchronisation overhead aiming at a throughput that is at
least equal to – or even superior – to a hash-based solution
or Boost.Compute depending on the number of groups. Our
investigations result in the following contributions:

1) Our examination reveals that the synchronisation step for
merging partial group results is an important bottleneck
for sort-based aggregation.

2) We propose sort-based aggregation approaches miti-
gating the synchronisation overhead by reducing the
amount of issued atomics. For instance, one approach
requires 2 atomics per GPU thread independent of
the data distribution. Afterward, we examine how the
number of concurrent threads and chunk sizes affect the
throughput of our approaches.

3) Our results suggest that atomics-based approaches are
in general 3x faster than Boost.Compute and up to 2x
faster than hash-based approaches for reasonable number
of groups, e.g., found in the TPC-H benchmark.

II. ATOMICS IN GPU

In this section, we examine our hypothesis that sort-based
group-by approaches suffer from the issues that all threads
request synchronisation simultaneously leading to lock con-
gestion. To this end, we first investigate the execution of
atomics in GPUs. Then, we conduct an experiment to examine
the validity of our hypothesis.

A. Architectural Components Involved in Atomic Execution

GPUs contain multiple Memory Partition Units
(MPU) to handle upcoming data access requests (see
Fig. 2(a)). These MPUs favor coalesced memory accesses to
hide memory latency for parallel threads to improve efficiency.
Furthermore, it is the main component, where atomic opera-
tions are handled.

Whenever a thread encounters an atomic instruction, it sends
an atomic command to the MPU. The command contains
the target operation (add, sub or exchange) and a payload
value. This command is stored in a command buffer until the
targeted shared data is fetched. Once fetched, the command
buffer forwards the data and the atomic command to the raster
operation unit (ROP) for execution (see Fig. 2(b)).

L2 Cache

Frame
Buffer

Partition Unit

Crossbar Unit

Global memory

Raster
Operations

Unit

(a) MPU components

Read Command
Generator

Payload

Command Queue

ROP Cache

Result
Data

Sequencer

Atomic
Command
Buffer

L2 Cache

(b) Atomics in ROP based on [13]

Fig. 2: Components involved in global memory atomics [14]

The forwarded atomic command is stored in an atomic
command buffer - a FIFO queue to ensure serialized atomics.

Using this queue, the ROP updates the shared result atomically.
Finally depending on the type of atomics, the result is either
returned to the target SM (in case of increments, decrements
or addition commands) or simply stored in the global memory
(min, max or exchange commands).

B. Profiling Atomics

Next, we study the negative impact of atomics on group-by
aggregations determining an upper bound or worst case. This
shall indicate the general potential that we can expect when
mitigating the synchronisation overhead.

1) Upper Bound of Atomics Throughput: Normally, in-
creasing the concurrency in a GPU improves the throughput.
However, increasing concurrency with atomics creates a back-
log of threads waiting to access a memory location decreasing
the throughput. Naturally, the severity of this backlog grows
with increasing concurrency. Specifically, when there is only
a single shared memory target, i.e., the input contains a single
group or a reduction operation. The throughput of
such an execution represents a worst case allowing to measure
the maximum negative impact of atomics on throughput.
Hence, we measure this impact based on the number of concur-
rent threads, as GPUs generally benefit from massive parallel
computing power. However, in case atomics are the major
bottleneck, we should observe that the throughput declines
for high numbers of concurrent threads.

0 200 400 600 800 1,000

0

20

40

60

80

Threads/workgroup

T
hr

ou
gh

pu
t

(G
iB

/s
ec

)

a) GTX 1050 Ti

0 200 400 600 800 1,000

0

200

400

Threads/workgroup

T
hr

ou
gh

pu
t

(G
iB

/s
ec

)

b) RTX 2080 Ti

Global atomics Global simple arithmetic Local atomics Local simple arithmetic

Fig. 3: Throughput for naive atomics and arithmetics

2) Simple Arithmetic Operation as Optimal Throughput:
To be able to quantify the impact of atomic execution, we also
execute a naive arithmetic operation on the same location with
no synchronisation at all (using a simple arithmetic operation).
This way, the arithmetics may cause dirty writes. However,
as their overall flow remains the same as atomics, this is a
good way of quantifying the impact of atomics. Note, in the
experiment we use local and global atomics as well as local
and global arithmetics.

In Fig. 3, we plot the results of our experiment using 227

integers on different GPUs. The results suggest three insights:
1) Comparing Fig. 3 (a) & (b), the throughput for local

memory atomics in newer generations is improved signifi-
cantly (instead of being 60% slower on GTX 1050 Ti, local
atomics are only half as slow as local arithmetics on RTX
2080 Ti). Hence, atomics get promising on modern GPUs.

2) The throughput difference for arithmetics and atomics
is large with local atomics having a penalty of 2.0x to 2.6x
on either GPU and global atomics with up to 1.75x on GTX



1050 Ti and up to 77x on RTX 2080 Ti compared to their
simple arithmetic counterparts. Hence, we need to mitigate
this penalty to unleash the full parallel power of present-day
GPUs.

3) When using atomics, the best performance is reached for
a small number of concurrent threads. Increasing thread count,
may even reduce performance. This is the expected undesired
behavior further indicating that one cannot exploit the massive
parallel power GPUs offer.

These results may – at first sight – suggest to rely on local
atomics rather than on global ones. Indeed local atomics are
faster due to less threads accessing the same memory. That
is, an atomic operation over this memory serializes only the
associated threads in the work group. However, relying on
local atomics would require an additional synchronisation step
when combining the partial results in the local shared memory
to the final result. Furthermore, the small size of local memory
limits its use for group-by aggregation.

III. ATOMICS FOR SORT-BASED AGGREGATION

As we can infer from the previous section, multiple compo-
nents are involved in atomic execution, which incurs a consid-
erable overhead. Therefore, minimizing the number of atomics
issued should significantly improve the overall throughput. To
this end, we first present the naive atomic aggregation and,
afterward, introduce optimizations that we apply, which aim
at reducing the amount of issued atomic operations.

A. Sort-Based Aggregation on a GPU

A traditional (sequential) sort-based aggregation sorts the
grouping attribute to identify the groups inside. This mech-
anism has two phases: The first phase sorts the input into
clusters according to the group keys, which forms a sequence
of groups. The second pass sequentially aggregates the groups
present in the sorted input. In order to parallelize this process-
ing for GPUs, additional phases are needed, as explained at
the example of a COUNT aggregation below.

a a b b c d

0 1 0 1 1 1

0 0 1 1 2 3

2 2 1 1
0 1 2 3

Map

Exclusive
Prefix-sum

Aggregation

Fig. 4: Three-phase atomic
COUNT aggregation

The sort-based aggregation
on GPUs has three phases [11]:
map, prefix-sum and aggre-
gate (four, if we consider sort-
ing). First, the map phase com-
pares two consecutive sorted-
input values and returns 0 in
case they match; 1 otherwise.
As shown in the example in
Fig. 4, this phase marks the
group boundaries of a given
sorted input (with a 1). Next, the exclusive prefix-sum com-
putes the target aggregate location for each group. As these
two phases are well known on a GPU, we use standard
operators for them. The final aggregation phase aggregates the
input values according to the target positions from the prefix-
sum. For this phase, our atomic based aggregation is used to
compute aggregated group-by results.

B. Minimizing Atomics Using Private Space

The naive sort-based aggregation issues one atomic oper-
ation per input value, i.e., the amount is equivalent to the
data set size. Considering the processing of atomics on the
GPU, it is reasonable to reduce the contention of threads by
a more complex operator design. To this end, we exploit the
fact that group values inside a sorted array are sequential such
that all values of a group appear after one another before the
next group starts. Now, imagine the following hypothetical
scenario, where we chunk the sorted data s.t. all values of
a single group are assigned to a single thread. Hence, no
synchronisation issues can occur, removing the need for atomic
operations and exploiting the full parallelism of GPUs. Of
course, determining such a perfect chunking creates large
overhead and leads to load imbalances. Nevertheless, as we
will see, our solutions get fairly close to this ideal scenario.

The distinction of when and how to synchronize the partial
result of a thread allows proposing two algorithms: (1) using
a private aggregate variable and (2) using a private aggregate
array. Both versions are shown in Fig. 5, where two threads
aggregate their own chunk of three values.

(a) Private aggregate variable

0 0 1 1 2

2 2 1 1

3

1 1

Result

Thread-private 
Variable

Prefix
Sum

(b) Private aggregate array

0 0 1 1 2

2 2 1 1

3

2 1 0 1 1 1

Result

Thread -private 
Array

Prefix
Sum

Fig. 5: Using private space in aggregation phase

The execution flow of both variants is roughly the same.
In both, a thread sequentially reads its chunk of the prefix-
sum and aggregates the corresponding input values within its
private space until it encounters a group boundary. However,
the variants differ in handling their partial aggregates and thus
in the number of required atomics.

a) Single Private Variable Result Buffer: A thread using
a private variable as a result buffer conducts an atomic
operation whenever it encounters a group boundary, because
it only buffers the aggregate of a single group. Therefore, this
variant issues as many atomics as there are groups in its input
chunk. As a result, the best number of required atomics is 1, in
case there only is a single group per thread. The exact number
of atomics and the time when they are issued depends on the
data distribution. This is important, as this leads to the desired
effect that, assuming group boundaries are evenly distributed,
the number of concurrent atomics declines.

b) Private Array Result Buffer Variant: Instead of using
a single variable as buffer, this variant uses a private array
to buffer the aggregates of all groups it processes. In the
private array variant, a thread sequentially traverses its input
and aggregates into the current result buffer position until a
group border is found. Then, the next position is used for the
next group aggregate. Since the arrays in a GPU are initialized
statically, the result buffer must have the same size as the input



data to cover the case that all input values belong to a distinct
group. This limits the chunk size when the array is stored in
local memory.

Once aggregated, the threads propagate their private result
into the shared memory containing the overall result. To
further mitigate the negative effects of excessive atomics
usage, we conduct another optimisation reducing the number
of required atomics per thread to exactly 2. This makes the
number of required atomics independent of the data distribu-
tion depending only on the number of concurrent threads.

It works as follows: As the input data is sorted, synchro-
nisation issues may only arise for the first and the last group
processed by a thread. The first group may have already begun
in the prior thread’s data input. The final group may continue
in the next thread’s data input. All other groups are only
processed within the current thread. Thus, the approach pushes
these result to global memory without synchronisation having
the optimal performance shown in Fig. 3 (global arithmetic).

IV. EXPERIMENTS

In this section, we evaluate our approaches using micro
benchmarks and a comparison to state-of-the-art competitors.
For both parts, we use the same setup: Since the GPU
hardware has direct influence on atomics, we profile our
atomic-based aggregation on two GPU versions varying in
their memory bandwidth - NVIDIA GTX 1050Ti and NVIDIA
RTX 2080Ti. All our experiments are executed on a linux
machine with GCC 6.5 and OpenCL 2.1. The input dataset
contains 227 (due to Boost.Compute’s data size limitation)
randomly generated integers representing our group-by keys.
While for the micro benchmark and the first comparison, data
is presorted (i.e., sorting time is disregarded), the unordered
data is used for fairness for the final competitor comparison.
Each measurement is repeated 100 times and we present the
average throughput for all variants. For brevity, we present
results for count aggregation, but the result also holds for
different aggregate functions and also data sizes.

A. Micro Benchmark

The parameters affecting performance are (1) thread size per
work group and (2) chunk size of input data per thread. To
this end, we conduct experiments to examine their influence
and find an optimal configuration used in the remainder.

1) Examining Optimal Thread Size for Naive Atomics: In
this experiment, we identify the optimal thread size per work
group for naive atomics serving as baseline. The resultant
throughput of naive atomics on local or global memory with
varying group and thread sizes is given in the heatmaps in
Fig. 6. Notably, the implementation of the naive atomics
variant on global memory is straightforward (i.e., the aggre-
gation step in Fig. 4 uses an atomic operation on the global
memory). However, the atomic variant on local memory needs
an additional merging step. This step is to merge the partial
aggregates inside the workgroups’ local memory into the final
result in the global memory. In this naive local variant, we per-
form the merging similar to the approach used for our private
array variant, where only the first and last positions are merged

atomically. Our result reveals the best performance for a large
number of groups and many threads, because many threads ef-
ficiently hide memory latency and because a higher number of
groups (i.e., a larger spread of target locations in memory) cre-
ate less concurrency on atomic writes. The results also clearly
show an improvement from using local memory as cache for
partial aggregates. Still, the penalties of an extra merging step
are significant and thereby reduces the overall throughput. As
an overall result, the best thread sizes are 256 for GTX 1050 Ti
and 1024 for RTX 2080 Ti, which we then use to compare
naive atomics with our approaches and the competitors.

20 21 22 23 24 25 26 27 28 29 210
100
101
102
103
104
105
106
107
108

Threads per workgroup

N
um

be
r

of
gr

ou
ps

a) GTX 1050 Ti - Global atomics

20

40

60

80

T
hr

ou
gh

pu
t

(G
iB

/S
ec

)

20 21 22 23 24 25 26 27 28 29 210
100
101
102
103
104
105
106
107
108

Threads per workgroup

N
um

be
r

of
gr

ou
ps

b) RTX 2080 Ti - Global atomics

100

200

300

400

T
hr

ou
gh

pu
t

(G
iB

/S
ec

)

20 21 22 23 24 25 26 27 28 29 210
100
101
102
103
104
105
106
107
108

Threads per workgroup

N
um

be
r

of
gr

ou
ps

c) GTX 1050 Ti - Local atomics

20

40

60

80

T
hr

ou
gh

pu
t

(G
iB

/S
ec

)

20 21 22 23 24 25 26 27 28 29 210
100
101
102
103
104
105
106
107
108

Threads per workgroup

N
um

be
r

of
gr

ou
ps

d) RTX 2080 Ti - Local atomics

100

200

300

400

T
hr

ou
gh

pu
t

(G
iB

/S
ec

)

Fig. 6: Impact of varying group and thread sizes

2) Best Thread and Chunk Size for Atomic Variants:
In addition to the thread sizes, our variants using a private
array/variable (either in local or global memory) are also
influenced by the number of input values per thread (chunk
size). Hence, we average the variants’ throughput over all
tested number of groups and plot the results in Fig. 7 and 81.

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
hu

nk
si

ze
pe

r
th

re
ad

(n
um

be
r

of
ke

ys
) Private variable in global memory

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
hu

nk
si

ze
pe

r
th

re
ad

(n
um

be
r

of
ke

ys
) Private variable in local memory

10

20

30

40

T
hr

ou
gh

pu
t

(G
iB

/S
ec

)

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
hu

nk
si

ze
pe

r
th

re
ad

(n
um

be
r

of
ke

ys
) Private array in global memory

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
hu

nk
si

ze
pe

r
th

re
ad

(n
um

be
r

of
ke

ys
) Private array in local memory

Fig. 7: Impact of chunk size and threads in GTX 1050 Ti
Considering the influence of the chunk size on the through-

put, we observe that smaller to medium sized chunks (22−27)
are beneficial compared to larger ones. In the latter case, the
memory controller becomes the bottleneck, due to too many

1Note that not all combinations of chunks and threads are possible as they
cross the physical limit of local memory that can be allocated.



20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
hu

nk
si

ze
pe

r
th

re
ad

(n
um

be
r

of
ke

ys
) Private variable in global memory

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
hu

nk
si

ze
pe

r
th

re
ad

(n
um

be
r

of
ke

ys
) Private variable in local memory

100

200

300

T
hr

ou
gh

pu
t

(G
iB

/S
ec

)

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
hu

nk
si

ze
pe

r
th

re
ad

(n
um

be
r

of
ke

ys
) Private array in global memory

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
hu

nk
si

ze
pe

r
th

re
ad

(n
um

be
r

of
ke

ys
) Private array in local memory

Fig. 8: Impact of chunk and threads in RTX 2080 Ti

requests from threads that fetch input data from global memory
and from the execution of atomic operations. Since the MPU
incurs coalesced accesses, fetching bigger chunks of data
for multiple threads requires multiple cycles, which degrades
performance. In contrast, the local memory variants prefer very
small chunk sizes (21 − 23), whereas global memory benefits
from slightly larger ones (22 − 27). Unlike the naive atomics
where larger numbers are beneficial, chunking improves the
performance of even smaller thread sizes. Interestingly, there
is only a small difference between using a private variable and
a private array for storing intermediate results. By contrast, the
throughput behavior changes w.r.t. the devices, since there is a
broad spectrum of well performing variants on GTX 1050 Ti,
which shrinks for the RTX 2080 Ti. This indicates that the
variants are sensitive to the underlying hardware and need a
smart variant tuning procedure [15].

B. Comparative Experiments

1) Comparison of Atomic Variants: First, we identify the
best variant of our approaches per device used for the final
experiment. To this end, we compare the performance of the
best performing chunk and thread size combination of the two
private aggregate variants with the naive atomic variants with
an optimal thread size. The results are shown in Fig. 9.

1 101 102 103 104 105 106 107 108
0

20

40

60

Groups

T
hr

ou
gh

pu
t

(G
iB

/S
ec

)

a) GTX 1050Ti

1 101 102 103 104 105 106 107 108

0

200

400

Groups

T
hr

ou
gh

pu
t

(G
iB

/s
ec

)

b) RTX 2080Ti

Naive global atomics Global variable Local variable
Global array Local array Naive local atomics

Fig. 9: Performance comparison of atomic variants

Our results show that global array and local variable have
a higher throughput than the naive atomic variants for almost
all number of groups (i.e., except a larger number of groups).
This limitation of our variants is expected as a larger number
of groups leads to multiple groups within a chunk. In this

case, a thread has to repeatedly insert the final result into
global memory degrading its performance. We also see only
a small improvement using local memory for our variants on
the GTX 1050 Ti, which in contrast is a huge improvement on
the RTX 2080 Ti. This is consistent with Section II-B. Finally,
for very high amounts of groups, the overhead of internal
synchronization for the private aggregate variants does not
pay off. Hence, naive local atomics perform best in this case.

In summary, our variants reach a speed up of 6x-12x
compared to the naive global memory atomics and a speed
up of 1.5 - 2.6x compared to the naive local memory atomics.
For GTX 1050 Ti, the variant using a private array in global
memory is the optimal variant with a speed-up of 6x the
naive global memory atomics and 1.6x the naive local memory
atomics. For RTX 2080 Ti, the variant using a local variable
is clearly superior with a speed-up of about 12x the naive
atomics and up to 2x the local memory atomics.

2) Comparison With State of the Art: As a final evalua-
tion, we compare our performance with other state-of-the-art
mechanisms. To this end, we include a sorting step before
executing the best performing atomic variants and compare
against a sort-based aggregation using Boost.Compute and the
hash-based aggregation by Karnagel et al. [12].

1 101 102 103 104 105 106 107 108

0.2

0.4

0.6

0.8

Groups

T
hr

ou
gh

pu
t

(G
iB

/S
ec

)

a) GTX 1050Ti

1 101 102 103 104 105 106 107 108

2

4

6

Groups

T
hr

ou
gh

pu
t

(G
iB

/S
ec

)

b) RTX 2080Ti

Naive global atomics Global array Local variable
Naive local atomics Boost.Compute Hashing

Fig. 10: Overall comparison against state-of-the-art competi-
tors. The performance of atomic variants now includes sorting.

Our results in Fig. 10 reveal that our complex atomic vari-
ants mostly lead to the best performance. On the GTX 1050 Ti,
we reach on average 20 % speed-up over naive global atomics
and Boost.Compute, while it reaches nearly 2x the speed of
hash-based aggregation. We see a similar speed-up on the
RTX 2080 Ti except that our variant using a local variable
reaches up to 1.25x the performance of Boost.Compute. In-
terestingly, hash-based aggregation is only superior for groups
between 1,000 and 100,000. This is because a smaller number
of groups leads to a synchronization overhead when accessing
the shared global hash table concurrently and a larger number
of groups increases the hash table beyond a manageable size.

Discussion: In summary, we can see that for the com-
mon use case of up to some hundred groups2, a sort-based
aggregation using atomics is the superior variant to be used.
This is remarkable, as usually hashing is the best variant [10],
[12]. We argue for a change of this general assumption for the
following three reasons:

2For instance in the TPC-H, 11 out of 16 queries do a group-by on less
than 500 groups. Seven of them operate on less than 10 groups.



• There are a lot of circumstances where presorted data is
grouped (due to sort-merge join or a clustered index) or
data has to be sorted after executing the grouping (due
to an order-by statement). In these cases, it would be the
natural option to also employ a sort-based grouping.

• Although the sorting time dominates the throughput of
our variant in Fig. 10 (making up 80% of the execution
time), it is still the most stable strategy on the GPU across
the group sizes. The reason is a more cache-friendly
access pattern and a better fit for the SIMT processing
model of the GPU [16].

• Due to increased local memory performance of modern
GPUs, the overhead of atomic operations can be effec-
tively mitigated.

As a result, optimizing sort-based group-by operators is a
reasonable future work not only for GPUs, but also CPUs.

V. RELATED WORK

Since the usage of GPUs as general-purpose accelerators,
many researchers use GPUs to accelerate DBMS operations.
In the following, we list work that closely relates to us.

Modeling performance of atomics: Hauck et al. propose to
buffer atomic updates to reduce contention in a reduction [17].
Hoseini et al. explore the impact for atomics on CPUs [18].

Sort-based aggregation on GPUs: Sort-based aggregation
on a GPU was first devised by He et al. [11]. A similar method
is followed by Bakkum et al. [2] using CUDA in SQLite.
However, our result shows that their additional passes over
the data cause more data access cost than using atomics.

Hash-based aggregation on GPUs: Alternatively to sort-
based aggregation, hashing can be used for computing aggre-
gates. Hence, there are several related approaches that tune
hash-based aggregation for GPUs [10], [19], [20].

Non-grouped aggregation on GPUs: Simple aggregation
has the same execution pattern as grouped aggregation, where
a single output location is accessed by all threads. To mitigate
contention, there are various approaches [12], [21].

VI. CONCLUSION

GPUs with their massively parallel processing have been
used for more than a decade now to accelerate compute-
intensive database operators. One such compute-intensive
database operator is a grouped aggregation. Although, up to
now, hashing is the predominant technique for grouped aggre-
gations even on the GPU, a sort-based grouped aggregation is
an important alternative to be considered – especially with an
improved performance of atomics.

In this paper, we investigate how far we can tune a sort-
based grouped aggregation using atomics in the aggregation
step. To this end, we design two alternative variants using
a private variable or array and investigate their performance
improvement when using local or global memory followed by
an atomic-based propagation of private aggregates.

Our results show that our variants speed up grouped ag-
gregation compared to a naive usage of atomics by a factor
of 1.5 to 2, when well configured. Furthermore, a sort-based

grouped aggregation using atomics can outperform a hash-
based aggregation by 1.2x to 2x for most used group sizes.

For future work, we envision the following directions. Since
there are numerous configuration combinations, an automated
exploration of the right configuration is to be done – especially
to choose the right variant for a new GPU architecture. To
this end, we propose to follow or extend the approach given
by Breß et al. [22]. Furthermore, investigating the usage of
atomics for hash-based and strided sort-based group-by (cf.
Karnagel et al. [12]) is an important step forward.

REFERENCES

[1] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks
and Applications, no. 2, pp. 171–209, 2014.

[2] P. Bakkum and K. Skadron, “Accelerating SQL database operations on
a GPU with CUDA,” GPGPU, pp. 94–103, 2010.

[3] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha,
“Fast computation of database operations using graphics processors,”
in SIGMOD, 2004, pp. 215—-226.

[4] H. Wu, “Acceleration and execution of relational queries using general
purpose graphics processing unit,” in GPGPU, 2015.

[5] I. Arefyeva, D. Broneske, G. Campero, M. Pinnecke, and G. Saake,
“Memory management strategies in CPU/GPU database systems: A
survey,” in BDAS. Springer, September 2018, pp. 128–142.

[6] A. Becher, L. B.G. et al., “Integration of FPGAs in database man-
agement systems: Challenges and opportunities,” Datenbank-Spektrum,
2018.

[7] S. Breß, H. Funke, and J. Teubner, “Robust query processing in co-
processor-accelerated databases,” in SIGMOD, 2016, pp. 1891–1906.

[8] P. Boncz, T. Neumann, and O. Erling, “TPC-H analyzed: Hidden mes-
sages and lessons learned from an influential benchmark,” in TPCTC,
2013, pp. 61–76.

[9] B. Gurumurthy, D. Broneske, M. Pinnecke, G. C. Durand, and G. Saake,
“SIMD vectorized hashing for grouped aggregation,” in ADBIS, 2018,
pp. 113 – 126.

[10] T. Behrens, V. Rosenfeld, J. Traub, S. Breß, and V. Markl, “Efficient
SIMD Vectorization for Hashing in OpenCL,” EDBT, pp. 489–492,
2018.

[11] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V.
Sander, “Relational query coprocessing on graphics processors,” ACM
TODS, pp. 1–39, 2009.

[12] T. Karnagel, R. Müller, and G. M. Lohman, “Optimizing GPU-
accelerated group-by and aggregation.” ADMS, pp. 1–12, 2015.

[13] D. B. Glasco, P. B. Holmqvist, G. R. Lynch, P. R. Marchand, K. Mehra,
and J. Roberts, “Cache-based control of atomic operations in conjunction
with an external alu block,” Mar. 13 2012, uS Patent 8,135,926.

[14] T. M. Aamodt, W. W. L. Fung, and T. G. Rogers, “General-purpose
graphics processor architectures,” SLCA, pp. 67–76, 2018.

[15] V. Rosenfeld, M. Heimel, C. Viebig, and V. Markl, “The operator variant
selection problem on heterogeneous hardware.” in ADMS, 2015.

[16] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey, “Sort vs. hash revisited: Fast join
implementation on modern multi-core cpus,” Proc. VLDB Endowment,
p. 1378–1389, 2009.

[17] M. Hauck, M. Paradies, and H. Fröning, “Software-based buffering of
associative operations on random memory addresses,” in IPDPS, 2019,
pp. 943–952.

[18] F. Hoseini, A. Atalar, and P. Tsigas, “Modeling the performance of
atomic primitives on modern architectures,” in ICPP, 2019, pp. 1–11.

[19] D. G. Tome, T. Gubner, M. Raasveldt, E. Rozenberg, and P. A.
Boncz, “Optimizing Group-By and Aggregation using GPU-CPU Co-
Processing,” ADMS, pp. 1–10, 2018.

[20] Y. Yuan, R. Lee, and X. Zhang, “The yin and yang of processing data
warehousing queries on gpu devices,” Proc. of the VLDB Endowment,
vol. 6, no. 10, pp. 817–828, 2013.

[21] T. Lauer, A. Datta, Z. Khadikov, and C. Anselm, “Exploring graphics
processing units as parallel coprocessors for online aggregation,” in
DOLAP, 2010, pp. 77–84.

[22] S. Breß and G. Saake, “Why it is time for a HyPE: A hybrid query
processing engine for efficient GPU coprocessing in DBMS,” Proc.
VLDB Endowment, pp. 1398–1403, 2013.


