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Purpose of review

In recent years, there has been an explosion of studies on network modeling of brain

connectivity. This review will focus mainly on recent findings concerning graph

theoretical analysis of human brain networks with a variety of imaging modalities,

including structural MRI, diffusion MRI, functional MRI, and EEG/MEG.

Recent findings

Recent studies have utilized graph theoretical approaches to investigate the

organizational principles of brain networks. These studies have consistently shown

many important statistical properties underlying the topological organization of the

human brain, including modularity, small-worldness, and the existence of highly

connected network hubs. Importantly, these quantifiable network properties were found

to change during normal development, aging, and various neurological and

neuropsychiatric diseases such as Alzheimer’s disease and schizophrenia. Moreover,

several studies have also suggested that these network properties correlate with

behavioral and genetic factors.

Summary

The exciting research regarding graph theoretical analysis of brain connectivity yields

truly integrative and comprehensive descriptions of the structural and functional

organization of the human brain, which provides important implications for health and

disease. Future research will most likely involve integrative models of brain structural

and functional connectivity with multimodal neuroimaging data, exploring whether

graph-based brain network analysis could yield reliable biomarkers for disease

diagnosis and treatment.
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Introduction

The human brain is structurally and functionally orga-

nized into complex networks allowing the segregation

and integration of information processing. In the past

decade, researchers have demonstrated that by combin-

ing a variety of different imaging technologies [e.g.

structural MRI, diffusion MRI, functional MRI (fMRI),

and EEG/MEG] with sophisticated analytic strategies

such as structural equation modeling [1], dynamic causal

modeling [2], and partial least squares [3], it is possible to

noninvasively map the patterns of structural and func-

tional connectivity of the human brain (known as the

human connectome [4��,5]). Specifically, by modeling

the brain as a complex network, graph theoretical analysis

provides an uncomplicated but powerful mathematical

framework for characterizing topological properties of the

brain networks such as modularity, efficiency, and hubs

(see [6,7��,8�,9�] for recent reviews of graph analysis in

healthy and diseased brains). In this review, we will

summarize recent progress in the graph theoretical
opyright © Lippincott Williams & Wilkins. Unauth
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analysis of brain networks derived from multimodal ima-

ging techniques, focusing mainly on areas of ongoing

research and application.
Structural and functional connectivity of the
brain
Structural and functional connectivity are the two main

types of brain connectivity. Structural brain connectivity

represents structural associations among different

neuronal elements, which includes both the morpho-

metric correlation and true anatomical connectivity

[7��,8�,9�]. The former can be obtained by examining

the statistical interdependencies of morphological

descriptors (e.g. cortical thickness, gray matter volume,

and surface area) between brain regions from structural

MRI data. The latter can be obtained by examining the

white matter fiber connections among gray matter regions

from diffusion MRI data. Functional brain connectivity

represents functional associations among brain regions and

can be obtained by measuring the temporal correlations
orized reproduction of this article is prohibited.
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Figure 1 Illustrations of network measures

(a) Clustering coefficient of node 2. The panel shows an example of a graph composed of seven nodes and nine edges. The dots represent nodes and
the lines represent edges linking the nodes. Node 2 (red color) has four immediate neighbors indicated by nodes 1, 3, 6, and 7 (green colors). The
clustering coefficient of node 2 is the number of existing connections (i.e., 3–6 and 6–7) among the node’s neighbors divided by all of their possible
connections (i.e. 1–3, 1–6, 1–7, 3–6, 3–7, and 6–7), which is 2/6 (i.e. 1/3). (b) The characteristic path length between nodes 5 and 7. There are
many different kinds of ways between nodes 5 and 7, but the shortest path length (i.e. characteristic path length) is 3, indicated by red lines. (c) Modular
structure. There are two modules in the graph in which connections within modules are much denser than between them.
between spatially remote neurophysiological events from

fMRI and EEG/MEG data [10]. Once the brain connec-

tivity information is extracted from the neuroimaging data,

graph theoretical approaches can be further applied to

model brain networks and analyze their underlying

topological properties.
Graph theoretical approaches
Graph theory is a natural framework for the mathemat-

ical representation of complex networks. Recently,

graph theory has attracted considerable attention in

brain network research because it provides a powerful

way to quantitatively describe the topological organiz-

ation of brain connectivity. According to the theory, the

brain can be depicted as graphs composed of nodes

representing regions or voxels and edges representing

structural or functional connectivity among the nodes.

A graph can be undirected or directed as well as

unweighted (binary) or weighted. Several key network

metrics are introduced as follows. See [11] for a detailed

review of graph theory.

The clustering coefficient and characteristic path length

are two basic measurements of a network [12]. The

clustering coefficient of a network is the average of the

clustering coefficients over all nodes in the network,
opyright © Lippincott Williams & Wilkins. Unautho
where the clustering coefficient of a node is the number

of existing connections among the node’s immediate

neighbors divided by all of their possible connections

(Fig. 1). It quantifies the extent of local cliquishness or

local efficiency of information transfer of a network. The

characteristic path length of a network is the average

minimum number of connections that link any two nodes

of the network (Fig. 1). It quantifies global efficiency (in

terms of inverse path length) or the capability for parallel

information propagation of a network. The two metrics

can be used to distinguish different classes of network

such as regular, small-world, and random networks. A

small-world network has a shorter characteristic path

length than a regular network (high clustering and long

path lengths) but a greater local interconnectivity than a

random network (low clustering coefficient and short

path lengths). The small-world model is attractive for

complex brain networks, as it not only supports both

specialized/modularized and integrated/distributed infor-

mation processing but also maximizes the efficiency of

information transfer at a relatively low wiring cost [12].

Another important network metric is the modularity,

which identifies modules of linked nodes that work

together to achieve distinctive functions [11]. Connec-

tions are usually denser within modules than between

them (Fig. 1). Detecting and characterizing modules of

the brain can allow us to identify groups of anatomically
rized reproduction of this article is prohibited.
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and/or functionally associated components that may sub-

serve specific behavioral functions.

In a network, the nodal characteristics can be measured

by several metrics such as the degree, efficiency, and

betweenness centrality [11]. The degree of a node is the

number of all links for the node. The efficiency of a node

is the mean of the inverse of the minimum path length

between the node and all other nodes in the network.

The betweenness centrality of a node is the number of

shortest paths between any two nodes that run through

the node. These nodal metrics can be used to identify

network hubs.
Human brain structural networks
The network of structural connectivity in the human

brain in vivo can be constructed by using both structural

MRI and diffusion MRI.

Structural MRI

Structural MRI supplies rich information on the brain

morphology. Numerous structural MRI studies have

demonstrated that there are correlated changes in gray

matter morphology (e.g. cortical thickness and volume)

between various anatomically or functionally linked

areas [13,14]. The notion of morphological correlations

has been widely used to study correlated evolution in

mammalian brain structures [15] or to infer structural

connectivity between regions in the human brain [13].

Using cortical thickness measurements derived from

structural MRI, He et al. [16] constructed a human

whole-brain structural network at a macroscopic level

by computing the interregional thickness correlations

across populations and found that the resultant network

exhibits a ‘small-world’ topology (high clustering and

short path lengths) and contains a set of network hubs

predominantly located in heteromodal association cor-

tical regions. In a subsequent study, Chen et al. [17�]

showed that the structural brain network has a modular

structure closely overlapping with known functional

domains such as auditory/language, strategic/executive,

sensorimotor, visual, and mnemonic processing. In a

twin study, Schmitt et al. [18��] showed not only that

the associations of cortical thickness among regions are

genetically mediated in the frontoparietal and occipital

networks but also that the mediated relationships follow

a small-world principle. In addition to the cortical

thickness measurements, other morphological descrip-

tors such as gray matter volume and surface area have

also been used to study brain structural networks. By

analyzing the interregional correlations of gray matter

volume, Bassett et al. [19��] found that multimodal

cortical networks have a hierarchical organization domi-

nated by frontal hubs, whereas transmodal and unim-

odal cortical networks are less hierarchically organized,
opyright © Lippincott Williams & Wilkins. Unauth
suggesting different topological organization for differ-

ent cortical divisions. Recently, Sanabria-Diaz et al.
[20�] showed that structural brain networks derived

from cortical thickness and surface area measurements

have distinct topological attributes indicated by signifi-

cant differences in network parameters (e.g. clustering

coefficient, path length, and local and global efficiency),

which is suggestive of distinct properties of the inter-

action or different aspects of the same interaction

(mechanical, anatomical, and chemical) between brain

structures.

Several structural MRI studies have applied

morphology-based network models to the study of brain

diseases such as Alzheimer’s disease, schizophrenia, and

multiple sclerosis. He et al. [21��] showed that Alzhei-

mer’s disease patients had abnormal topological organ-

ization in the whole-brain structural networks, such as

increased clustering and path lengths as well as reduced

betweenness centrality in temporal and parietal regions.

These changes suggest a shift to more local processing

and a disrupted structural integrity of the larger-scale

brain systems. Bassett et al. [19��] showed that schizo-

phrenia patients are associated with abnormal topology

in the multimodal brain network characterized by a

reduced hierarchy, an increased connection distance,

and the loss of frontal hubs. More recently, He et al.
[22��] showed that the small-world efficiency of struc-

tural brain networks in multiple sclerosis was disrupted

in a manner proportional to the extent of total white

matter lesions and that regional efficiency reductions

were mainly located in the insula and precentral gyrus as

well as the prefrontal and temporal association cortical

regions.

Diffusion MRI

Recent advances in diffusion MRI and tractography

methods have facilitated the noninvasive mapping of

structural networks in the human brain at an individual

level. Deterministic ‘streamline’ tractography allows us

to infer the continuity of fiber bundles from voxel to voxel

[23]. In contrast, probabilistic tractography allows us to

compute the connectivity probabilities rather than the

actual white matter pathways between voxels [24]. Sev-

eral previous studies involving diffusion tensor imaging

(DTI) and diffusion spectrum imaging have utilized the

deterministic tractography methods to construct human

whole-brain structural connectivity networks by explor-

ing the density or existence of fiber connections between

anatomically and/or functionally related brain regions

[25��,26��]. Similar to those of morphology-based brain

structural networks, the diffusion MRI-based networks

were also found to exhibit small-world attributes. Two

recent studies by diffusion-weighted MRI have utilized

probabilistic diffusion tractography methods to construct

human whole-brain structural networks by characterizing
orized reproduction of this article is prohibited.
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the interregional connectivity probabilities. Not surpris-

ingly, graph analysis also revealed small-world topology

and high efficiency in those brain networks [27��,28].

Notably, these diffusion MRI-based studies have con-

sistently demonstrated that human brain structural net-

works contain a particular set of highly connected areas

located predominantly in the posterior medial and

parietal cortices.

Several diffusion MRI studies have also explored whole-

brain structural connectivity patterns in different popu-

lations. Using DTI tractography, Li et al. [29�] showed that

higher intelligence quotient scores are associated with

larger global efficiency in the brain networks, suggesting

an association between the structural organization of the

brain and intelligence performance. Also using DTI trac-

tography, Shu et al. [30�] showed that early blind subjects

are associated with decreased connectivity degree and

global efficiency in the structural brain networks, particu-

larly in the visual cortex. However, increased connections

were detected in the motor or somatosensory areas. These

results imply a topological re-organization of structural

brain connectivity in the specific population with early

visual deprivation. Recently, Gong et al. [27��] showed that

the local efficiency of structural brain networks con-

structed from diffusion-weighted MRI decreases with

age (from 19 to 85 years) and that there is also a shift of

regional efficiency from the parietal and occipital to the

frontal and temporal neocortex in older brains (Fig. 2).

Interestingly, they also showed that female brains have

greater overall connectivities and higher efficiencies than

male brains. These results provide insight into the under-

standing of age-related and sex-related differences in

cognition and behavior.
Human brain functional networks
The network of functional connectivity in the human

brain in vivo can be constructed by fMRI and EEG/MEG.

Functional MRI

fMRI utilizes changes in cerebral blood flow and oxygen

consumption in order to detect neuronal activity. With

intermediate temporal (seconds) and spatial (mm) resol-

utions, fMRI has recently attracted considerable atten-
opyright © Lippincott Williams & Wilkins. Unautho

Figure 2 (Continued )
(a) The schematic image processing for the construction of the cortical weig
subject (top of left panel) are shown. Each color represents a cortical region.
left panel) was determined. The yellow–red color represents the resulting p
other voxels. The regional probability matrix from the probabilistic tractograp
cortical region. (b) The age effect on the local and global efficiency of the co
local efficiency (left panel), but the integrated global efficiency showed no sig
after adjusting for the effects of brain size and sex, using a general linear mode
effect (P<0.05, false discovery rate-corrected) on the integrated regional e
calculated from the general linear model. Each identified region was marked o
and occipital cortex, whereas the positive age effect was localized only in th
tion for the graph analysis of brain networks. Several

fMRI studies have consistently demonstrated that brain

functional networks (region-based and voxel-based

levels) in healthy individuals have small-world topolo-

gies, high efficiencies at a low wiring costs, and highly

connected hub regions that are mainly located in the

association cortical regions [31,32,33��,34,35��,36].

Particularly, several recent studies using resting-state

fMRI have shown that the brain functional networks

have an intrinsically cohesive modular (community)

structure in which the connections between regions are

much denser within each module than between them

and, more importantly, that those modules are mainly

composed of functionally and/or anatomically related

brain regions [33��,37,38�] (Fig. 3).

Using resting fMRI and graph theoretical analysis, van

den Heuvel et al. [39�] showed a significantly negative

correlation between the path length of brain networks

(voxel level) and intelligence quotient, that is, more

efficiently connected brains correspond to higher levels

of intellectual performance. Furthermore, most pro-

nounced effects were found predominantly in the frontal

and parietal regions, which have been known to be where

the structural [25��,26��] and functional [35��] hubs are

located. These results suggest that human cognitive

ability is likely to be related to the topological architec-

ture of the brain functional network.

Several fMRI studies have utilized graph-based network

models to examine age-related changes in the functional

connectivity patterns of the human brain. Using a large

fMRI dataset (210 individuals: 66 aged 7–9 years; 53 aged

10–15 years; 91 aged 19–31 years), Fair et al. [40��] showed

that the small-world measurements of brain functional

networks composed of 34 predefined brain regions were

constant over age. In contrast, module assignments change

over age: modules in children are predominantly arranged

by anatomical proximity, whereas modules in adults pre-

dominantly reflect functional relationships. This suggests

a dynamic developmental trajectory of brain functional

network topology. Supekar et al. [41��] reported that both

children (7–9 years) and young adults (19–22 years) have

similar ‘small-world’ topological organization of their

whole-brain functional networks but differ significantly
rized reproduction of this article is prohibited.
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Figure 2 Construction of structural brain networks by diffusion MRI tractography and age-related changes in network efficiency
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Figure 3 The modular structure and hubs of the human brain functional network by resting fMRI

(a) The modular architecture of the human brain functional network. Five functional modules were identified in the brain functional network derived
from resting fMRI data and represented by five different colors. The geometric distance between two brain regions on the drawing space
approximates the shortest path length between them. The network is visualized with the Pajek software package (http://vlado.fmf.uni-lj.si/pub/
networks/pajek/) using a Kamada–Kawai layout algorithm. The intramodule and intermodule connections are shown in the gray and dark lines,
respectively. (b) Surface and anatomical representation of the modular architecture of the human brain functional network. All of the 90 brain regions
are marked by different color spheres (different colors represent distinct network modules) and are further mapped onto the cortical surfaces at the
lateral, medial, and top views, respectively, using the Caret software (http://brainvis.wustl.edu). Notably, the regions are located according to their
centroid stereotaxic coordinates. For visualization purposes, the subcortical regions are projected to the medial cortical surface according to their y
and z centroid stereotaxic coordinates. (c) The global hubs with high topological centralities in the human brain functional networks. The surface
visualization of all 90 brain regions is shown, with node sizes indicating their relative node betweenness centrality, Nbc. Regions with
Nbc>meanþSD are considered to be hubs (red colors), and otherwise they are considered to be nonhubs (blue colors). Reproduced with
permission from [33��].
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in their hierarchical organization and interregional con-

nectivity, with a reduction in short-range connectivity

and a strengthening of long-range connectivity,

suggesting a process of greater functional segregation

but weaker functional integration in children. Achard

and Bullmore [42] showed that brain functional networks

derived from resting fMRI had significantly reduced

efficiency in older adults than in young adults. In a

subsequent study on the same dataset [38�], the older

group was also found to have a reduced number of

intermodular connections to frontal modular regions

but an increased number of connector nodes in posterior

and central modules. Wang et al. [43�] showed that the

brain functional networks of older adults were associated

with an increased shortest path length and a reduction in

the long-range connections during the performance of

memory tasks, thereby providing insight into age-related

declines in cognitive functions.

During the past 2 years, there has also been increasing

attention focused on the application of graph-based net-

work models of resting fMRI in brain diseases. Supekar

et al. [44�] reported that Alzheimer’s disease patients had

reduced clustering in the brain functional networks,

indicative of disrupted local neighboring connectivity.

Liu et al. [45�] showed that various topological measure-

ments, such as the clustering coefficient and the global

and local efficiency, were reduced in the brain networks

of schizophrenia patients as compared with controls, and

the reduction was negatively correlated with the illness

duration. Wang et al. [46�] showed that boys with atten-

tion-deficit/hyperactivity disorder had increased local

efficiency in the brain functional networks, with nodal

efficiency changes in the prefrontal and temporal

regions. These changes could reflect a compensatory

recruitment or a developmental delay in brain topologi-

cal organization in this disorder. Liao et al. [47�] showed

that patients with mesial temporal lobe epilepsy were

associated with smaller clustering coefficients and

shorter path lengths, indicating a more random-like

configuration in the brain functional networks of the

patients. Nakamura et al. [48�] illustrated that patients

with traumatic brain injury had reduced connectivity

strength and increased small-world attributes from 3

months to 6 months postinjury, suggestive of a network

recovery following severe brain injury.

EEG/MEG

In contrast to fMRI, which is based on a neurovascular

signal, noninvasive in-vivo human electrophysiology

with EEG or MEG measures the changes in the electro-

magnetic field related to neuronal activity at a high

temporal resolution (milliseconds) but a poor spatial

resolution (cm). In the past year, several studies have

applied EEG/MEG techniques to the graph analysis of

brain functional networks under healthy and clinical
opyright © Lippincott Williams & Wilkins. Unauth
conditions. For example, an MEG study [49�] reported

that the cost efficiency of a brain functional network

correlated positively with task performance (working

memory) and specifically with the cost efficiency of

nodes in the left lateral frontal and parietal regions.

An EEG study [50] showed that young adults had

decreased clustering and increased path lengths in the

brain functional networks as compared with children. In

Alzheimer’s disease, a graph theoretical analysis of a

resting-state MEG network [51��] revealed decreased

clustering coefficients and path lengths, with a prefer-

ential decrease in connections between highly con-

nected network hubs, a result that was compatible with

a previous fMRI-based brain network study in Alzhei-

mer’s disease [44�]. Interestingly, a resting-state EEG

study [52��] reported similar changes in the brain func-

tional network topology in Alzheimer’s disease patients

but observed changes in the opposite direction

(increased clustering and path lengths) in patients with

frontotemporal dementia, suggesting a different patho-

physiology. However, it is worth noting that these find-

ings are inconsistent with those shown in a previous

structural MRI study demonstrating increased clustering

and shortest path lengths in structural brain networks in

Alzheimer’s disease [21��]. The discrepancies could be

attributable to different imaging modality, population

size, network node, and edge definitions applied in these

studies. Graph theoretical analysis of brain networks

based on EEG/MEG data has been also applied to other

diseases such as schizophrenia [49�,53], epilepsy [54],

and depression [55].
Future perspectives
Graph-based network analysis represents the state-of-

the-art methodology in brain connectivity; however,

there are many challenging issues in this new field that

need to be addressed.

Whole-brain structural and functional connectivity can be

modeled as networks with different neuroimaging mod-

alities. During the network construction, the definition of

nodes and edges is a critical step. Previous studies using

structural, functional, and diffusion MRI have demon-

strated that network nodes can be defined using both

anatomical and/or functional brain atlases and image

voxels, but the resultant networks exhibited significantly

different topological properties [20�,56�,57�,58�]. More-

over, some studies have confined the network to the

cerebral cortical system, namely only considering cortical

regions as network nodes [16,18��,20�,21��,22��,25��–

27��], whereas others allow for connectivity to deep

gray matter structures such as the thalamus and striate

cortex [31,32,33��,41��,42,43�–48�,56�]. Likewise, the

definition of network edges depends on the selection of

different image preprocessing and connectivity metrics
orized reproduction of this article is prohibited.
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[16,19��,20�,21��,25��,26��,31,32,33��,34,35��,37,38�]. Given

the lack of a gold standard for the definition of network

nodes and edges, researchers still need to take care when

choosing the right network representation of the brain

connectivity to ensure the appropriate use of network

analysis.

The stability and reproducibility of graph metrics are also

important for brain network analysis. A recent DTI study

[59�] reported a high reproducibility of small-world

metrics in the structural brain networks derived from

different image acquisition parameters such as the num-

ber of gradient directions and gradient strength. A high

reproducibility of graph metrics across different task

states and subjects was also reported in the brain func-

tional networks derived from MEG and fMRI data

[33��,35��,60��]. Thus, graph-based brain network

analysis could be both practical and feasible for longi-

tudinal studies, but more systematic evaluation is

still necessary.

Another area of expansion is in the combination of

different imaging modalities to determine the relation-

ship of the structural and functional connectivity of the

brain. Several previous studies have shown that the

strength of intrinsic functional connectivity derived

from resting fMRI positively correlated with the

strength of structural connectivity measured with diffu-

sion MRI [61]. With the aid of computational modeling,

Honey et al. [62��] showed that the system-level proper-

ties of functional brain networks can be partly

accounted for by the properties of the underlying

structural network, implying topological correlations

of structural and functional networks. The combination

of multimodal imaging techniques of the future will

provide integrative information to map the patterns of

brain connectivity that underlie cognition and behaviors

in humans.

The collection and distribution of large-scale neuroima-

ging data are important and necessary for the noninvasive

mapping of the structural and functional connectivity of

the human brain. There are currently a few publicly

available neuroimaging databases, for example, fMRIDC
(http://www.fmridc.org), NIHPD (http://www.bic.

mni.mcgill.ca/nihpd/), OASIS (http://www.oasis-brain-

s.org), ADNI (http://www.adni-info.org), FBIRN (http://

www.birncommunity.org), BrainMap (http://www.brain-

map.org), BrainScape (http://www.brainscape.org), and

‘1000 Functional Connectomics Project’ dataset (http://

www.nitrc.org/projects/fcon_1000/). These databases

offer excellent opportunities for systematically inves-

tigating the network modeling of brain connectivity

in health and disease and for facilitating knowledge-

sharing and collaboration among the scientific com-

munity.
opyright © Lippincott Williams & Wilkins. Unautho
Conclusion
The accumulating body of evidence suggests that graph

theoretical analysis of neuroimaging data offers a power-

ful way to understand the topological principles of brain

networks in the normal adult, in development and with

aging and disease. It is clear that more research is needed

to allow comprehensive and reliable descriptions for

patterns of structural and functional brain connectivity.

These efforts are opening up new avenues of research

into organizational mechanisms of the brain that will be of

interest for all basic scientists and clinical researchers.
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