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Abstract. The companion paper (Guan et al., 2010) demon-
strated variable interactions and correlations between shal-
low soil moisture and ground thaw in soil filled areas along
a wetness spectrum in a subarctic Canadian Precambrian
Shield landscape. From wetter to drier, these included a wet-
land, peatland and soil filled valley. Herein, water and energy
fluxes were examined for these same subarctic study sites to
discern the key controlling processes on the found patterns.
Results showed the presence of surface water was the key
control in variable soil moisture and frost table interactions
among sites. At the peatland and wetland sites, accumulated
water in depressions and flow paths maintained soil moisture
for a longer duration than at the hummock tops. These wet
areas were often locations of deepest thaw depth due to the
transfer of latent heat accompanying lateral surface runoff.
Although the peatland and wetland sites had large inundation
extent, modified Ṕeclet numbers indicated the relative influ-
ence of external and internal hydrological and energy pro-
cesses at each site were different. Continuous inflow from an
upstream lake into the wetland site caused advective and con-
ductive thermal energies to be of equal importance to ground
thaw. The absence of continuous surface flow at the peatland
and valley sites led to dominance of conductive thermal en-
ergy over advective energy for ground thaw. The results sug-
gest that the modified Ṕeclet number could be a very useful
parameter to differentiate landscape components in modeling
frost table heterogeneity. The calculated water and energy
fluxes, and the modified Péclet number provide quantitative
explanations for the shallow soil moisture-ground thaw pat-
terns by linking them with hydrological processes and hills-
lope storage capacity.

Correspondence to:C. Spence
(chris.spence@ec.gc.ca)

1 Introduction

Over 50% of Canada’s land surface is underlain with dis-
continuous or continuous permafrost (Wolfe, 1998). This
has profound implications for the hydrology of much of the
country because while water can flow in frozen soil, its rate
of movement is slowed, and consequentially, lateral and ver-
tical subsurface water fluxes are largely concentrated in the
thawed portions above the frost table. Ground thaw has im-
portant implications on spatial and temporal soil storage ca-
pacities and runoff generation (e.g. Landals and Gill, 1972;
Woo and Steer, 1983; Spence and Woo, 2003, 2006; Wright
et al., 2009; Guan et al., 2010). For instance, in peatland
permafrost landscapes, hydraulic conductivity varies consid-
erably over soil depth due to greater peat decomposition and
humification with depth (Quinton and Marsh, 1998, 1999).
The water table depth in the peat partly controls the area con-
tributing to runoff. As it drops with ground thaw, it causes
the contributing area to decrease due to an increase in sub-
surface storage capacity (Quinton and Marsh, 1999). Con-
versely, when the water table position is close to the sur-
face, source areas increase with decreasing flow resistance
through the porous organic soils and along hollows (Quinton
and Marsh, 1999).

Locations with the most thaw in the spring tend to remain
as locations with the most thaw in the summer (Wright et al.,
2009). Factors that cause localized differential ground thaw
include snow cover and vegetation cover. For example, ra-
diated or advected melt energy from tree trunks can increase
snow ablation in the immediate vicinity of the trunks at a
faster rate than the surrounding (Faria and Pomeroy, 2000;
Pomeroy et al., 2009); this exposes the soil earlier to direct
solar energy and consequently, causes soils to thaw earlier.
Lichen covered ground tends to have less thaw than mossy
cover in the spring due to less efficient water retention prop-
erties; though this correlation weakens in the summer as the
frost table and saturated zones deepen (Wright et al., 2009).
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Two key controls of frost table depth commonly mentioned
in the literature are soil temperature and moisture (e.g. Gray
et al., 1988; Kane et al., 2001; Wright et al., 2009). Wright et
al. (2009) found wetter years tended to have deeper ground
thaw at the inter-annual scale, but a seasonal correlation was
not clearly demonstrated. Rouse et al. (1992) noted the oppo-
site correlation at the seasonal scale; a dry season had more
ground thaw due to more ground heat flux and thermal dif-
fusivity. Woo and Xia (1996) studied the thermal condition
of the active layer at a wetland site and at a drier site and
found the wetland experienced less thaw than the drier site
due to ice content difference. Carey and Woo (1998a) had
similar findings concluding that ice rich locations increase
the zero-curtain effect (i.e. latent heat keeps soil at isother-
mal (∼0◦C) for long periods of time, Outcalt et al., 1990)
and decrease the rate of ground thaw. Other hydrological
and energy forcings can complicate this zero-curtain effect.
For example, variable frost table depths have been shown to
be strongly tied to spatial soil moisture distribution with wet-
ter locations experiencing deeper ground thaw (Wright et al.,
2009; Guan et al., 2010).

Soil moisture has been the focus of many hydrological
studies because of its control on surface energy and water
balances, vegetation growth and distribution (Grayson et al.,
1997; Rodriguez-Iturbe et al., 2007). For long-term water
balances, knowledge about the parts of the landscape that
are wetter than the average can improve streamflow forecast
models (Grayson et al., 1997). Park (1979) found estimating
soil moisture values for different land cover types yielded
more accurate water balances than using one single, lumped
value. Generally, soil moisture closer to the surface is more
dynamic than at depth and can be a good indicator of surface
runoff responses of soil (Western et al., 2002) and thus, shal-
low and deep soil moisture should be decoupled in models.
For instance, even small changes in the antecedent condition
of surface soils can have dramatic non-linear changes in the
runoff volume after a storm (James and Roulet, 2007).

Unlike other geographic regions, soils in cold regions are
greatly influenced by ground thawing and freezing. Ice in
frozen soil increases infiltrating water tortuosity and lowers
hydraulic conductivity and infiltration rate (Granger et al.,
1984; Black and Miller, 1990). Heat transfer from warmer
surface water into the cooler soil has been found to have a
strong influence on ground thaw in locations where there is
convergence of lateral water flow into frost table depressions
(Wright et al., 2009). Similarly, studies in the subarctic and
the high arctic have found that surface water flow can en-
hance ground thaw on footslopes and preferential slope flow
routes (Hastings et al., 1989; Hinzman et al., 1993; Carey
and Woo, 1998b, 2000). At a subalpine slope in the Yukon
Territory,∼9% of all incoming net radiation was directed to
ground thaw in the spring (Shirazi et al., 2009) and there have
been documented uses of more than 86% of the ground heat
flux at a peat plateau for melting ground ice (Hayashi et al.,
2007). Even though Carey and Woo (1998a) found no strong

correlation between ground thaw and ground heat flux and
suggested other factors have a more important influence on
ground thaw, Hayashi et al. (2007) and Shirazi et al. (2009)
noted differential thaw rates due to the thermal conductiv-
ity of peat, which is largely dependent on soil water content
through its influence on thermal conduction.

Temperate region runoff generation patterns cannot simply
be extrapolated to higher latitudes (Carey and Woo, 2001;
Quinton and Carey, 2008) because frozen ground and associ-
ated hydrological processes influenced by the frost table po-
sition complicate these patterns. For instance, aerodynamic
and radiant energies have important controls on runoff con-
tribution area at tundra locations (Quinton and Carey, 2008).
This close interaction between the energy and hydrological
cycles prompted Quinton and Carey (2008) to propose a new
hypothesis that better links this coupling. As outlined above,
recent studies have shown that the presence of soil water
may enhance ground thaw. Understanding the hydrological
and energy controls on this relationship is needed to improve
storage and runoff parameterization and prediction in cold
regions. The question asked in this paper is thus: What are
the dominant hydrological and energy controls on the inter-
action between shallow soil moisture and frost table depth in
soil filled areas located in the subarctic Canadian Shield?

2 Study site

A detailed description of the study basin and the three study
sites (peatland site, valley site and wetland site) is provided
in the accompanying paper (Guan et al., 2010). Here, we
describe just the climate and hydrology in more detail. The
Baker Creek Basin has a continental subarctic climate and
air masses predominantly originate in the Arctic Ocean dur-
ing winter and spring and in the Pacific Ocean during sum-
mer and fall (Wolfe, 1998). Climate normals from 1971–
2000 at Environment Canada’s climate station, Yellowknife
A (62◦27′ N 114◦26′ W) show a mean annual temperature
of −4.6◦C, a January mean of−26.8◦C and a July mean of
16.8◦C. The annual precipitation is 281 mm with 59% falling
as rain. In the summer months, a high evaporation to precip-
itation ratio is common, and this often results in a negative
water balance within the isolated soil filled areas before fall
freeze-up (Spence and Rouse, 2002).

The West Bay fault greatly influences Baker Creek’s
drainage pattern by creating a linked flow pattern in the
southeasterly direction (Wight, 1973; Park, 1979). Many ar-
eas in the basin are usually isolated and only spill and drain to
Baker Creek in the wettest periods (Park, 1979). Park (1979)
noted that in areas where isolated local depressions exist, a
large volume of annual runoff can be retained. The basin’s
mean annual runoff ratio is 0.21 (Spence et al., 2010). Some
of the key factors controlling the basin’s storage capacity
and infiltration rates are the Precambrian Shield’s extensive
bedrock outcrops, short snowmelt duration, and presence of
frozen ground (Landals and Gill, 1972).
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Fig. 1. Main surface flow lines and elevation map of the study sites. The contour interval at the peatland site(a) is 1 m, 1 m at the valley site
(b) and 3 m at the wetland site(c). Elevations are referenced to meters above sea level. Size of arrows is proportional to flow magnitude (e.g.
larger arrow indicates relatively greater water flow).

Table 1. Site area, topographic gradient based on 1 m by 1 m digital elevation model, shallow soil characteristics (top 0.10 m) and saturated
hydraulic conductivity (K) at each site. Shallow and deepK are at pipe slot depths described in Sect. 3.1.4.

Site Peatland Valley Wetland

Area (ha) 1.4 0.04 3.3
Gradient (%) 3 12 6
Soil Porosity 0.85 0.83 0.80
Soil Bulk Density (kg m−3) 78 113 104
Soil Particle Density (kg m−3) 574 644 567
Specific Yield 0.15 0.19 0.25
Kshallow (m s−1) 10−6 10−5 to 10−7 10−6 to 10−7

Kdeep(m s−1) 10−7 to 10−8 10−8 to 10−9 10−6 to 10−9

The hummocky peatland site is hydrologically isolated be-
cause it is surrounded by bedrock. It has a number of soil
filled bedrock inlets to the east (Fig. 1a). There are two
outlets, the key outlet is at the northwest section of the site
through a wide, moss and treed covered area. The inlets and
outlets flow during snowmelt and after large rain events. The
valley site has, in addition to runoff from bare bedrock, a de-
fined soil filled bedrock inlet (Fig. 1b). There are two water
eroded outlets toward the bottom of the site with one channel
on each side adjacent to the bedrock slopes. Similar to the
peatland site, the valley inlets and outlets are only active dur-
ing snowmelt and following larger rain inputs. The wetland
site is situated between two lakes, Lake 690 (unofficial name)
and Vital Lake. Water drains from Lake 690, flows through
the wetland site (in well defined channels in some areas) and
then empties into Vital Lake (Fig. 1c). There was continuous
surface inflow and outflow during the 2008 field season. The
site is hummocky with many waterlogged hummock hollows
that remain permanently wet in the thaw seasons. Physio-
graphic details of the three sites are summarized in Table 1.

3 Methods

3.1 Water fluxes

At each site, the following water fluxes were measured or
calculated to elucidate the measured soil moisture and frost
table patterns found by Guan et al. (2010):

P +M + I −Q−ET= 1S (1)

whereP is precipitation, M is melt, I is inflow, Q is dis-
charge, ET is evapotranspiration, and1S is change in storage
(all units are mm d−1). One limitation of any water budget is
that the accuracy of1S is dependent on the accuracy of the
other fluxes and accuracies are thus listed, where available.
Fluxes were assumed uniform over space.

3.1.1 Meteorological measurements

Meteorological data were collected on the bedrock above
the peatland site and in the wetland site. The peatland sta-
tion was installed on bare bedrock with sparse tree cover
and the wetland station was at a partly saturated area with
deciduous shrubs in its immediate surrounding. The peatland
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station measured air temperature,T (◦C) and relative humid-
ity, RH (%) at two heights, wind speed,u (m s−1), wind di-
rection,udir (degree), net radiation,Q* (W m−2), and rain-
fall, P (mm). The instruments were connected to a Camp-
bell Scientific CR23X datalogger.T and RH at two heights,
u, Q* and P were also measured at the wetland site with a
Campbell Scientific CR1000 datalogger. Data were scanned
every minute and averaged at half-hour intervals.

3.1.2 Snow survey and snow cover interpolation

Snow surveys were completed at each of the three study
sites following the methods described in Pomeroy and
Gray (1995) and Woo (1997). Mean snow water equivalent,
SWE (mm,±15%) was calculated for each transect using:

SWE=
ρsd

ρw
(2)

whereρs is snow density (kg m−3), d is mean snow depth
(mm) andρw (1000 kg m−3) is water density. All individual
SWE samples were averaged over site to obtain an overall
mean SWE for each site. After the snow survey, to account
for any newly fallen snow, one snowboard was set up by each
ablation line (Sect. 3.1.3) and monitored daily.

3.1.3 Melt

An ablation line was set up at each of the three sites to moni-
tor daily ablation rate,Ma (±25%) following the approaches
described in Heron and Woo (1978). Each line consisted of
10 points spaced∼0.2 m apart, and at the time height to snow
measurements were made, surface (top 16 mm) snow density
samples were also collected. The daily depth of melt rate
(M, mm day−1) at each soil filled zone was calculated as:

M =

(1z̄)
ρs

ρw︸ ︷︷ ︸
Ma

−sb

as (3)

where1z̄ is mean snow depletion between two consecutive
days (mm day−1) and sb is sublimation loss (mm day−1).
The sb was calculated with the latent heat available for
vapourization using latent heat flux data from the peatland
meteorological station. The rates were weighted to the frac-
tion of area with snow cover (as, unitless) at each of the sites
estimated from daily site photos.

3.1.4 Inflow

Channelized surface inflow (Is) was measured where possi-
ble with a SonTek FlowTracker acoustic doppler velocimeter
that was accurate to 1%, i.e.±2.5 mm s−1. Channelized in-
flow into the peatland site was measured every one to two
days from two bedrock runoff locations, and at the valley
and wetland sites, from one location at each site (Fig. 1). The

inflow to the wetland site from Lake 690 was thoroughly doc-
umented during the study period. A Solinst Levelogger was
placed in Lake 690 to record the lake level every half-hour.
These data were used to find a stage-discharge relationship at
the lake outlet. The lake water level was also manually mea-
sured with a survey level approximately once a week during
the study period and opportunistically at other times to adjust
the Levelogger readings if necessary. Half-hourly readings
from a Solinst Barologger installed at the wetland site were
used to compensate Levelogger readings for fluctuations in
barometric pressure. Spence and Woo (2006) noted accuracy
of rating curves derived this way as 20%.

Field data were used to model flow from soil covered and
bare bedrock into the sites. For bedrock with soil cover, data
from the two peatland inlets and one valley inlet were used.
Values were sometimes overestimated since measurements
were done only when there was enough water to fully sub-
merge the velocimeter. For bare bedrock upland runoff, three
sheet metal weirs comparable to those used by Spence and
Woo (2002) (Fig. 1b) were installed in fall 2007. Spence
and Woo (2002) noted these weirs can measure runoff to an
accuracy within 7%. The recorded runoff volumes were con-
verted into depths based on the bedrock contributing area
to the weirs. The boundaries of the contribution area were
visually delineated in the summer based on best judgment
and then surveyed with a total station. To calculate total lat-
eral inflow from the surrounding bedrock upland (both bare
and soil covered bedrock), the contribution areas to each site
were delineated with the watershed tool in the ArcGIS hy-
drology spatial analyst toolbox using data from a 1 m resolu-
tion digital elevation model. After the total contribution area
was delineated, a classified Quickbird satellite image and ob-
servations were used to categorize all bedrock side slopes
as either bare or soil covered to model flow from each cat-
egory separately. To prevent bare bedrock that flows into
soil covered bedrock from being counted twice (i.e. once as
bare bedrock runoff and then again for soil covered bedrock),
all bare areas contributing to soil covered bedrock were sub-
tracted from bare bedrock runoff calculations. Runoff from
the bedrock side slopes (Rbss) was calculated as:

Rbss=
(Rbab)+(Rscasc)

abss
(4)

whereR is runoff generated (mm),a is area (m2) over which
runoff is generated, subscripts bss, b, and sc are bedrock side
slope, bare bedrock and soil covered bedrock, respectively.
To convertRbssfrom depth of runoff per unit area of bedrock
side slope into depth over each of the study sites (Ibss), the
following equation was used:

Ibss=
Rbssabss

av
(5)

whereav is the site area. At sites where lake inflow was
measured (e.g. the wetland site),Ibss was added to it to get
total Is into the soil filled site.
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Piezometer nests were installed at each site to monitor
groundwater flux. At the peatland site, there were three
wells and five piezometer nests consisting of slots at shallow
(0.20 m) and deep (0.50 m) depths. The valley site had four
wells and five piezometer nests, of which two of the five nests
had a third piezometer. At this site, slot depths were variable
due to loose rocks in the substrate that made installation of
pipes to a constant depth difficult. The shallow slots were all
∼0.20 m, the medium slots averaged∼0.35 m and the two
deep slots were 0.50 m and 0.55 m. At the wetland site, there
were five wells and 11 piezometer nests that were installed
at shallow depths (0.20 m) and deep depths (0.50 m). Three
additional piezometers were installed along the stream to de-
termine if the stream was losing or gaining water. Hydraulic
heads were measured on average every three days for all
wells and piezometers. At the peatland and valley sites, ex-
tensive surrounding bedrock prevented subsurface flow from
entering the sites. At the wetland site, subsurface inflow,Isb
(mm) was calculated as:

Isb=
K(h1−h2)

1l
Ac (6)

whereK is hydraulic conductivity (m d−1), (h1−h2)/1l is
hydraulic gradient with water table level difference (h1 and
h2) over distance between the piezometer nests installed in
a soil filled valley located north and upslope of the wetland
(1l) (m m−1) andAc is cross-sectional area (m2). Our best
estimate ofIsb accuracy was 30%. Saturated hydraulic con-
ductivity (K) was measured in the piezometers installed at
each site and calculated with the Luthin approach (1966), a
common method used in the arctic (e.g. Woo and DiCenzo,
1989; Quinton et al., 2000; Hodgson and Young, 2001).
Shallow and deeper hydraulic conductivities are listed in Ta-
ble 1. Isb was then converted to depth (mm) by dividing the
total site area.

3.1.5 Discharge

The surface discharge (Qs) at each site was measured using
similar techniques as with inflow at the main outlet of each
site (Fig. 1). However, due to the nature of each site’s out-
let the measured values did not always capture the full extent
of outflow. Thus,Qs was sometime computed as the dif-
ference between calculated1S and observed storage change
(1So) since this was deemed to be more accurate on days
with missing or suspect observed data. The authors recog-
nize that this approach embeds the residual error into the
estimated flux. However, it was still advantageous to have
a continuous dataset with approximated values from an ac-
cepted approach. The number of days with estimatedQs for
the peatland, valley and wetland were 18, 3 and 54, respec-
tively. The subsurface outflow,Qsb was measured with the
same approaches as described forIsb.

3.1.6 Evapotranspiration

Evapotranspiration (ET) was calculated using the Penman-
Monteith equation as described in Shuttleworth (1993):

ET=
1

λ

1
(
Q∗

−Qg
)
+

ρacpD

ra

1+γ
(
1+

rc
ra

)
 (7)

whereλ is latent heat of vapourization of water (MJ kg−1), 1
is slope of saturated vapour pressure (kPa◦C−1), Q* is net
radiation (MJ m−2 d−1) measured at the wetland site with
a Kipp & Zonen NR-LITE net radiometer,Qg is ground
heat flux (MJ m−2 d−1), ρa is moist air density (kg m−3)

calculated with the ideal gas law,cp is specific heat of
moist air (0.001013 MJ kg−1◦C−1), D is vapour pressure
deficit (kPa), ra is aerodynamic resistance (d m1), γ is
psychrometric constant (k Pa◦C−1), andrc is canopy resis-
tance (d m−1). TheQg was calculated with the Fourier heat
flow equation with soil temperature measured with ECH2O-
TE sensors. Thera (d m−1) was calculated following meth-
ods outlined in Shuttleworth (1993), Brutsaert (1975) and
Monteith (1981). Therc was calculated with a revised
version of the Jarvis (1976) and Verserghy et al. (1993)
expression using environmental conductance functions of
incoming solar radiation andD (Lafleur and Schreader,
1994). The resultant meanrc was 1.1×10−2 d m−1

for the peatland vascular cover, 2.5×10−4 d m−1 for the
peatland lichen cover, 2.8×10−3 d m−1 at the valley site and
1.1×10−3 d m−1 at the wetland site. The Penman-Monteith
ET method has been shown to underestimate by∼20%
in other subarctic Shield studies (Lafleur, 1992; Spence,
2000).

Parts of the peatland and wetland were flooded from the
snowmelt period to the end of the field season. To find the
potential ET (PET) for these locations, the Penman Combi-
nation equation (1948) was used:

PET=
1kcQ

∗
+γEA

1+γ
(8)

wherekc is a unit converter from MJ m−2 d−1 to mm d−1

(kc=0.408),EA is mass transfer (m d−1) from a Dalton-type
equation (1802):

EA = f (u)D (9)

wheref (u) is the wind function (i.e. vapour transfer func-
tion) in mm k Pa−1 d−1. Here, the Penman derivedf (u) was
used:

f (u) = 2.63(1+0.537u2) (10)

whereu2 is wind speed at a reference height of 2 m (m s−1).
u measured at a height of 3.4 m from the wetland station was
standardized to the reference height of 2 m with the following
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equation:

u2 = um

ln(z2−0.67hc)− ln(0.123hc)

ln(zm−0.67hc)− ln(0.123hc)
(11)

um is measured wind speed (m s−1), z2 is the desired wind
speed reference height (m), hc is height of canopy cover (m),
andzm is actual instrument height (m).

The daily mean evapotranspiration loss was prorated be-
tween ET and PET based on fraction of non-flooded and
flooded areas. These fractions were determined from ponded
water records noted during soil moisture and frost table sur-
veys (Guan et al., 2010). There was surface ponding at the
peatland and wetland sites during the study period and thus
both potential (flooded area) and soil ET were calculated at
these sites.

3.1.7 Observed storage change

Observed change in storage,1So was calculated using the
method described in Spence and Woo (2006):

1So=1Su+1Ss=1θ [z(t)−zw(t)]+sy [zw(t)−zw(t −1)] (12)

where1Su and 1Ss are unsaturated and saturated storage
change (mm), respectively. For1Su, 1θ is the daily change
in soil moisture content as calculated from half-hourly soil
moisture data recorded with ECH2O-TE sensors that were
connected to Em50 analogue dataloggers. These were lo-
cated at each of the sites at two depths,z (i.e. just below
surface and 0.25 m below ground surface). Two stations per
site were equipped with these sensors; one station set up ap-
proximately in the middle and the other toward the outer site
boundary. The sensors were calibrated with site specific soil
samples at the end of the field season. [z(t)−zw(t)] is to-
tal unsaturated soil thickness wherez (mm) is based on total
thaw depth or total depth to clay due to the limited movement
in fine grained soil, whichever is reached first. The peatland
site has unsubstantial clay content, the depth to clay at the
valley site was averaged to 0.20 m and at the wetland site,
0.40 m. The water table depths (zw(t), mm) were measured
in fully slotted wells in the form of rigid PVC pipes capped
at the bottom. At each site, two wells (one at edge of site
and one in middle of site) had continuous half-hourly water
table level measurements from Solinst Leveloggers. When
the soil column was saturated, all the soil pores were filled
with water (the space occupied by air bubbles was assumed
to be small and ignored here) and unsaturated storage would
be zero. Specific yields used to compute1Ss for the sites are
listed in Table 1. Specific yield was determined in the lab-
oratory by saturating soil samples enforced with mesh and
soaked in water for 24 h and then weighed. The samples were
left on a grid stand for 24 h of gravitational drainage and re-
weighed to determine the water loss. Porosity, bulk density
and particle density were also tested in the laboratory using
site specific soil samples and the values are listed in Table 1.

The term [zw(t)−zw(t −1)] represents daily change in thick-
ness of saturated zone (mm). The observed storage change
had an expected accuracy of 25% (Spence and Woo, 2006).

3.2 Ground heat flux into the soil

Total ground heat flux into the soil (Qgf) from heat conduc-
tion from the soil surface (Qgs) and surface water ponding
(Qgp) along with heat advection from flowing water (Qgw)
were calculated by modifying the method described in Woo
and Xia (1996):

Qgf = KT
dT

dz

∣∣∣∣
surface︸ ︷︷ ︸

conduction(Qgs,Qgp)

+ cw1T
dF

dt︸ ︷︷ ︸
advection(Qgw)

(13)

where all the aboveQgf terms are in MJ m−2 d−1, KT is ther-
mal conductivity calculated as the function of the fraction
of mineral soil, organic soil, ice, water and air multiplied
by each medium’s thermal conductivity (de Vries, 1963;
Farouki, 1981), dT/dz is temperature gradient from surface
soil or ponded water to the thawing front. The soil temper-
ature was continuously recorded by the ECH2O-TE sensors,
ponded water temperature was recorded with Onset HOBO
StowAway Tidbit temperature loggers, and a thawing front
temperature of 0◦C was used.cw is volumetric heat capac-
ity of water,1T is temperature difference between flowing
water and the frozen ground. Snowmelt runoff temperature
was measured with a Solinst Levelogger at the soil covered
bedrock inlet to the valley site, and was assumed to represent
all bedrock runoff temperatures. Lake 690 water tempera-
ture was also recorded with the aforementioned Levelogger
used for lake storage.dF/dt is flow rate (m3 d−1). A limita-
tion was that any error for this volume from the water budget
was carried forward. The total inflow water was divided over
the dynamic area affected by moving surface water. Not all
inflowing water was infiltrated into the ground and some en-
ergy would be lost to the atmosphere (e.g. through evapotran-
spiration) and therefore it should be recognized that potential
Qgw was being calculated. However as results will show,
when large heat content was available, there remained ample
amounts of energy to be transferred into the frozen ground.

Similar to ET and PET, the totalQgs, Qgp andQgw en-
ergies available to the frozen ground needed to be parti-
tioned based on the fraction of non-flooded and flooded ar-
eas (ponded or flowing) at the sites over time. This was not
needed at the valley site since it was flooded only briefly dur-
ing the snowmelt runoff period.

3.3 Modified Péclet number for northern wetlands

The Ṕeclet number (Pe) concept has been adopted in many
disciplines, and used to quantify landscape spacing of first-
order valleys (e.g. Perron et al., 2008) to hillslope subsur-
face flow (e.g. Lyon and Troch, 2007). Its wide usage is
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because it can translate often qualitative findings to dimen-
sionless quantitative numbers that can be used in computer
models. ThePeequation as described in Stüwe (2007) is:

Pe=
ual

kd
(14)

whereua is advection rate (m s−1), l (m) is theua charac-
teristic length scale andkd is diffusivity (m2 s−1). When
Peequals 1, both advection and diffusion are equally impor-
tant processes, whenPe�1, the advective process dominates
and whenPe�1, the diffusive process is the dominant fac-
tor. Kane et al. (2001) usedPe to calculate the fraction of
heat energy transfer from convection versus conduction in
their examination of non-conductive heat transfer in frozen
ground. ThePeequation used in Kane et al. (2001) does not
account for advected latent heat. Even with this limitation
from the original version of thePe, its underlying concept
that relates the relative influence of multiple heat transfers
can be very useful in ground thaw studies. ThePe in this
paper was modified (mPe) to create a dimensionless number
to represent the relative influence of total advective energy
versus total conductive energy at northern soil filled areas:

mPe=

∑
Qgw∑

Qgs+
∑

Qgp
(15)

The mPe will discern the dominant ground heat source(s)
thawing the frozen ground at each site. While the variables
used to calculate each of theQg terms in Eq. (13) do not ex-
plicitly match those in Eq. (14), Eq. (15) is consistent with
the underlying concept of calculating heat transfer ratios. It
is recognized that errors from water budget terms and energy
budgets terms carried these error through to the mPe. Based
on the accuracy of rating curves as discussed in Sect. 3.1.4,
a sensitivity analysis of±20%dF/dt in Qgw gives a best es-
timate of∼20% accuracy for mPe.

4 Results

4.1 Hydrological fluxes

4.1.1 Snowmelt

The end of winter SWE (12 April 2008) were 93 mm at the
peatland site, 117 mm at the valley site and 61 mm at the
wetland site. Snowpack depth measurements were conser-
vative as the mean daily air temperatures from 9–13 April
were above 0◦C and some snowmelt and runoff was ob-
served upon arrival to the study site. However, mean daily
air temperature dropped below 0◦C on 14 April and did not
warm up to 0◦C again until 27 April (Fig. 2). The snow
ripened again on 27 April at all three sites. Most of the snow
melted by 4 May at the valley site, contributing 45 mm of wa-
ter equivalent to the site (Fig. 3). At the peatland site, there
was an observed increase in snow-free areas with snowmelt
on 27 April, occurring first mainly on high hummocks. The

Fig. 2. Mean daily air temperature (range is shown in grey) and
total daily rainfall measured at the wetland climate tower.

majority of snow at the peatland site disappeared by 3 May.
Exceptions were some hollows in the middle of the site and
along the outer boundary in the dense conifer stands. Total
snowmelt into the peatland was 73 mm. Outflow from Lake
690 through the winter of 2007/2008 created aufeis 0.32 m
thick in the wetland. Assuming an ice density of 920 kg m−3,
this ice layer amounted to an additional 294 mm of water
storage at the wetland site prior to snowmelt. Snow and ice at
the wetland site melted first along a surface stream convey-
ing water from Lake 690 across the site (Fig. 4). By 30 April,
snow at the wetland ablation line thawed to the ice layer.
Much of the snow and ice cover melted by 13 May, however,
patches remained until 21 May. These patches were located
in dense shrub and conifer stands, except for locations with
surface flow. Total snow and ice melt input to the wetland
was 185 mm.

4.1.2 Rainfall

All three sites were within 1 km from the wetland climate
station and thus, rainfall at the peatland and valley sites was
expected to be the same as at the wetland site. A total of
42 mm of rainfall fell from 14 April to 17 July (Fig. 2). The
rainfall in May, June and July (full month) were 7, 31 and
15 mm, respectively. The 1971–2000 climate normals from
the Environment Canada Yellowknife A station are 19 mm,
27 mm and 35 mm for the months of May, June and July,
respectively, which indicates May to July 2008 was relatively
dry, i.e. 65% of normal.

4.1.3 Inflow

Bedrock runoff was observed on 12 April and 13 April dur-
ing a warm spell. When the mean daily air temperature
dropped back to below 0◦C on 14 April, bedrock runoff
ceased until 27 April. After that, it flowed at a mean daily
rate of 14 mm day−1 (Fig. 3; i.e. a component of the total
surface volume) when the mean daily temperature reached
>0.2◦C (Fig. 2). The highest mean daily rate was measured
on 30 April with 19 mm day−1 of flow. For the bare bedrock
weirs, the last date with flow through all three weirs was
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Fig. 3. Cumulative water budget for the(a) peatland,(b) valley,
and (c) wetland sites (mm per unit area) for 14 April to 17 July
2008. For display purposes, surface inflow and outflow values are
1/10th of actual for the valley site (i.e.∼137 mm of cumulative in-
flow shown in graph is representing the actual∼1370 mm; total sur-
face outflow was 34 mm higher than surface inflow). Surface out-
flow and lake inflow are 1/100th of actual for the wetland site (total
surface flow was 196 mm higher than Lake 690 inflow).

3 May. Over approximately 2 weeks in early spring, 266 mm,
1338 mm and 298 mm of bedrock runoff was measured at
the peatland, valley and wetland sites, respectively. The val-
ley site was a flow through system during snowmelt and
most of the recorded surface inflow only channeled across
the ground surface. The 22 May rainfall filled many bedrock
micro-depressions and initiated bedrock runoff at some lo-
cations, however, the flow depth and volume were incon-
sequential. Rain on 24–25 June led to widespread bedrock
runoff at all three sites. A mean daily inflow rate of 12 mm
and 0.4 mm were measured from the three bedrock weirs on
24 and 25 June, respectively. Using these rates, bedrock co-
verage, and site area to model the two day totalIbssshowed
17 mm of input to the peatland site, 34 mm into the val-
ley site and 12 mm into the wetland site. One assumption
of the average measured bedrock runoff rates was that they
were representative of all bedrock outcrops, independent of
site.

Inflow from Lake 690 was recorded starting on 20 April
once a lake level pressure transducer was installed. It is
assumed there was continuous inflow from Lake 690 dur-
ing the winter because of the icing across the wetland site.
The mean daily discharge from Lake 690 during the study
period was 3.5×103 m3 day−1 or 106 mm day−1 (Figs. 3c
and 5). The mean was skewed by the high flow that oc-
curred in May (8.4×103 m3 day−1; 257 mm day−1) com-
pared to June (1.4×103 m3 day−1; 43 mm day−1) and July
(2.2×102 m3 day−1; 7 mm day−1). Lake 690 discharge de-
creased drastically when the lake level dropped below its
natural outlet dam level in mid-June and a large decrease in
discharge was observed from 6 to 14 June. The cumulative
surface water input at the site leveled out when this thresh-
old was reached (Fig. 5). Most of the discharge water flowed
through holes in the debris dam. At the wetland site, there
was thawed ground along the surface flow pathways. The
peatland site had approximately two orders of magnitude less
cumulative lateral surface water input than the wetland site
whereas the valley site had approximately one order of mag-
nitude less lateral surface water input than the peatland site
(Figs. 3 and 5).

Subsurface inflow at the wetland site was negligible rel-
ative to the large quantity of surface inflow. The mean
daily rate was 0.005 mm day−1. Although a range ofK was
recorded at the site (Table 1), a sensitivity analysis suggested
changes inK had little impact on the estimated subsurface
inflow. At the peatland site, the extensive bedrock surround-
ing the site prevented significant subsurface inflow into the
site. The available measurements from the valley site when
the pipes were not ice jammed, or had measurable water ta-
ble depth revealed subsurface flow to be low. Its estimated
maximum subsurface flow rate was 0.04 mm day−1 since the
water table position was mostly within the deeper fine min-
eral soil which has aK of 10−8 to 10−9 m s−1.

4.1.4 Discharge

Surface discharge from the wetland site was observed on
12 April and continued on and off even when bedrock runoff
briefly terminated between 14 and 27 April. At the wetland
site, there were two outlets bisected by a bedrock island; both
drained into Vital Lake. Surface discharge from the wet-
land site was observed throughout the study period while
the peatland and valley sites had surface discharge only in
the snowmelt period and from some rainfall events (e.g. 24
June, Fig. 2). Over the study period,∼290 mm,∼1400 mm,
∼9630 mm ofQs was measured from the peatland site, val-
ley site, and wetland site, respectively.

Subsurface outflow from the wetland amounted to
0.001 mm day−1 and flow out of the valley site was ex-
pected to be similar to the subsurface input (maximum
0.04 mm day−1). At the peatland site, subsurface flow was
low due to low hydraulic gradient (averaging 1.8 mm m−1).
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Fig. 4. The wetland site on 6 May 2008 during the snowmelt period. Snow and ice melted at a faster rate along surface runoff routes, while
much of the remaining snow covered areas were outside of flow pathways. Photo was taken facing east with Vital Lake (ice covered) in the
background.
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Fig. 5. Surface water input to the sites (snowmelt runoff at
all sites and additional lake input at wetland site) and potential
amount of energy from water available for ground thaw at each
site. No Lake 690 data were available before 20 April 2008.Qgp
is conductive heat energy from ponded water andQgw is advec-
tive heat energy from surface water flow. The wetlandQgw of
3.3 MJ m−2 day−1 is derived from dividing the overall site daily
mean of 1.09×105 MJ day−1 evenly over the 3.3 ha site. However,
the actual fraction of area influenced by surface water was much
smaller. For example, 35% of the 3.3 ha site had flowing or stand-
ing water on 6 June, resulting in∼9.5 MJ m−2 day−1 of potential
Qgw available for transfer into the frozen ground. See Eq. (13) for
details on energy calculations.

4.1.5 Evapotranspiration

The peatland site had an overall daily ET rate of
2.5 mm day−1, with a total loss of 208 mm over the study pe-
riod (Fig. 3a). Surface ponding at the wetland site was more
widespread and was maintained longer than at the peatland
site. The more extensive ponding and different vegetation
cover led to more evaporative loss at the wetland site; the
daily mean was 3.2 mm day−1 for a total loss of 302 mm over
the study period (Fig. 3c). The valley site was the driest of
the sites as well as the site with the highest surface and aero-
dynamic resistances. The valley lost water to the atmosphere
at a daily mean rate of 2.1 mm day−1 and had a total loss of
153 mm (Fig. 3b).

4.1.6 Storage change

Change in storage differed across the three sites. The peat-
land and valley sites experienced a storage deficit as out-
puts exceeded inputs by the end of the study. At the peat-
land site, there was an overall storage loss of 95 mm, while
there was a storage loss of 100 mm at the valley site (Fig. 3a
and b). In contrast, the wetland site had an overall storage
gain of 44 mm (Fig. 3c) due to the large inputs of snowmelt,
bedrock runoff and Lake 690 water during early spring. Al-
though there was continuous surface inflow into the site from
Lake 690, a decline in storage occurred coincident with de-
clining Lake 690 inflow in mid-June onward.

www.hydrol-earth-syst-sci.net/14/1387/2010/ Hydrol. Earth Syst. Sci., 14, 1387–1400, 2010



1396 X. J. Guan et al.: Shallow soil moisture – ground thaw interactions and controls – Part 2

4.2 Ground heat fluxes

4.2.1 Conductive and advective ground heat into the soil

Positive values ofQgs began on 30 April at the peatland site,
5 May at the valley site and 17 May at the wetland site. At
the peatland site, dailyQgs averaged 1.1 MJ m−2 day−1 for
a sum of 83 MJ m−2 over the study period. The valley site
had a mean daily rate of 0.5 MJ m−2 day−1 and a total of
36 MJ m−2 of Qgs over the study period. The daily average
Qgs at the wetland site was 2.0 MJ m−2 day−1, and the total
over the study period was 113 MJ m−2.

TheQgp was only computed for dates when there was sur-
face ponding (see Guan et al., 2010, for detailed description
of surface ponding patterns). From 9 May to 9 July, the frac-
tion of area flooded at the peatland site dropped from 0.38
to 0.06. At the wetland site, the first recorded fraction of
flooded area was also 0.38, but that was on 28 May and it
then decreased to 0.22 by 8 July. Flooded areas at the wet-
land site included both stagnant ponding and surface flow.
It was difficult to distinguish the two categories of flooding
at low flow locations, so all areas with surface water were
grouped into one category. Instead of calculating an abso-
lute energy flux for this flooding, a range of values (lowQgp
value to highQgw) were calculated for the wetland site. The
valley site experienced only a brief period of surface ponding
during snowmelt soQgp was negligible. Flooded locations in
the peatland site transferred 147 MJ m−2 of Qgp to the soil at
a mean daily rate of 1.9 MJ m−2 day−1(Fig. 5). At the wet-
land site, 158 MJ m−2 of energy was transferred from surface
ponding at a mean daily rate of 2.6 MJ m−2 day−1 (Fig. 5).

Thermal conduction transfers heat to the thawing front,
but non-conductive heat transfer (e.g. from infiltration and
percolation) can also contribute large quantities of heat to
the thawing front (Kane et al., 2001). TheQgw calculation
for snowmelt runoff started on 27 April when runoff across
the bedrock surface was observed. The mean values were
0.005 MJ m−2 day−1 at the peatland site, 0.2 MJ m−2 day−1

at the valley site and 0.003 MJ m−2 day−1 at the wetland. In
contrast, the Lake 690 water input during the study period
carried a daily mean of 1.09×105 MJ day−1 of Qgw into the
wetland site, or 3.3 MJ m2 day−1 if this flowing water was
over the entire site (Fig. 5). Since the areal extent of flowing
water was never 100% over the site, the availableQgw was
>3.3 MJ m−2 day−1. Recall from above that only the frac-
tion of the wetland with flowing water hadQgw available and
the available energy was concentrated to only this area. For
instance, on 6 June, 35% of the 3.3 ha site was flooded and
if it is considered that this areal fraction had flowing water,
a maximum (accounting for some loss to the atmosphere) of
9.5 MJ m−2day−1 of Qgw was available for transfer into the
frozen ground.Qgw was also calculated for rain water, but
was negligible due to the low rain temperature and input dur-
ing the study period.

4.2.2 Modified Ṕeclet numbers for northern wetlands

If it is assumed that inflowing water flowed across the en-
tirety of each site, and the advective energies are uniform
over the study site areas, the peatland site would have a mPe
of 0.0004 and the valley site a mPe of 0.09 (per unit area).
If the topological controls influencing the peatland and val-
ley sites (i.e. isolated and surrounded by bedrock) were the
same at the wetland site, the wetland mPewould have been
in the same order of magnitude as at the peatland at 0.0002.
Because of the wetland’s important connection to Lake 690,
its mPe was instead 1.1. This value was derived by apply-
ing the Lake 690Qgw over the entire wetland site. The dF/dt
term in theQgw equation accounts for total energy carried by
the inflowing water. To conceptualize, a one-to-one compar-
ison for conductive against advective forcings that could be
directed into one grid permitted comparison of these values
among sites – it was simplest to visualize in the same grid
how much conductive energy is available versus the amount
of advective energy is available. However, as noted above,
flooding at the wetland site was more spatially variable than
this and never reached 100%. As described in Sect. 4.2.1,
the amount ofQgw per unit area increases as flooded area
grows smaller, thus, it is more accurate to say the wetland
mPevalue was always>1.1. This mPewas several orders of
magnitude larger than for the other two sites.

5 Discussion

A combination of a reduction in lateral water input, low pre-
cipitation to evapotranspiration ratio (0.20 at the peatland
site, 0.27 at the valley site and 0.13 at the wetland site) and
ground thaw led to the overall drying trend in soil condition
observed over the study period. However, the intra- and inter-
site variability in soil moisture and ground thaw patterns de-
scribed in Guan et al. (2010) were largely a function of lateral
water exchange. At the intra-site scale, the absence of surface
water accumulation at the valley site led to very different soil
moisture and thaw patterns from those observed at the peat-
land and wetland sites. At the inter-site scale, results show
many of the deep thaw locations were found in grids with ei-
ther ponding or higher soil moisture content. The ponded and
flowing surface water thus were the key differences among
the sites since the inflowing water can contribute large quan-
tities of latent heat energy to the frozen ground for thaw. Site
topology was a critical control on how much water was re-
ceived (Guan et al., 2010). For example, the wetland site
was a flow-through system because it was situated between
two lakes (690 and Vital). An aufeis layer developed from
winter flooding by Lake 690 at this site led to a prolonged
snowmelt period; continuous lake water inflow sustained the
site wetness in the thaw months.

The surface inflow strongly influenced the spatial patterns
of frost table depth and thaw documented at the wetland site
(Guan et al., 2010). Here, the ice rich soil required a large
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quantity of latent ground heat to thaw it. The large amount
of potential advective heat transferred into the ground from
the lake water thawed soil along parts of the flow routes to
depths≥1 m before the wetland was fully snow-free. Al-
though much of this surface inflow to the wetland site was
drained to Vital Lake, the water had frequent contact with
the soil as it flowed in and out of the soil toward Vital Lake.
Some of this energy was lost to the atmosphere (e.g. through
evapotranspiration), but due to the large heat content avail-
able, there remained ample energy for transfer into melting
the frozen ground. Carey and Woo (1998a) noted from their
high arctic study at Resolute Bay, Canada that locations with
more ice rich conditions in the winter months would thaw at a
slower rate than locations that were not ice rich. These results
show that when surface water is plenty, it can enhance ground
thaw enough to efficiently thaw even ice rich soil. Other key
differences between this subarctic and Carey and Woo’s high
arctic site may be the number of thawing degree-days. In
comparison, the peatland and valley sites thawed at a slower
rate than the wetland site in the spring due to the absence of
advective ground heat from lake water as dictated by individ-
ual site topology. The peatland and valley sites did not have
continuous surface lateral inflow. Runoff per unit area into
the peatland and valley sites was only∼3% and∼14% of
that received by the wetland site, respectively. The meltwater
runoff did not add a significant amount of advective energy
into the peatland and valley soil due to the similarity in tem-
perature between the cool meltwater and cool soil during the
freshet. However, at the peatland site, the extensive surface
ponding in the hollows as controlled by the gentle topogra-
phy and hummock-hollow typology kept the peat saturated
for longer and increased the thermal conductivity of this or-
ganic soil. This enhanced local ground thaw, creating high
spatial heterogeneity in the frost table position. These re-
sults contrast with those of Mackay (1981) and Quinton and
Marsh (1995). Their work with mineral hummocks and peaty
hollows shows peat decreases downward penetration of heat,
which leads to less thaw in hollows (Mackay, 1981; Quinton
and Marsh, 1995). The soil type and hollow ponding were
some of the causes of the difference observed at the Baker
Creek sites compared to the sites studied by Mackay (1981)
and Quinton and Marsh (1995).

Presented thus far is a discussion of how conductive and
advective heat energies regulated soil thawing along flow
routes and ponded areas. However, radiative energy (Qgs)
was important to ground thaw at locations without surface
flow or ponding. Locations only influenced by radiative en-
ergy were found to commonly have more homogeneous thaw
depths and slower thaw rates. For instance, at the valley site,
negligible amounts ofQgp andQgw were available due to
limited surface water storage. Thus, the drier site condition
mostly explained the site’s slower thaw rate. Differences in
Qgsamong the sites were primarily due to higher soil thermal
conductivity in the increasingly wetter soils in the peatland
and wetland. Furthermore, the conifers and bedrock at the

valley site decreased net radiation received at the ground sur-
face, which further decreased the radiative energy available
to the soil. Soil wetting from small rain events during the
field season often only rewetted surface soils. Overall rain
influence on ground heat flux was limited and this was com-
parable to the small amount of heat from rain water found
by studies in Resolute Bay, Nunavut and the subarctic Yukon
Territory (Woo and Xia, 1996; Carey and Woo, 2000).

The wetland mPe was four orders of magnitude higher
than the peatland mPedue to more predominant external ver-
sus internal controlling processes on the energy budget. The
energy from the lake water accelerated localized ground thaw
rates at the wetland while the peatland thaw rate was rela-
tively more gradual. The advective and conductive energies
at the wetland site were of approximate equal importance
whereas the conductive energy at the other two sites was of
more importance to the sites’ energy budget. The valley had
little surface ponding (i.e. lowQgp) and had an mPethat was
two orders of magnitude larger than the peatland. The size of
the valley was smaller than the other two sites and so the en-
ergy from the inflow runoff volume amounted to more energy
per unit area. One limitation of the mPehowever was many
variables in the ground heat flux terms were assumed to be
uniform across each site due to the spatial resolution of data.
Results from this study support the energy-based paradigm
for runoff generation proposed by Quinton and Carey (2008).

6 Conclusions

Results showed that the relative topology, topography and
typology influences at each site dictated the energy and wa-
ter flux controls on shallow soil moisture and ground thaw.
Overall, soil moisture, on the one hand, influences the ther-
mal conductivity and heat energy available for ground thaw.
On the other hand, deeper ground thaw increases water
storage capacity. Soil moisture and frost table patterns are
largely controlled by surface water because the water keeps
soil moisture high and in the right conditions permit the
transfer of substantial quantities of latent heat to the ground
that result in more soil thaw than at sites lacking substan-
tial surface ponding or flow. These energy influences can
be quantified with the mPe and could be used in the future
to categorize soil filled areas and incorporated in hydrolog-
ical model parameterization. The results provide explana-
tions for the shallow soil moisture-ground thaw correlations
documented in Guan et al. (2010) by linking them with hy-
drological processes related to water budget nuances among
the three sites. Using similar methods to study other cold re-
gions (e.g. high arctic), and incorporating groundwater flow
and deeper soil moisture into the calculation of mPein future
research are recommended. Such studies would complement
our findings and provide a strong base for upscaling, parame-
terizing and incorporating the results into cold region hydro-
logical models to predict subsurface water storage.
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Appendix

List of symbols

ab Area of Bare Bedrock [m2]
abss Area of Bedrock Side Slopes [m2]
Ac Cross-Sectional Area [m2]
as Fraction of Area with Snow Cover [unitless]
asc Area of Soil Covered Bedrock [m2]
av Area of Site [m2]
cp Specific Heat of Moist Air [MJ kg−1◦C−1]
d Snow Depth [m]
D Vapour Pressure Deficit [kPa or mb]
dF/dt Flow Rate [m3 d−1]
dT/dz Temperature Gradient [◦C m−1]
EA Mass Transfer [m d−1]
ET Evapotranspiration [mm day−1]
f (u) Wind Function [mm k Pa−1 d−1]
h Water Table Depth [m]
hc Height of Canopy Cover [m]
I Inflow [mm day−1]
Ibss Runoff from Bedrock Side Slope over

Study Site Area [mm]
Is Surface Inflow [mm day−1]
Isb Subsurface Inflow [mm day−1]
K Saturated Hydraulic Conductivity [m s−1]
kc Unit Converter from MJ m−2 d−1 to mm d−1

kd Diffusivity [m2 s−1]
KT Thermal Conductivity [W m−1◦C−1]
l ua Characteristic Length Scale [m]
1l Horizontal Distance Change [m]
M Melt [mm day−1]
Ma Ablation Rate [mm day−1]
mPe Modified Ṕeclet number [unitless]
P Precipitation [mm day−1]
Pe Péclet Number [unitless]
PET Potential Evapotranspiration [mm day−1]
Q Discharge [mm day−1]
Q* Net Radiation [W m−2]
Qg Ground Heat Flux [MJ m−2 d−1]
Qgf Total Ground Heat Flux into Frozen Ground

[MJ m−2 d−1]
Qgp Heat Conduction from Surface Water Ponding

[MJ m−2 d−1]
Qgs Heat Conduction from Surface Soil

[MJ m−2 d−1]
Qgw Heat Advection from Flowing Water

[MJ m−2 d−1]
Qs Surface Discharge [mm]
Qsb Subsurface Discharge [mm]
ra Aerodynamic Resistance [d m−1]
Rb Runoff from Bare Bedrock [mm]
Rbss Runoff from Bedrock Side Slopes [mm]

rc Canopy Resistance [d m−1]
Rsc Runoff from Soil Covered Bedrock [mm]
RH Relative Humidity [%]
sb Sublimation Loss [mm day−1]
1S Change in Storage [mm day−1]
1So Observed Change in Storage [mm day−1]
1Ss Saturated Storage Change [mm day−1]
1Su Unsaturated Storage Change [mm day−1]
SWE Snow Water Equivalent [kg m−2]
sy Specific Yield [unitless]
t Time [day]
T Temperature [◦C]
u Wind Speed [m s−1]
u2 Wind Speed at a Reference Height of 2 m

[m s−1]
ua Advection Rate [m s−1]
udir Wind Direction [degree]
um Measured Wind Speed [m s−1]
z Depth [m]
1z̄ Mean Snow Depletion [mm day−1]
z2 Desired Wind Speed at Reference Height

of 2 m [m]
zm Actual Instrument Height [m]
zw Water Table Depth [mm]
γ Psychrometric Constant [k Pa◦C−1]
1 Slope of Saturated Vapour Pressure

[k Pa ◦C−1]
1θ Daily Change in Soil Moisture Content

[unitless]
λ Latent Heat of Vapourization of Water

[MJ kg−1]
ρa Moist Air Density [kg m−3]
ρs Snow Density [kg m−3]
ρw Water Density [kg m−3]
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