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Abstract. In the present work, we developed a new formu-
lation for the estimation of the soil moisture in the root zone
based on the measured value of soil moisture at the surface.
It was derived from a simplified soil water balance equa-
tion for semiarid environments that provides a closed form
of the relationship between the root zone and the surface
soil moisture with a limited number of physically consistent
parameters. The method sheds lights on the mentioned re-
lationship with possible applications in the use of satellite
remote sensing retrievals of soil moisture. The proposed ap-
proach was used on soil moisture measurements taken from
the African Monsoon Multidisciplinary Analysis (AMMA)
and the Soil Climate Analysis Network (SCAN) databases.
The AMMA network was designed with the aim to mon-
itor three so-called mesoscale sites (super sites) located in
Benin, Mali, and Niger using point measurements at differ-
ent locations. Thereafter the new formulation was tested on
three additional stations of SCAN in the state of New Mex-
ico (US). Both databases are ideal for the application of such
method, because they provide a good description of the soil
moisture dynamics at the surface and the root zone using
probes installed at different depths. The model was first ap-
plied with parameters assigned based on the physical char-
acteristics of several sites. These results highlighted the po-
tential of the methodology, providing a good description of
the root-zone soil moisture. In the second part of the paper,
the model performances were compared with those of the
well-known exponential filter. Results show that this new ap-
proach provides good performances after calibration with a
set of parameters consistent with the physical characteristics

of the investigated areas. The limited number of parameters
and their physical interpretation makes the procedure appeal-
ing for further applications to other regions.

1 Introduction

Soil moisture information is critical for weather and cli-
mate prediction, hydrological forecast applications, and wa-
tershed management (e.g. Walker and Houser, 2004; Moran
et al., 2004; Manfreda and Fiorentino, 2008; Seneviratne et
al., 2010). However, in situ soil moisture observations are
lacking over large spatial scales. A viable alternative strat-
egy for obtaining spatial fields of soil moisture is from satel-
lite remote sensing, which can provide continuous and large-
scale monitoring of the surface soil moisture state. These
data represent an extraordinary source of information for hy-
drological applications; however they only provide informa-
tion on near-surface soil moisture. For instance, soil mois-
ture information derived from microwave sensors is directly
related to the surface soil layer (0.2–5 cm) (Gao et al., 2006;
Escorihuela et al., 2010), while the volume of soil considered
of interest for monitoring and forecast applications is much
deeper. The description of an analytical relationship between
the soil moisture at the surface and in the lower soil layers has
been a significant challenge (e.g. Ragab, 1995; Puma et al.,
2005; Manfreda et al., 2007; Sabater et al., 2007) and war-
rants further study. This challenge was strongly emphasized
in a recent review paper on the “state of the art in large-scale
soil moisture monitoring” (Ochsner et al., 2013).
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An important contribution was given by Wagner
et al. (1999), who suggested the use of an exponential filter
of the form exp(−t/T ), whereT is the characteristic length
time or recession constant. This filter was used to convert the
time series of surface measurements to a signal that is able
to capture the dynamics of the lower soil layer. The great ad-
vantage of this filter lies in its simplicity due to the fact that it
makes use of one parameter only. Moreover, the derived soil
moisture index (SWI) relies only on the surface observation
(remotely sensed data). Therefore, this approach, which from
now on will be referred to as the SWI method, has been tested
with both simulated and measured data, providing good re-
sults, and has been extensively used to improve the descrip-
tion of the root-zone soil moisture in rainfall–runoff applica-
tions (e.g. Manfreda et al., 2011; Brocca et al., 2010, 2012;
Matgen et al., 2012a).

The growing interest in this approach makes it critical to
provide a physical interpretation of the parameterT that is
influenced by a number of physical processes controlling
soil moisture fluctuations. Several authors have tackled this
problem (e.g. Ceballos et al., 2005; De Lange et al., 2008;
Albergel et al., 2008). For instance, Ceballos et al. (2005)
demonstrated thatT represents the parameter of the exponen-
tial autocorrelation function of soil moisture. For this reason,
T is influenced by all the physical processes affecting the
temporal fluctuations of soil moisture (e.g. evapotranspira-
tion, soil hydraulic properties, soil depth, number of soil lay-
ers, etc.). In this way, they demonstrated that the parameterT

is proportional to the ratio between the soil water content at
field capacity and potential evapotranspiration. De Lange et
al. (2008) tested the model for several soil textures using sim-
ulated data obtained with the finite-element HYDRUS-1D
model. They demonstrated the strong influence that the soil
parameters and the sampling periods have onT . According
to these findings, the authors suggested that the SWI method-
ology should benefit from a soil texture differentiation. An-
other attempt to give a physical interpretation of the reces-
sion constant (T ) was carried out by Albergel et al. (2008),
who investigated the correlation of the parameter,T , with
soil properties and climate conditions over France. Unfortu-
nately, they did not observe significant relationships between
T and the main soil properties (clay and sand fractions, bulk
density and organic matter content).

An alternative and increasingly more useful approach is to
assimilate satellite retrievals into land surface models (e.g.
Reichle et al., 2002, 2004). Such an approach has benefitted
from the progress made in recent years on assimilation meth-
ods and the availability of long-term records of retrievals
from either microwave (e.g. Scipal et al., 2008) or thermal
sensors (e.g. Crow et al., 2008), or both (e.g. Li et al., 2010).

The purpose of this paper is not to define an operational
approach in place of assimilation systems, but to shed light
on a phenomenon of general interest. The approach proposed
here represents an attempt to describe analytically the rela-
tionship between the surface soil moisture and the root-zone

soil moisture value using parameters that are related to the
physical characteristics of the site under investigation. In this
way, one may infer the soil moisture state below the surface
using surface soil moisture data along with some physical
characteristics of the site. The model presented herein repre-
sents an attempt to tackle this problem, providing a solution
that may be considered reliable in dry areas. Our preliminary
application has been carried out using soil moisture obser-
vations taken from the African Monsoon Multidisciplinary
Analysis (AMMA) and the Soil Climate Analysis Network
(SCAN) databases. These two networks represent valuable
sources of soil moisture data measured at different depths
that is shared via the web with the entire scientific commu-
nity. In this way, these data have been involved in a signif-
icant number of calibration and validation activities that in-
creases the interest and the information contents related to
these networks. For the scope of this paper, we selected a
number of stations with detailed information along the soil
profile and also with some information on the soil texture.
All stations have been selected in arid and semiarid environ-
ments. The results obtained are extremely encouraging and
the methodology may represent a useful tool under some spe-
cific climatic conditions.

The paper is organized with a presentation of the new
model in Sect. 2, where the SWI method is also described.
Section 3 provides a description of the AMMA and SCAN
databases and, finally, in Sect. 4, which precedes the conclu-
sion, the model is applied for the AMMA and SCAN data
and its performances are compared with those of the SWI
method.

2 Model description

2.1 Soil moisture analytical relationship (SMAR)

Several hydrological models are based on a conceptual
scheme with multiple layers in order to describe the soil
moisture profile. Models that make use of remotely sensed
data in assimilation frequently use such a representation with
a surface layer of a few centimetres (e.g. Brocca et al., 2012).
In the present work, the soil is assumed to be composed of
two layers, one at the surface with a depth of a few centime-
tres (equivalent to the retrieval depth of the satellite sensor)
and a second one below with a depth that may be assumed
coincident with the rooting depth of vegetation (of the order
of 60–150 cm). From here on, we will refer to those as the
first and second layer, respectively, and we will use a sub-
script “1” or “2” to distinguish between their variables and
parameters.

The most relevant water mass exchange between the two
layers is represented by infiltration. Other processes such as
lateral flow and capillary rise are assumed negligible with re-
spect to infiltration. The challenge is to define a soil water
balance equation where the infiltration term is not expressed
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as a function of rainfall, but of the soil moisture content in the
surface soil layer. This may allow the derivation of a function
of the soil moisture in one layer as a function of the other
one. The water flux from the top layer can be considered sig-
nificant only when the soil moisture exceeds field capacity.
Assuming that the soil moisture movement from the upper to
the lower layer during a rainfall event can be modelled fol-
lowing the Green–Ampt approach (Green and Ampt, 1911),
one can assume that all water in the first layer above field
capacity will move into the lower layer within one day. This
idea was inspired by the work of Laio (2006), who proposed
a model for the description of the soil moisture profile.

Under such assumptions, the infiltration flux from the top
layer to the lower occurs instantaneously and is described by

n1Zr1y(t)= n1Zr1y [s1(t), t ]

= n1Zr1

{
(s1(t)− sc1) , s1(t)≥ sc1
0, s1(t) < sc1,

(1)

wherey(t) [–] fraction of soil saturation infiltrating in the
lower layer,n1 [–] is the soil porosity of the first layer, Zr1
[L] is the depth of the first layer,s1 (θ1/n1) [–] is the relative
saturation of the first layer (given by the ratio between the
soil water content,θ1, and the porosity,n1, of the first layer),
andsc1 [–] is the value of relative saturation at field capacity
of the first layer of soil.

The above equation implies the assumption of an infinite
permeability of the soil when the relative saturation reaches
any value above field capacity. It is also necessary that the
first layer not be infinitesimal, because this condition will
lead to zero infiltration. Moreover, the model does not ac-
count for the saturation effect of the lower layer. It is neces-
sary to note that, in order to avoid undesired underestimation
of the infiltration, the surface soil moisture value should be
referred to the first 5–10 cm of soil. A thickness of less than
5 cm may lead to numerical problems in this and other hydro-
logical models. For this reason, several hydrological mod-
els that incorporate a surface layer in the soil description,
assume a thickness of about 10 cm (e.g. Liang et al., 1994,
1996; Wood et al., 1997). Most satellite sensors cannot pen-
etrate deeper than a few centimetres, but it is a reasonable
assumption that these measures can be representative of the
dynamics of a surface layer of approximately 5–10 cm.

Following this reasoning, the soil water balance of the
second and deeper soil layer is controlled by two main fac-
tors: infiltration and soil water losses. Given the infiltration
equation, we can continue with a simplified approach assum-
ing a linear soil water loss function that includes both evap-
otranspiration and percolation (e.g. Porporato et al., 2004;
Rodriguez-Iturbe et al., 2006). Both these processes are neg-
ligible when the soil saturation is below the wilting point. For
this reason we assumed that the soil losses decrease linearly
from a maximum value under well-watered conditions to 0
at the wilting point.

Definingx2 = (s2 − sw2)/(1− sw2) as the “effective” rel-
ative soil saturation of the second soil layer andw0 =

(1− sw2)n2Zr2 the soil water storage, the soil water balance
can be described by the following expression:

(1− sw2)n2Zr2
dx2(t)

dt
= n1Zr1y(t)−V2x2(t), (2)

wheres2 [–] represents the relative saturation of the soil,sw2
[–] is the relative saturation at the wilting point,n2 [–] is the
soil porosity, Zr2 [L] is the soil depth,V2 [LT−1] is the soil
water loss coefficient accounting for both evapotranspiration
and percolation losses, andx2 [–] is the “effective” relative
soil saturation of the second soil layer.

It should be noted that this equation does not account for
the high non-linearity that characterizes the soil loss function
for high values of soil moisture. This simplification, along
with the fact that the infiltration does not account for the sat-
uration effect, implies some limitations in the use of such
an approach in humid environments. The model in fact was
thought mainly for a semiarid environments with flat surfaces
and neglecting the presence of phreatic surfaces, effects due
to topographic convergence (e.g. subsurface flows), the pres-
ence of frozen soils, etc.

The equation above can be simplified using normalized co-
efficientsa andb defined as

a =
V2

(1− sw2)n2Zr2
, b =

n1Zr1
(1− sw2)n2Zr2

. (3)

The value of these parameters can be related directly to the
ratio of the depths of the two layers and the soil water loss co-
efficient. As a consequence, the soil water balance equation
becomes

dx2(t)

dt
= b y(t)− a x2(t). (4)

It is interesting to note that this equation represents a gen-
eralization that also includes the case proposed by Wagner
et al. (1999). Assuming an initial condition for the relative
saturationx2(t) equal to zero, one may derive an analytical
solution to this linear differential equation:

x2(t)=

t∫
0

b ea(w−t)y(w)dw. (5)

For practical applications, one may need the discrete form
as well:

x2(tj )=

j∑
i=0

b ea(ti−tj )y(ti)1t . (6)

Expanding Eq. (6) and assuming1t =
(
tj − t(j−1)

)
, one

may derive the following expression for the soil moisture in
the second layer based on the time series of surface soil mois-
ture:

x2(tj )= x2
(
tj−1

)
e−a (tj−tj−1)+ b y(tj )(tj − tj−1), (7)
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that may be rewritten as a function ofs2 as

s2(tj )= sw2 +
(
s2

(
tj−1

)
− sw2

)
e−a (tj−tj−1)

+ (1− sw2)b y
(
tj

)(
tj − tj−1

)
. (8)

The method proposed here represents a soil moisture an-
alytical relationship (from now on we will refer to it as
SMAR) between the two state variables introduced with the
four parameterssw2, sc1, a, andb. All these parameters may
be estimated from the soil texture, the soil depth, and the soil
water losses. The parametera is a function of potential evap-
otranspiration and soil permeability that can be estimated us-
ing regression functions such as those proposed by Pan et al.
(2003). It should be noted that SMAR may produce values
higher than 1 and that these are automatically set equal to 1.

In order to provide a range of variability of the soil pa-
rameters of the model, Table 1 collects the values derived
from the experimental investigations by Rawls and Brak-
ensiek (1989) and also reported in Rawls et al. (1993). In
particular, the soil porosity (n), the bubbling pressure head
(ψ), and the soil permeability at saturation (Ks) were taken
from Rawls et al. (1993), while the values ofsw andsc have
been calculated adopting the Brooks and Corey (1964) model
(ψ(s)= ψss

−1/m, wherem is the pore-size index) assuming
a soil water potential ofψ = −1.5 Mpa and−0.03 Mpa, re-
spectively.

Figure 1 shows some examples of the application of
SMAR in a short time series of surface soil moisture mea-
sured in the first 10 cm of soil in a dry environment (mea-
surements are taken from the station of Sevilleta, New Mex-
ico, US). This preliminary application is used to show the in-
fluence that different model parameters have on the derived
root-zone soil moisture, nameds∗2SMAR. With this specific
aim, we plotted the derived soil moisture in the root zone as-
suming a different combination of parameters changing the
values of the soil water loss coefficient (Fig. 1a); the depth
of the second soil layer (Fig. 1b); and the soil parameters as-
sociated with different soil textures (Fig. 1c). The function
s∗2SMAR is obtained via changing the parametersV2 and Zr2
in Fig. 1a and b, respectively, while the functions plotted in
Fig. 1c are obtained assuming different soil textures using
the values reported in Table 1. In each plot, the remaining
parameters have been assumed constant using as reference
values the following set of parameters:n1 = n2 = 0.437,
sw2 = 0.06, sc2 = 0.14, V = 2 cmday−1, Zr1 = 10 cm, and
Zr2 = 100 cm. All s∗2SMAR time series have been computed
assigning the relative saturation at field capacity as the ini-
tial value. All functions have been plotted assuming as initial
value for the soil moisture in the second soil layer equal to
the field capacity.

This preliminary analysis was useful to understand the role
of each parameter for the soil moisture dynamics. In particu-
lar, the water loss coefficient produces a shift on the function
s∗2SMAR, preserving the general pattern with a reduction of
the mean value of the soil moisture with the increase ofV2.

Table 1. Soil parameters associated with different soil textures ac-
cording to the experiments by Rawls and Brakensiek (1989).a Pa-
rameters taken from Rawls and Brakensiek (1989) and also reported
in Rawls et al. (1993).b The relative saturation at the wilting point
and the field capacity have been estimated using the Brooks–Corey
model assumingψ = −1.5 and−0.03 Mpa, respectively.

Soil type n m ψs Ks sw sc
[–]a [–]a [cm]a [cmd−1]a [–]b [–]b

Sand 0.437 0.592 7.26 504.00 0.06 0.14
Loamy sand 0.437 0.474 8.69 146.60 0.11 0.24
Sandy loam 0.453 0.322 14.66 62.20 0.19 0.42
Silty loam 0.501 0.211 20.76 31.70 0.27 0.57
Loam 0.463 0.220 11.15 16.30 0.25 0.50
Sandy clay loam 0.398 0.250 28.08 10.30 0.34 0.62
Silty clay loam 0.471 0.151 32.56 3.60 0.45 0.73
Clay loam 0.464 0.194 25.89 5.50 0.40 0.67
Sandy clay 0.430 0.168 29.17 2.90 0.51 0.75
Silty clay 0.479 0.127 34.19 2.20 0.52 0.78
Clay 0.475 0.131 37.30 1.40 0.56 0.80

The impact of the depth of the second layer of soil produces a
significant modification on the variability of the soil moisture
that increases with the reduction of the Zr2 values. Finally,
the soil texture also has a critical role, affecting several model
parameters. In the present scheme, it was assumed that the
soil texture controls the values of soil porosity, the relative
saturation at the field capacity and at the wilting point. These
last two parameters impact on the minimum value reached
by thes∗2SMAR and the variability of the soil moisture. In par-
ticular, the fluctuations of soil moisture increase for lower
values ofsc1. In fact, we observed a continuous reduction in
the fluctuations moving from sand to sandy clay soil. In this
last case, the value ofsc1 is so high that it inhibits most of the
infiltration in the lower soil layer, and as a consequence soil
moisture remains almost constant around the value of wilting
point. It is necessary to point out that different soil textures
have also different permeability, which may affect the value
of the soil water loss coefficient, which in the present case
was kept constant.

At this point, the comparison between the proposed pro-
cedure and the SWI method becomes extremely interesting,
and will be described better and in greater detail in the fol-
lowing section.

2.2 Exponential filter

In this study, SMAR was compared with the semi-empirical
approach (also known as the exponential filter) proposed by
Wagner et al. (1999) that has received much attention in the
recent years (e.g. Matgen et al., 2012b; Nied et al., 2013;
Albergel et al., 2013). This approach was derived from the
soil water balance equation assuming that the changes in the
soil water content are controlled by a pseudodiffusivity term
that allows both positive and negative fluxes from and to the
deep layer. These fluxes are all proportional to the relative
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Fig. 1. Examples of application of the SMAR to a time series of surface soil moisture (s1, relative saturation of the first 10 cm of soil) for
different values of soil water losses(A), rooting depth ratios(B), and soil textures(C). The functions∗2SMAR is obtained through changing
only one parameter in(A) and(B) (V and Zr2, respectively) and assigning different soil textures in(C) using the soil parameters reported in
Table 1. In each plot, the remaining parameters have been assigned using the following set of reference valuesn1 = n2 = 0.437,sw2 = 0.06,
sc2 = 0.14, V = 2 cmday−1, Zr1 = 10 cm, and Zr2 = 90 cm (measurements are taken from the station of Sevilleta – lat. 34◦21′ N, long.
106◦41′ W; New Mexico, US).

change existing between the surface soil moisture and the
deeper soil layer.

Following the same notation as has been used above, the
soil water balance equation may be written as

nZr
ds2
dt

= C (s1 − s2) , (9)

wheret is the time andC is a pseudodiffusivity coefficient
that depends on the soil properties. This method assumes that
the variation of the root-zone soil moisture is linearly related
to the difference between the surface and root-zone soil mois-
ture. One may immediately realize that the equation contains
only one parameter that is represented byT = nZr/C, named
the characteristic time length.

This approach leads to the development of an exponential
filter that has been extensively used in remote sensing appli-
cations, but with the limitation of a physical interpretation of
the parameterT . The root-zone soil moisture can be obtained
through the knowledge of the surface soil moisture and a pa-
rameterT . The recursive formulation of the method relies on
(Albergel et al., 2008)

s∗2
(
tj

)
= s∗2

(
tj−1

)
+Kj

[
s1

(
tj

)
− s∗2

(
tj−1

)]
, (10)

wheres∗2
(
tj

)
is the soil moisture of the second layer esti-

mated through the exponential filter (usually defined as the
soil water index). The gainKj at timetj is given by (in a re-

cursive form)

Kj =
Kj−1

Kj−1 + e
−

(
tj−tj−1

T

) (11)

and it ranges between 0 and 1. For the initialization of this
filter,K1 ands∗2(t1) were set to 1 ands2(t1), respectively.

3 Data description: in situ observations

3.1 The AMMA database

The proposed method (SMAR) was tested using field mea-
surements at various depths of three sites of the AMMA
database. The AMMA database user interface for accessing
local and satellite data is found at AMMA Database (2014).
These and other soil moisture products from other projects
have been collected in the International Soil Moisture Net-
work (ISMN) database1 (e.g. Dorigo et al., 2011). The data
set presented in this paragraph was downloaded from the
ISMN database.

The AMMA programme is an international long-term col-
laboration to study the climatic and environmental feedback
mechanisms involved in the African monsoon, and in some
of its consequences on society and human health. The pro-
gramme, which started in 2004, has developed a network

1Now routinely available at ISMN (2014).
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of ground-based observation stations over sub-Saharan West
Africa, and several intensive measurement campaigns (see
Redelsperger et al., 2006). In particular, three mesoscale sites
were implemented in Benin (Pellarin et al., 2009b), Mali (de
Rosnay et al., 2009), and Niger (Pellarin et al., 2009a), pro-
viding a large amount of information on soil moisture and
many other variables. In the present paper, we focused on the
point measurements taken at the sites of Nalohou-Mid and
Nalohou-Top in Benin, Agoufou in Mali, and Wankama and
Tondikiboro in Niger. The climate conditions of these three
sites are significantly different in terms of precipitation, rang-
ing between 300, 550, and 1200 mmyear−1 for Mali, Niger,
and Benin, respectively (AMMA-CATCH, 2014).

Soil moisture data are collected over the root-zone profile
at different depths starting from the surface (at 5 cm depth)
down to 135 cm depth. For the scope of the present appli-
cation, the relative saturation values at 5 cm depth has been
adopted as a reference surface measurement, while the rel-
ative saturation over the root profile has been computed av-
eraging the soil moisture measurements below the surface
layer.

For the sake of simplicity, we will first focus on the
Tondikiboro station, which provides six soil moisture mea-
surements over the soil profile starting from 5 cm depth down
to 135 cm. The installation is composed of six water con-
tent reflectometers (CS616 – Campbell Scientific Inc., Lo-
gan, Utah, USA) placed along the soil column with the ge-
ometry schematically described in Fig. 2. Measurements are
taken with two horizontal probes at the depth of 5 cm and
with four vertical probes that provide a measure over a soil
layer comparable to the probe length (about 30 cm).

The time series of soil moisture measurements is given in
Fig. 3, where the values of relative saturation for each probe
are plotted in two panels that provide an overview of the soil
moisture dynamics at the two sites located in Niger. These
panels provide a complete picture of the temporal dynamics
of soil moisture over a period of more than 3 years (13 May
2006–31 December 2009).

Hourly time series have been aggregated at daily scale
with the aim to evaluate the acceptability of our simplifying
assumption for the present case study. A preliminary analysis
on the available data was carried out to study the water losses
using the time series of relative saturation in the first layer of
soil (averaged value obtained from two horizontal probes at
5 cm depth) and the averaged value of the relative saturation
of soil in the lower portion of soil (10–135 cm). These two
values are nameds1 ands2, respectively. The time series con-
tains some useful information to investigate the actual val-
ues of soil water losses. In particular, considering the period
soon after a rainfall event the loss rate can be estimated by
the relative changes in the soil moisture or relative saturation
from one day to the other. Plotting the relative changes of
soil moisture as a function of the relative saturation of soil at
different depths and for the entire volume of soil investigated
provides a preliminary description of the shape assumed by

Fig. 2. Relative position of the six soil moisture probes installed at
the station of Tondikiboro in Niger.

the loss function in the present study case. These changes are
plotted in Fig. 4 as a function of the relative saturation at time
tj−1 for both the soil moisture at 5 cm depth (Fig. 4a) and for
the relative saturation of the lower layer of soil obtained from
the average of all the probes’ measurements below the first
layer (Fig. 4b). These graphs have been obtained from the se-
ries of the relative changes of relative saturation of the soil at
time tj andtj−1 excluding all negative values and all positive
variations due a rainfall event. Both graphs show a significant
scattering that may be due to the seasonality of the process
or to rainfall not being detected, but the linear approximation
seems a reasonable one.

The graphs provide a significant source of information for
the description of soil moisture dynamics describing a first
approximation of the soil water loss function with some scat-
ter. Moreover, the two graphs highlight the different rate of
changes observed at the superficial soil layer with respect to
the rate of change observed over the entire soil profile with
a significant faster drying process in the surface layer. This
result may be due to a higher root density in the surface layer
with respect to the lower layers and also by the fact that the
surface layer is more influenced by the evaporation process.
The cloud of points shows that the soil water losses are negli-
gible when the relative saturation of the soil is below a certain
value (∼0.08). This value may be set as wilting point for the
SMAR method when this information is available.
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Fig. 3. Time series of the point measurements of the relative saturation of soil at the two stations of the AMMA network Wankama and
Tondikiboro in Niger. Point measurements provide a good description of the soil moisture variations along the soil profile with five or six
measurements at different depths ranging from 5 cm down to 100–135 cm. Data refer to the period 13 May 2006–31 December 2009.

3.2 The SCAN database

The Soil Climate Analysis Network (SCAN) is composed of
more than 190 stations located in 40 states of the US cover-
ing different climatic and physical conditions (e.g. Schaefer
et al., 2007). It represents an excellent database for the de-
scription of the soil moisture and profile under several addi-
tional climatic conditions. Measurements are collected with
measuring the dielectric devices at approximately 5, 10, 20,
50, and 100 cm depth. For the scope of the paper, we selected
three of stations in the state of New Mexico, which is char-
acterized by a semiarid climate. The choice was influenced
by the opportunity to use the pedological description of the
soil column available for these three sites. Such information
turned out to be extremely useful for the application of the
presented methodology.

The stations selected are Adams Ranch #1, Crossroads,
and Willow Wells in New Mexico (US), where continuous
soil moisture measurements are available for a period of
about 4–5 years. The climatic conditions are quite different
from those of the sites in Africa, where we observed a strong
seasonal fluctuation in rainfall that is reflected in the dynam-
ics of soil moisture. In the present case, this seasonality is
limited and in general the soil moisture conditions are drier.

The pedological report available on the web site of SCAN
allowed for definition of the soil texture characteristics of the
first (the first 10 cm) and the second layer of soil (assumed
equal to the remaining 90 cm). We generally found that the
upper layer has a higher sand content compared to the lower
soil layer. In fact, the second layer of soil was composed of
sandy loam in all cases, while the first layer was made of
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Fig. 4.Changes in relative soil saturation as a function of the relative
saturation of the soil in the first(A) and second layer(B). The graph
has been derived from the time series of soil moisture at the station
of Tondikiboro in Niger.
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Fig. 5. Time series of the point measurements of the soil relative saturation at the three stations of the SCAN network considered in the
present study: Adams Ranch #1(A), Crossroads(B), and Willow Wells(C) in New Mexico, US. Probes provide soil moisture measurements
at depths ranging from 5 cm down to 100 cm.

sand at Willow Wells and loamy sand at Adams Ranch #1
and Crossroads.

A preliminary description of the soil moisture measure-
ments is given in Fig. 5, where the relative saturation of soil
at different depths is plotted for these three stations. This plot
provides a complete overview on the variability of the soil
moisture along the soil column.

4 Model application

4.1 Application on the AMMA database

The SMAR approach was applied to soil measurements
available in West Africa, and in particular for the Wankama
and Tondikiboro stations in Niger. These soil moisture
measurements along with the other point measurements
(Nalohou-Mid, Nalohou-Top, and Agoufou) form an excel-
lent database that well describes the soil moisture along the
root-zone profile. According to this, we have used the sur-
face soil moisture measurements at 5 cm depth to predict the
soil moisture in the lower layer of the soil, where the relative
saturation is measured at various depths.

SMAR contains in total seven parameters (sw2, sc1, Zr1,
Zr2, n1, n2, V2) that can be related to physical characteristics
of the soil profile. All of these parameters can be assigned to
four further parameters (a, b, sc1, sw2), as explained in the
previous section. In a preliminary application without cali-
bration, we assigned to each of those a value consistent with
the physical characteristics of the site under investigation:

– Parameterssw2, sc1, n1, andn2 can be assigned ac-
cording to the soil texture of the site. In particular,

both sites are characterized by sandy soils, and for
this reason a first approximation for these parameters
can be obtained from values taken from the literature
(see characteristics of sand soil in Table 1). In both
cases, we assigned the following values:sw2 = 0.06,
sc1 = 0.14, n1 = 0.437, andn2 = 0.437. Eventually,
the value ofsw2 may also be extrapolated by the graph
of Fig. 4a, but in the present case only parameters
taken from the literature were adopted.

– Parametera = V2/(n2Zr2 (1− sw)) is computed based
on the characteristics of the soil and of the climate. In
particular, soil parameters were defined based on the
soil texture of the site under investigation, the depth
of the second layer of soil, Zr2, was defined accord-
ing to the depth of the deepest probe installed, and,
finally, the value of the soil water loss coefficient was
defined taking into account both the high permeability
of the soil and also the high evapotranspiration losses
observed at these specific sites. Consequently, we as-
signed the following values forn= 0.437 – Zr2 =

120 cm at Wankama and 125 cm at Tondikiboro – and
V was set equal to 20 mmday−1.

– Finally, the parameterb was estimated using Eq. (3)
assuming a depth of 10 cm for the first layer of soil
(considering that the probes at 5 cm depth are hori-
zontal and provide a description of a volume around
the probe that may be assumed representative of a soil
depth of 10; see Fig. 2) and the second one considered
with a depth equal to the depth of the last probe minus
10 cm for the second one.
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Fig. 6. Comparison between the relative saturation at 5 cm (s1) and the averaged value over 100, 130, and 135 cm depth, and the filtered
value (s∗2SMAR – black line) obtained with SMAR for two sites located at Wankama(A) and Tondikiboro(B), respectively. Results have been
obtained assigning parameters based on the physical characteristics of the study cases.

The results of this preliminary application are given in
Fig. 6, where one can see the good performance of the
method in capturing the trend in the signal of soil mois-
ture in the lower soil layer over a temporal window of 4
years. The graph provides a description of the application
of SMAR to the two time series measured in Niger with the
parameters assigned as described above. The model repro-
duces the seasonality of the soil moisture signal very well,
with some discrepancies during the transition phases. Cor-
relations ofR = 0.88 andR = 0.85 and a root-mean-square
errors (RMSE) of 0.168 and 0.203 are found for Wankama
and Tondikiboro stations, respectively.

The same model was also used over several time series
available on the AMMA network using the three super sites
(Benin, Niger, and Mali) using the averaged values of rela-
tive saturation estimated from several point measurements,
using all points that provide a complete description of the
root profile, and the averaged values estimated over the three
super sites (Benin, Niger, and Mali). In fact,t The AMMA
network was built with the specific aim to monitor the av-
eraged soil moisture over three super sites of 25× 25km2.
These data are particularly useful for shedding light on the
impact of different scales on the use of SMAR.

In this case, the model was calibrated for all parameters
using the RMSE between the averaged relative saturation of
the lower layer of soil and the filtered time series ofs1 as an
objective function. This calibration procedure was performed
for both the SWI method (optimizing the parameterT ) and
SMAR (optimizing the parametersa, b, sw2, andsc1), obtain-
ing the results summarized in Table 2. In general, the SMAR
procedure produced better results in terms of correlation and
RMSE, but this is not surprising considering the number of

parameters in the second equation. Nevertheless, it is encour-
aging from our perspective that the calibration parameters are
very close to those estimated based on the physical informa-
tion available (soil texture, potential evapotranspiration, and
soil permeability) for the site confirming the physical consis-
tency of the methodology.

More specifically, the result of the application of the two
procedures for the super sites is given in Fig. 7, where one
can see the behaviour of the two expressions when applied
to this data set. Apart from the general evaluation of the per-
formances that are influenced by the different level of com-
plexity of the two schemes, it is interesting to note that the
calibrated parameters of SMAR applied to the three super
sites are closely related to the values obtained for the point
measurements. In particular, it can be observed in Table 1
that the parametersa and sw2 seem to be less sensitive to
the change in scale, while the parametersb andsc1 display a
higher variability at the two analysed scales. In general, the
calibrated values of the parameters reflect the physical char-
acteristics of the sites in terms of soil water losses and other
characteristics.

4.2 Application on the SCAN database

The SMAR approach was applied to soil measurements
available in New Mexico. Using the same procedure de-
scribed above for the AMMA data, we assigned the set of
model parameters based on the available information from
the site. In this case, we had the advantage of a better de-
scription of the soil texture that allowed for differentiating
between those parameters referring to the first layer and
those referring to the second one. Following the same scheme
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Fig. 7. Comparison between the relative saturation measured at 5 cm (s1) and the averaged value in the second soil layer of depth (s2), the
filtered value (s∗2SMAR) obtained with SMAR and the filtered value obtained with the exponential filter (s∗2) for three super sites located
respectively in Benin(A), Mali (B), and Niger(C). Results describe the application of SMAR and the exponential filter (SWI) method where
all parameters have been calibrated optimizing the RMSE.

Table 2. Summary of the results of the calibration with the SMAR and SWI methods on the time series of the AMMA database analysed
herein.

a b sw2 sc1 R (SMAR) RMSE (SMAR) T R (SWI) RMSE (SWI)
[days−1] [–] [–] [–] [days]

Local measurements – Benin
Nalohou-Mid 0.06 0.20 0.06 0.01 0.966 0.0145 4 0.963 0.0545
Nalohou-Top 0.05 0.25 0.08 0.04 0.943 0.0183 12 0.906 0.07203
Mean values 0.06 0.23 0.07 0.03 8

Local measurements – Mali
Agoufou 0.10 0.15 0.02 0.08 0.898 0.0155 28 0.773 0.0456

Local measurements – Niger
Wankama 0.06 0.11 0.10 0.28 0.932 0.089 14 0.911 0.102
Tondikiboro 0.09 0.20 0.10 0.39 0.925 0.104 10 0.897 0.124
Mean values 0.07 0.15 0.10 0.33 12

Averaged values at 25km× 25km scale
Super site Benin 0.09 0.13 0.08 0.18 0.968 0.0647 11 0.959 0.08
Super site Mali 0.10 0.10 0.02 0.07 0.885 0.0655 7 0.892 0.069
Super site Niger 0.08 0.20 0.08 0.23 0.951 0.0541 8 0.894 0.0891

adopted in the previous section, we assigned the following
parameters to three considered case studies:

– Soil parameters were assigned based on the soil char-
acteristics of the sites. We assigned the following soil
parameters:

n1 = 0.437, n2 = 0.453, sc1 = 0.24, sw2=0.19,
for Adams Ranch #1;

n1 = 0.437; n2 = 0.453; sc1 = 0.24, sw2 = 0.19
for Crossroads;

n1 = 0.437; n2 = 0.453; sc1 = 0.14, sw2 = 0.19
for Willow Wells.

– Considering that the potential evapotranspiration and
soil permeability of these sites may produce values of
soil water losses similar to those of the AMMA sites,
we assigned the same value ofV2 = 20 mmday−1. Pa-
rametera was computed using Eq. (2) and adopting
the soil parameters derived from the soil texture.

– The parameterb was estimated using Eq. (3) and as-
suming the first layer of soil of Zr1 = 10 cm and the
second one of Zr2 = 90 cm.
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Fig. 8.Comparison between the relative saturation of the surface soil layer (s1) and the averaged value over 90cm depth (s2), and the filtered
value (s∗2SMAR – black line) obtained with SMAR for three sites located at Adams Ranch #1(A), Crossroads(B), and Willow Wells(C),
respectively. Results have been obtained assigning parameters based on the physical characteristics of the study area.

The results of this preliminary application are given in
Fig. 8, where one can see the good performance of the
method in capturing the trend of the signal of soil mois-
ture in the lower soil layer. The graph provides a description
of the application of SMAR to the time series measured in
New Mexico with the parameters assigned. The application
of SMAR without calibration provided encouraging results
that are corroborated by the observed correlation coefficients
and the RMSE between the observation and the reconstructed
values of the relative saturation of the second layer of soil. In
particular, we observed a correlation ofR = 0.89, 0.71, and
0.73 and a RMSE of 0.053, 0.0328, and 0.0434 for Adams
Ranch #1, Crossroads, and Willow Wells stations, respec-
tively.

SMAR was also compared with SWI in order to provide a
complementary comparison of the performances of the two
methods on a different context. Such comparison was carried
out with a calibration of both models aimed at the minimiza-
tion of the RMSE. The result of the application of the two
procedures is shown in Fig. 9 for the three SCAN sites de-
scribed. Here the performances of the SMAR algorithm pro-
vide an excellent result compared with SWI. Here one may
appreciate the performances of the two procedures after cal-
ibration.

In addition to the three mentioned stations, we also con-
sidered four additional stations in New Mexico where the
soil pedon report was not available. For this reason, these
data were only used for a comparison with SWI. The re-
sults of this application can be found in Table 3 for the soil
moisture station of the SCAN network in New Mexico. It
can be observed that, apart from the general evaluation of

the performances that are influenced by the different level
of complexity of the two schemes, it is interesting to note
that SMAR produces better results both in terms ofR values
and RMSE. Nevertheless, SMAR fails in the interpretation
of the soil moisture at the station of Los Lunas, where SWI
also performed very poorly. This may be due to errors in the
data or in a limitation of the two procedures. In general, the
calibrated values of the parameters reflect the physical char-
acteristics of the sites in terms of soil water losses and other
characteristics.

The analysis presented provides a preliminary comparison
between the two methods, highlighting the good performance
of SMAR in dry environments. Nevertheless, a more accu-
rate/comprehensive intercomparison between the two mod-
els could be performed using the AIC and BIC methods (e.g.
Ye et al., 2008) to assess model fit, but would be penalized
by the number of estimated parameters.

5 Conclusions

In this paper, we introduced a new methodology, named
SMAR, for the description of soil moisture in the root zone
based on the time series of surface soil moisture data. SMAR
has a physically consistent structure, with parameters that
may be estimated from the physical characteristics of the site
under investigation. Results obtained using as much of the
available physical information as possible provided good re-
sults.

The methodology was also applied using measured soil
moisture, providing prediction of the relative saturation over
two significantly different spatial scales. Regarding the point
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Fig. 9. Comparison between the relative saturation of the surface soil layer (s1) and the averaged value over the first 90 cm of depth (s2),
the filtered value (s∗2SMAR) obtained with SMAR and the filtered value obtained with the exponential filter (s∗2) for three sites located at
Adams Ranch #1(A), Crossroads(B), and Willow Wells(C), respectively. Results describe the application of SMAR and the exponential
filter (SWI) method, where all parameters have been calibrated optimizing the RMSE.

Table 3.Summary of the results of the calibration with the SMAR and SWI methods on the time series of the SCAN database.

Station a b sw2 sc1 R (SMAR) RMSE (SMAR) T R (SWI) RMSE (SWI)
[days−1] [–] [–] [–] [days]

Adams Ranch #1 0.05 0.14 0.25 0.28 0.92 0.02 162 0.61 0.07
Alcalde 0.06 0.05 0.23 0.24 0.91 0.02 43 0.81 0.07
Crossroads 0.09 0.19 0.20 0.25 0.76 0.03 73 0.62 0.05
Jordana Exp. Range 0.05 0.05 0.05 0.01 0.88 0.02 59 0.88 0.04
Los Lunas 0.05 0.20 0.33 0.29 0.36 0.08 500 −0.59 0.19
Sevilleta 0.05 0.17 0.23 0.18 0.81 0.03 500 0.68 0.14
Willow Wells 0.08 0.20 0.20 0.13 0.90 0.02 189 0.45 0.14

measurements, SMAR has been applied using available in-
formation in order to infer parameter values. The prelimi-
nary application carried out without the need of calibration
provided a satisfying result both in terms ofR values and
RMSE. In order to explore the potential of this new formu-
lation, its performances have been compared with the results
obtained through the simple exponential filter proposed by
Wagner et al. (1999). Both methods have been used after cal-
ibration on several time series of the AMMA and the SCAN.
The comparison highlighted that this procedure may provide
some improvements in semiarid environments. Moreover, the
set of parameters obtained from calibration is consistent with
the physical characteristics of the studied area.

The proposed method may be improved by including a soil
loss function that accounts for the non-linearity of this pro-
cess. This step is straightforward, but will incorporate a sig-
nificant number of additional parameters in the proposed re-

lationship, while in the present form the equation provides an
interesting, descriptive functional relationship between two
variables of extreme interest.
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