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Abstract. Groundwater-dependent ecosystems (GDEs) are

at risk globally due to unsustainable levels of groundwater

extraction, especially in arid and semi-arid regions. In this

review, we examine recent developments in the ecohydrol-

ogy of GDEs with a focus on three knowledge gaps: (1) how

do we locate GDEs, (2) how much water is transpired from

shallow aquifers by GDEs and (3) what are the responses

of GDEs to excessive groundwater extraction? The answers

to these questions will determine water allocations that are

required to sustain functioning of GDEs and to guide regula-

tions on groundwater extraction to avoid negative impacts on

GDEs.

We discuss three methods for identifying GDEs: (1) tech-

niques relying on remotely sensed information; (2) fluctua-

tions in depth-to-groundwater that are associated with diur-

nal variations in transpiration; and (3) stable isotope analysis

of water sources in the transpiration stream.

We then discuss several methods for estimating rates of

GW use, including direct measurement using sapflux or eddy

covariance technologies, estimation of a climate wetness in-

dex within a Budyko framework, spatial distribution of evap-

otranspiration (ET) using remote sensing, groundwater mod-

elling and stable isotopes. Remote sensing methods often

rely on direct measurements to calibrate the relationship be-

tween vegetation indices and ET. ET from GDEs is also

determined using hydrologic models of varying complexity,

from the White method to fully coupled, variable saturation

models. Combinations of methods are typically employed to

obtain clearer insight into the components of groundwater

discharge in GDEs, such as the proportional importance of

transpiration versus evaporation (e.g. using stable isotopes)

or from groundwater versus rainwater sources.

Groundwater extraction can have severe consequences for

the structure and function of GDEs. In the most extreme

cases, phreatophytes experience crown dieback and death

following groundwater drawdown. We provide a brief review

of two case studies of the impacts of GW extraction and

then provide an ecosystem-scale, multiple trait, integrated

metric of the impact of differences in groundwater depth

on the structure and function of eucalypt forests growing

along a natural gradient in depth-to-groundwater. We con-

clude with a discussion of a depth-to-groundwater thresh-

old in this mesic GDE. Beyond this threshold, significant

changes occur in ecosystem structure and function.

1 Introduction

Water stored below ground in the saturated zone (groundwa-

ter) is the largest global store of liquid freshwater, accounting

for about 96 % of all liquid freshwater (Shiklomanov, 2008).

Whilst readily accessed by humans for millennia at naturally

occurring springs/oases and as baseflow discharge into rivers,

it has only been during the past 100 years that exploitation of

groundwater resources has become of global concern (Gleick

and Palaniappan, 2010). The rate of groundwater use of three

(Pakistan, Iran and Saudi Arabia) of the seven largest users

of groundwater (India, the USA, Pakistan, China, Iran, Mex-

ico and Saudi Arabia) use groundwater at an annual rate that

exceeds the renewable resource volume (Giordano, 2009).

Only three of the top 10 users are OECD members, reflecting
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the large reliance on groundwater of less developed nations,

which are often located in arid and semi-arid climates where

surface water stores are generally low.

About two-fifths of the world’s terrestrial surface area is

arid or semi-arid and more than 38 % of the world’s popu-

lation lives there. Managing groundwater resources sustain-

ably is therefore a major global social and economic prior-

ity (Glazer and Likens, 2012). Whilst about 40 % of global

groundwater abstraction occurs in these regions, the scarcity

of rain means that only 2 % of groundwater recharge occurs

there (Wada et al., 2010). Water is increasingly becoming a

geopolitical and strategic resource. Disputes between neigh-

bouring states are increasing as demands for groundwater in-

crease. Because of the close relationship between crop yield

and water supply, diminishing availability of groundwater in

arid and semi-arid regions has immediate and severe impacts

on food supplies, food prices and concomitant social unrest.

Recent estimates suggest that between 10 and 25 % of the

food produced in China and India (home to 2.5 billion peo-

ple) is at risk because of groundwater depletion (Seckler et

al., 1999; Brown, 2007).

Over-extraction of groundwater stores can create several

problems. These include loss of discharge from groundwater

to wetlands, springs and streams/rivers, which results in loss

of ecosystem structure and function and the associated loss

of ecosystem services (Eamus et al., 2006a; Murray et al.,

2006); increased depth of groundwater, thereby reducing its

availability within the root zone of terrestrial groundwater-

dependent vegetation; reduced availability of groundwater

for direct human consumption; and reduced availability of

groundwater for commercial use, including irrigation, stock

watering and other industrial applications.

In a recent wide-ranging review of groundwater-dependent

ecosystems (GDEs), Orellana et al. (2012) identified quan-

tification of the water used by GDEs and an understand-

ing of the physiology of GDEs as major unresolved prob-

lems. Naumburg et al. (2005) provide a review of the im-

pact of both declining and increasing depth to the water table

on phreatophytic vegetation in arid zones and provide two

conceptual models describing ecosystem responses to these

changes in depth. They note that information on root depth

and the impact this may have on responses to changes in

depth-to-groundwater as a key knowledge gap. In this current

review we discuss application of remote sensing techniques

to quantify rates of water use of GDEs. We present ecophys-

iological responses of vegetation to differences in ground-

water availability in two case studies plus the results of a 4-

year ecophysiological study of eucalypt woodlands across a

natural gradient in depth-to-groundwater in a mesic environ-

ment. From this last study we produce an integrated response

metric for the response of these woodlands to differences in

groundwater depth.

Whilst Hatton and Evans (1998) recognised five classes of

ecosystem dependency on groundwater, we use the simpli-

fied classification system proposed by Eamus et al. (2006b):

1. Aquifer and cave ecosystems where stygofauna reside.

This class also includes the hyporheic zones of rivers

and floodplains.

2. Ecosystems reliant on the surface expression of ground-

water. This includes springs, estuarine seagrasses, and

base-flow rivers, streams and wetlands.

3. Ecosystems reliant on sub-surface presence of ground-

water within the rooting depth of the ecosystem (usually

via the capillary fringe).

Application of this simple classification scheme assists man-

agers in identifying the correct techniques for assessing GDE

structure, function and management regime (Eamus et al.,

2006b), and this classification scheme was recently adopted

in the Australian National Atlas of Groundwater-Dependent

Ecosystems.

In this review, we focus on the ecohydrology of

groundwater-dependent ecosystems rather than on ground-

water resources per se. This is because we feel that environ-

mental allocations of groundwater have generally received

less attention than allocations to human demands and be-

cause we identify three important knowledge gaps in the sus-

tainable management of groundwater for environmental allo-

cations. These are the following:

1. How do we know where a groundwater-dependent

ecosystem (GDE) is in the landscape? If we do not know

where they are, we cannot manage them and allocate

groundwater resources appropriately.

2. How much groundwater is used by a GDE? If we do

not know how much groundwater is used, we cannot

allocate an appropriate quantity of the resource.

3. What are the likely responses of GDEs to over-

extraction of groundwater? Without knowing what to

measure, we cannot regulate groundwater extraction in

ways that do not negatively impact on GDEs.

2 Identifying groundwater-dependent vegetation

Identifying the location of GDEs is the first requisite step to

managing them. However, identifying their location across

a landscape is difficult, time-consuming, expensive and re-

quires a high level of technical expertise. In this section, a

range of new techniques that can be used to assist in this are

discussed.

2.1 Methods to identify GDEs: indirect inference

Early assessments of groundwater dependency generally

relied on inference (Eamus et al., 2006a; Clifton and

Evans, 2001). Recent applications of inferential techniques

to springs, wetland, rivers and lakes can be found in Brown

et al. (2010) and to springs, wetlands and streams reliant on
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baseflow in Howard and Merrifield (2010) and are not further

discussed here.

2.2 Direct methods

2.2.1 Satellite-based approaches

In recent years remote sensing (RS) of land surfaces and veg-

etation structure (e.g. phenology, LAI) and function (e.g. ET,

gross primary productivity) has become increasingly sophis-

ticated (Glenn et al., 2010; Yuan et al., 2010; Jung et al.,

2011; Rossini et al., 2012; Kanniah et al., 2013; Ma et al.,

2013; Nagler et al., 2013) and increasingly applied to real-

world applications of water resources management (Scott et

al., 2008; Glenn et al., 2010; Barron et al., 2014; Doody et

al., 2014). Remote sensing (RS) provides a robust and spa-

tially explicit means to assess not only vegetation structure

and function but also relationships amongst these and climate

variables.

A key concept in the development of RS applications for

identifying the location of GDEs is that of “green islands”

(Everitt and DeLoach, 1990; Everitt et al., 1996; Neale, 1997;

Akasheh et al., 2008), which began with the airborne obser-

vations of desert oases and riparian corridors. In this model

the structure or function of one pixel in an RS image is com-

pared to that of another pixel located nearby. If one pixel

contains a GDE but the other does not, the hypothesis that the

structure and function of vegetation in the two pixels will di-

verge during extended dry periods can be tested. The under-

lying assumption is that vegetation with access to groundwa-

ter will not be subject to the same degree of soil water deficit

as vegetation that does not have access to groundwater; thus,

the spectral signature of the two pixels will diverge over time.

By comparing vegetation structure or function across con-

trasting periods (e.g. comparisons across “wet” and “dry”

periods) or across landscapes (e.g. comparisons from river-

side to upland pixels), green islands within a sea of browning

vegetation can be identified (Contreras et al., 2011).

Münch and Conrad (2007) used Landsat imagery to iden-

tify the presence/absence of wetlands across three catch-

ments in South Africa. They combined this with GIS terrain

modelling to determine whether GDEs could be identified us-

ing a landscape “wetness potential” for class II GDEs (those

reliant on a surface expression of groundwater). They con-

cluded that RS data could be used to classify landscapes by

comparing the attributes of potential GDEs to the attributes

of surrounding land covers during three periods: in July when

rains started at the end of a dry year; in August during the

winter of a wet year; and at the end of a dry summer. When

this was combined with a GIS model using landscape char-

acteristics, they were able to produce a regional-scale map of

the distributions of GDEs.

Plant density is often correlated with water availability,

especially in arid and semi-arid regions. Thus, plant den-

sity tends to be larger when groundwater is available than
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Figure 1. The relationship between NDVI and depth to the water

table for the Hailiutu River catchment in northern China. Redrawn

from Lv et al. (2012).

in nearby vegetation that does not have access to groundwa-

ter. Lv et al. (2012) used a remotely sensed vegetation index

(normalised difference vegetation index; NDVI; 300 m reso-

lution) to examine changes in depth-to-groundwater within a

small region in northern China. NDVI is a reliable measure

of the chlorophyll content (“greenness”) in leaves and vege-

tation cover (Gamon et al., 1995; Carlson and Ripley, 1997;

Huete et al., 2002). Using a 25 m resolution digital eleva-

tion model and groundwater bore data, the resultant relation-

ship between NDVI and depth-to-groundwater was obtained

(Fig. 1).

Similar in shape to the relationship between LAI and

NDVI, the largest values of NDVI occurred at sites with

shallow groundwater and declined curvi-linearly as depth-

to-groundwater increased. In that study, a cut-off of ap-

proximately 10 m depth-to-groundwater was identified be-

low which vegetation cover was relatively insensitive to fur-

ther increase in groundwater depth. In contrast, the thresh-

old was about 4.4 m depth-to-groundwater in the Ejina area

of north-western China (Jin et al., 2011). In their study,

which included part of the Gobi desert where annual rainfall

was about 40 mm, vegetation was absent in regions where

groundwater depth exceeded 5.5 m. They also used NDVI

and 13 groundwater bores, from which relationships between

NDVI and groundwater depth for three vegetation classes

(grassland, woodland and scrubland) were established. Maxi-

mal values of NDVI occurred at sites with intermediate (2.5–

3.5 m) depth-to-groundwater rather than at sites with shal-

lower groundwater, a result often ascribed to the effect of

anoxia arising from root flooding when the water table is too

shallow (Naumburg et al., 2005).

Geological, hydrological and ecological data can be used

to define areas that have common physical and climatic pro-

files. These regions are expected to have similar vegeta-

tion cover (assuming no management has induced significant

changes); thus, such areas are expected to have a similar RS

signature. Dresel et al. (2010) applied this approach for in-

dividual regions in South Australia by developing a correla-

tion analysis using Landsat summer NDVI and the MODIS

enhanced vegetation index (EVI) as surrogate measures of
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productivity. EVI is effective for scaling productivity across

the range of global ecosystem types (Campos et al., 2013).

MODIS EVI images were used to identify regions display-

ing a consistent photosynthetic activity throughout the year.

Landsat NDVI images were then used to locate areas dis-

playing large inter-annual variation in photosynthetic activ-

ity across wet and dry years, which were identified by arid-

ity thresholds that were calculated from the Thornthwaite

index. Finally, they used an unsupervised classification of

Landsat spectral data to locate pixels with similar spectral

signatures of areas corresponding to known groundwater-

dependent ecosystems. Species-specific differences in spec-

tral signatures have been identified previously (Nagler et al.,

2004). By combining all three sources of information (geo-

logical, hydrological and ecological) within a GIS, Dresel et

al. (2010) identified all pixels across a catchment that had a

very high probability of being a GDE. Critical for provid-

ing assurance of accurate mapping, ground reconnaissance

(“truthing”) was used to validate these findings.

Mapping of groundwater discharge zones (that is, dis-

charge through transpiration and to the ground surface) pro-

vides an alternative approach to finding GDEs. Discharge of

groundwater has a large effect on local ecology. To define

the spatial extent of discharge, information is required about

the geology, hydrology, ecology and climate of a site (Tweed

et al., 2007). By using thermal, Landsat optical and MODIS

NDVI data coupled to digital elevation models and depth-to-

groundwater data, Leblanc et al. (2003a, b) located discharge

areas in the semi-arid Lake Chad basin in Africa. Similarly,

Tweed et al. (2007) examined discharge (and recharge) of the

Glenelg–Hopkins catchment in south-eastern Australia. Dis-

charge occurred through direct evaporation from the water

table (i.e. groundwater evaporation); groundwater transpira-

tion; and discharge to the ground surface at landscape de-

pressions, rivers, wetlands and break-of-slope localities. Im-

portantly, they observed low variability of vegetation activ-

ity across wet and dry periods (seasons or years) using the

NDVI as a measure of vegetation. In this case, the variability

in NDVI was correlated with locations where groundwater

was supporting vegetation activity. One possible limitation

to this method is that it tends to be most accurate in more

xeric locations, where rainfall is more likely to limit veg-

etation function, except during extended droughts in mesic

environments.

2.2.2 Fluctuations in groundwater depth

When rooting depth is sufficient, vegetation can directly ac-

cess the water table via the capillary zone of shallow un-

confined aquifers. In some circumstances groundwater up-

take by vegetation can be seen as a diel fluctuation in the

depth-to-groundwater (Miller et al., 2010), as first identified

in groundwater hydrographs by White (1932). These daily

fluctuations in depth-to-groundwater cease when the water

table falls below the rooting zone (Butler et al., 2007) or

when vegetation is dormant (Lautz, 2008; Martinet et al.,

2009; Miller et al., 2010). However, changes in the den-

sity of water with temperature can cause expansion and con-

traction of an aquifer (Post and von Asmuth, 2013), leading

to the erroneous conclusion that the vegetation is accessing

groundwater. Additionally, when the water table is very shal-

low, direct evaporation from groundwater via bare soil can be

substantial (1–10 mm day−1) (Thorburn et al., 1992) and this

may also be misinterpreted. Thus, groundwater dependency

generally requires supporting confirmation from multiple in-

dicators and cannot be identified definitively from the White

method alone. Further elaboration of the White method is

given in Sect. 3.5.1 and described in detail in Orellana et

al. (2012).

2.2.3 Stable isotope analysis

Direct evidence that vegetation is using groundwater can

be obtained by comparing the stable isotope composition

of groundwater, soil water, surface water (if relevant) and

xylem water (Thorburn et al., 1993; Zencich et al., 2002;

Lamontagne et al., 2005; O’Grady et al., 2006a, b; Kray et

al., 2012; Busch et al., 1992; Ehleringer and Dawson, 1992;

Smith et al., 1998). This method is very effective in semi-arid

regions where groundwater is derived from snowmelt or win-

ter precipitation (which is isotopically lighter than summer

precipitation) (Ehleringer and Dawson, 1992; Smith et al.,

1998; Jobbagy et al., 2011). When sufficient differences in

isotopic composition exist among sources of water, the dom-

inant source used by different species at different times of

year can be identified (Zencich et al., 2002).

An example of deuterium isotope analysis of water col-

lected from xylem, soil, river and groundwater is shown in

Table 1. Species growing close to groundwater (Melaleuca

argentea) have xylem isotope compositions close to that of

groundwater but species growing further upslope away from

the river had xylem isotope compositions close to that of

soil water isotope. Further examples include (a) identifica-

tion of soil and surface water use by juvenile riparian plants,

in contrast to groundwater use by mature trees (Dawson and

Ehleringer, 1991); and (b) determination of the mountainous

source of groundwater and opportunistic use of that ground-

water by riparian trees (Chimner and Cooper, 2004).

Mixed-member models (i.e. “Keeling plots”) can be ap-

plied to allow estimation of the relative contribution of mul-

tiple sources of water to the water absorbed by roots (Phillips

and Greg, 2003). While it is possible for a linear mixing

model to distinguish more than two potential sources of wa-

ter, such an application requires the fractionation of 2H or
18O to be independent of each other, which is often not the

case. At a minimum, the use of stable isotopes can provide

information about spatial and temporal variation in ground-

water dependency across species and ecosystems. Applica-

tion of stable isotope analyses to quantify the rate of water

use is discussed later (Sect. 3.5.2).
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Table 1. Deuterium analysis of xylem, soil, river water and groundwater in a study of three species growing in the Northern Territory of

Australia. The δ2H values (‰) of soil became more negative as distance from groundwater increased due to enrichment during surface

evaporation. At shallow sites (Melaleuca argentea) the groundwater is near the surface and xylem water δ2H values match soil water

and groundwater. As depth-to-groundwater increased (because of local topography: the site slopes up from the river) xylem water isotope

composition was increasingly more negative than groundwater because groundwater was unavailable to the roots. From Lamontagne et

al. (2005).

Depth-to- River Soil Xylem Groundwater

groundwater water water water

(m)

Daly River 0 −44

M. argentea < 0.25 −44 −43 to −48 −43

B. acutangula 3 −80 −46 to −40 −45

C. bella > 15 −56 to −91 −59 to −71 Not available to roots

3 Application of remote sensing to the study of GDEs

3.1 A primer on remote sensing derived values of rates

of water flux

Before discussing the application of RS techniques to esti-

mate rates of groundwater use by vegetation, we will provide

a simple summary of the principles of using RS to estimate

ET more broadly. For a detailed and comprehensive evalua-

tion of these methods, refer to Glenn et al. (2007). Table 2

provides examples of recent studies that have used RS in the

study of GDEs.

The energy balance equation for land surfaces is

LE+H = Rn−G, (1)

where LE is latent energy flux (that is, ET), and H is sensi-

ble heat flux. Rn is net radiation and G is soil heat flux. Dif-

ferences in temperature between air temperature and canopy

temperature have been used to estimate sensible heat flux

(Glenn et al., 2010). Using the reasonable assumption that

G averages out to zero over any single 24 h period and Rn

is either measured or derived from remote sensing data, then

LE (that is, ET) can be calculated by difference.

Li and Lyons (1999) compared three methods that use sur-

face temperatures to estimate ET. In two methods, differ-

ences in surface and air temperature were used to estimate

ET, although the two methods differed in the details of the

aerodynamic resistance functions. The third model combined

NDVI, surface temperature and a soil-adjusted vegetation in-

dex that required the four extreme values of surface tempera-

ture and NDVI to be located simultaneously within the study

area (i.e. patches of dry bare soils; wet bare soil; wet, fully

vegetated patches; and dry, water stressed, fully vegetated

surfaces). This can make its application problematic. Two

methods used the energy balance equation to estimate ET,

whereas ET was estimated in a third by using RS data to esti-

mate the Priestley–Taylor factor that scales between ET and

potential ET (ETp). They concluded that the simplest first

and second models produced better estimates of ET and that

inclusion of the soil index improved the estimates of ET from

native (i.e. non-agricultural) vegetation. Likewise, Nagler et

al. (2005a, b) found that estimates of ET from riparian corri-

dors using RS were improved with the incorporation of a soil

index.

3.2 Estimating groundwater use by remote sensing

Quantifying the water balance of arid and semi-arid land-

scapes and aquifers is important to sustainably manage wa-

ter resources. Accurate and spatially distributed estimates of

discharge through vegetation are difficult to obtain through

field measurements. Recently, RS methods have been cali-

brated against Penman–Monteith estimates of ET (Glenn et

al., 2010; Nagler et al., 2013; Doody et al., 2014), which re-

quires only standard weather data (net radiation, wind speed

and vapour pressure deficit) and thus increases the coverage

of calibration sites. Because ET in GDEs is generally not lim-

ited by soil moisture when groundwater is of high quality

(i.e. not saline), it is assumed that actual ET rates are equiv-

alent to the ET of a reference grass crop (i.e. reference ET,

ET0), as computed following FAO-56 (Allen et al., 1998).

Then, normalised VIs, either EVI∗ or NDVI∗, can be used

like crop coefficients to estimate the spatial distribution of

ETa from ET0 on a per-pixel basis. Nagler et al. (2013) used

an exponential scaling function of EVI∗ to estimate ETa:

ETa = ET0

(
a
[
1− e−bEVI∗

]
− c

)
. (2)

Similarly, Groeneveld and Baugh (2007) found that this

methodology is particularly applicable to arid and semi-arid

vegetation underlain by a shallow water table. In arid and

semi-arid regions, annual rainfall is low and often erratic.

Consequently, the presence of a shallow water table results in

a relatively consistent supply of water to roots. NDVI∗ was

calculated from summer peak season NDVI (Groeneveld and

Baugh, 2007):
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Table 2. Some examples of the application of remote sensing to the study of groundwater-dependent ecosystems.

Notes on methods Application Reference

eVI (MODIS)+MODIS land Calibrated, empirical model of Scott et al.,

surface temp+water balance riparian ET; groundwater use (2008)

equation quantified from ETg=ET− (P −1S)

eVI (MODIS)+ empirical Calibrated, empirical model of Tillman et al.

(2012)

relationship of ET, eVI and ETo riparian ET; groundwater use

quantified

“Green island method”: Identifying location of GDEs by Tweed et al.

calculate standard deviation in determining where veg activity (2007)

NDVI across 14-year pixel shows minimal seasonal variation

by pixel

“Green island method”: Identifying location of GDEs by Dresel et al.

calculate standard deviation in determining where veg activity (2010)

eVI across years and seasonally shows minimal seasonal/inter

annual variation

“Green island method”: Identifying location of GDEs by Colvin et al.

calculate LAI for adjacent determining larger LAI (2007)

pixels; find regions with larger

LAI with GW access

NDVI (MODIS)+ groundwater Relationship between GW depth Jin et al.

depth from bore data and vegetation cover (2011)

NDVI (MODIS)+ groundwater Relationship between GW depth Lv et al.

depth from bore data and vegetation cover (2012)

Surface energy balance Estimating ET from GDEs at pixel- Yang et al.

(2008, 2011)

(SEBAL)+Landsat surface by-pixel resolution

temp; LAI derived from MODIS

SEBAL+NDVI (MODIS) Estimating ET at 90 m resolution Bindhu et al.

(2013)

SEBAL+MODIS Estimating ET Tang et al.

(2013)

SEBAL+SWAT model Estimating groundwater recharge Githui et al.

(hydrology) (2012)

SEBAL+LANDSAT images Estimating arid zone shallow Matic et al.

aquifer discharge (2011)

Penman–Monteith equation with km-scale estimates of ET Cleugh et al.

RS estimates of LAI, NDVI and (2007)

used to estimate land surface

conductance

EVI+ surface temperature+ Partitions ET into vegetation and Mu et al.

canopy fractional cover soil components (2007)

ET∗a =ETa− rainfall)/(ETo− Estimated GW use (ETg) rather Groeneveld

rainfall) than ETa (2008)

ETa linearly correlated with

NDVI∗

ETg=ET0− rainfall)NDVI∗

MODIS veg indices compared; Estimate ETa and Gc Yebra et al.

PM equation used to find Gc (2013)

and regress Gc against MODIS veg

indices

MODIS reflectance+ residual Estimate ET at 1 km spatial Guerschman

moisture index (from eVI)+ resolution et al. (2009)

global veg moisture index

Actual ET calculated from

PET · crop factor and crop factor

is derived from EVI
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NDVI∗ = (NDVI−NDVIz)/(NDVIm−NDVIz) , (3)

where NDVIz and NDVIm are the NDVI values for zero veg-

etation cover and NDVI at saturation, respectively. Although

selection of the values for NDVIz and NDVIm can introduce

uncertainty, Groeneveld and Baugh (2007) found significant

convergence in the NDVI by removal of non-systematic scat-

ter in the data. Calibration of ET in the field is not required

to apply this method, but it is necessary to define NDVIm.

This requires highly verdant pixels in the RS images, aris-

ing either from irrigation or the presence of, for example, ri-

parian vegetation that maintains a large LAI. At mesic sites,

defining NDVIz may also be difficult. Despite these prob-

lems, Groeneveld and Baugh (2007) were able to disaggre-

gate the influence of groundwater supply from that of recent

rainfall.

Groeneveld et al. (2007) applied this NDVI∗ methodology

to three arid sites in the US where annual ETa values were

available through the availability of Bowen ratio or eddy

covariance measurements. A significant linear relationship

(R2
= 0.94) was found between measured annual ETa and

mid-summer NDVI∗, despite very different vegetation com-

position and structure across those sites. However, the regres-

sion of ETa/ET0 versus NDVI∗ did not pass through the ori-

gin and would introduce an offset error if NDVI∗ were used

to estimate ETa. To overcome this, Groeneveld et al. (2007)

transformed ETa to ET∗a :

ET∗a = (ETa− rainfall)/(ET0− rainfall) . (4)

The resulting regression of ET∗a versus NDVI∗ yielded a

slope of 0.97, an intercept of zero and an R2 of 0.96. They

concluded that NDVI∗ was a reliable indicator of ET∗a . Re-

arranging the equation above and substituting NDVI∗ for

ET∗a , they demonstrated that

ETa(estimated)= (ET0− rainfall)NDVI∗+ rainfall. (5)

They estimated the amount of groundwater transpired (ETg)

by deducting annual rainfall from annual ETa. That is,

ETg= (ET0− rainfall) NDVI∗. The average error in ETg was

estimated to be about 12 %, which in the absence of field

measurements is a very valuable estimate of rates of ground-

water use. Further application of the Groeneveld et al. (2007)

method can be found in Groeneveld (2008).

Up-scaling from point to larger-scale estimates of ET

Riparian vegetation is often reliant on groundwater (either

through bank recharge or direct access to the shallow water

table), especially in arid and semi-arid regions. Rates of ET

are enhanced by groundwater use in dry environments (Clev-

erly, 2013), where riparian ET is a large component of the

water balance (Dahm et al., 2002; Scott et al., 2008). How-

ever, measurement of the riparian ET component depends

upon the physical characteristics of the riparian corridor. If

a riparian corridor is sufficiently wide, eddy covariance can

be used to directly measure ET (Cleverly, 2013). Where the

corridor is insufficiently wide, tree-scale sap flow techniques

can be used (O’Grady et al., 2006; Goodrich et al., 2000b).

Combinations of both methods (Moore et al., 2008; Oishi et

al., 2008) can be used to partition transpiration from evapo-

transpiration (Scott et al., 2006a), thereby estimating the pro-

portion of ET due to transpiration from groundwater with the

condition that groundwater evaporation is negligible.

RS methods are used to expand from measurements of ET

at discrete locations to the large scale that is required by re-

source managers. In two studies (Nagler et al., 2005a, b),

MODIS EVI and maximum daily air temperatures (from

MODIS land surface temperature LST) were used to derive

an empirical estimate of riparian ET for the San Pedro River

and middle Rio Grande of the USA (Nagler et al., 2005a, b).

Their equations for daily ET were

ET= a
(

1− e−bEVI∗
)(
c/
[
1+ e−{Tad/e}

])
+ f (middle Rio Grande) and (6)

ET= a
(

1− e−bEVI∗
)
(LST− c)+ d(both rivers) (7)

where a, b, c, d, e and f are regression constants derived

by regression analysis, Ta is air temperature derived from

MODIS LST retrievals, and EVI was normalised to obtain

EVI∗. Strong correlations between EVI∗, Ta and ET were

observed and used to provide scaled estimates for larger ar-

eas of vegetation. Despite this being an empirically derived

equation from a single study, the form of the equation ap-

pears to be relatively robust across catchments (Nagler et al.,

2005b). Similarly, Scott et al. (2008) and Nagler et al. (2009)

applied these equations (Nagler et al., 2005a, b) in which

they used MODIS-derived nocturnal surface temperature and

daily maximal air temperature, respectively. In the regression

between ET derived from RS and EC methods, the coeffi-

cient of determination (R2) was larger than 0.93 during all

three years of study and across three vegetation types (grass-

land, shrubland and woodland), thereby indicating the broad

applicability of this method. Thus, this method has the abil-

ity to (a) scale from point measurements using individual EC

towers to much larger areas; and (b) estimate the difference

between annual rainfall and ET and, where ET> rainfall, es-

timate vegetation groundwater use.

3.3 Gravity Recovery and Climate

Experiment (GRACE) for detecting changes in

total terrestrial water storage

In addition to remote sensing measures of ET anomalies or

NDVI green islands, there are also new satellite sensors and

techniques that provide estimates of groundwater fluctua-

tions and soil moisture storage changes that are of value to
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the study of GDEs (Brunner et al., 2007). The twin satel-

lites known as the Gravity Recovery and Climate Experi-

ment (GRACE) were launched in 2002 for the purpose of

making detailed measurements of Earth’s gravity field (Ta-

pley et al., 2004). Although Earth’s gravity variations tend

to be relatively constant over long time intervals, more dy-

namic, time-variable gravity fields can be detected and these

have been related to land surface moisture, groundwater fluc-

tuations, sea ice, sea level rise, and deep ocean currents.

GRACE’s ability to monitor changes in such “unseen water

reserves” from space are a significant new addition to hy-

drological studies that can substantially improve our knowl-

edge of below- and above-ground water resources and associ-

ated changes to vegetation functioning and GDEs. However,

GRACE is not able to estimate rates of actual groundwater

use by GDEs.

Technically, the GRACE satellites detect changes in the

Earth’s gravity field by monitoring the changes in distance

between the two spacecraft as they orbit the Earth. The rel-

ative distance will change in response to variations in the

Earth’s mass, including changes in mass of both above- and

below-ground water reservoirs (groundwater, soil moisture,

snow, ice, and surface waters). The GRACE satellite data di-

rectly measure changes in total water storage (TWS) and not

changes in the individual hydrologic components (e.g. sur-

face water, soil moisture, and groundwater). Groundwater

storage changes from GRACE are thus inferred by isolat-

ing and removing the contributions of all other TWS compo-

nents, using either independent hydrologic data sets and/or

land surface models.

In most cases, soil moisture becomes the sole compo-

nent that must be removed from the gravity data to estimate

groundwater changes, since variability of snow and surface

water is relatively insignificant to total water storage vari-

ability. By subtracting the soil moisture contribution, the re-

maining time-variable change in GRACE’s measure of total

water storage will be due to changes in groundwater. Thus,

1TWS=1SW+1SM+1GW, (8)

where 1TWS, 1SW, 1SM and 1GW are changes in total

water store, surface water, soil moisture, and groundwater

respectively.

Many studies have compared changes in groundwater stor-

age obtained from GRACE data with in situ data for validat-

ing the accuracy of GRACE data at either regional or conti-

nental scales (Henry et al., 2011; Leblanc et al., 2009; Rodell

et al., 2009, 2007; Scanlon et al., 2012a, b; Syed et al., 2009).

GRACE is not a way to measure exact water storage

amounts from space and cannot be used to measure how

much water is stored in a river basin at a particular instant

in time. Instead, gravity information is used to assess relative

changes in water storage over large areas at monthly, sea-

sonal or annual time steps. Seasonal changes in water stor-

age may be the easiest to detect using the GRACE technique

because such changes tend to be large.

In general, GRACE data are more accurate for large ar-

eas over long time intervals. For example, GRACE can de-

tect seasonal and annual changes in water storage over large

areas and can detect month-to-month changes over entire

river basins (of the order of millions of square kilome-

tres). Presently, GRACE can confidently detect water storage

changes in areas larger than 200 000 km2.

Rodell and Famiglietti (2001) showed that GRACE data

can estimate annual groundwater change over the High

Plains, USA, within about 8.7 mm of their actual value. This

level of accuracy may not always be an improvement for

well-sampled and instrumented aquifers, but for most places

in the world, estimates of water levels within a centimetre or

less are extremely valuable and will help reveal groundwater

depletion in areas of the world where such measurements are

not systematically recorded.

Despite these coarse scales, such information can be ex-

tremely useful for water resources managers, especially as

GRACE data continue to be refined to provide improved es-

timates of groundwater fluctuations and depletion. Regional

monitoring of groundwater levels is limited by the lack of

ground-based measurements and the lack of a sufficiently ex-

tensive network of monitoring wells. Thereby, the GRACE

technique offers an objective, unbiased method for monitor-

ing water storage changes at large scales.

Although many advances in TWS monitoring have been

made using GRACE data, the practical application of

GRACE data for local water resources management has been

limited by the low spatial (> 150 000 km2) and temporal

(> 10 days) resolution of GRACE measurements and by

difficulties in disaggregating the various TWS components

(Rodell et al., 2007). There is a trade-off between coarse spa-

tial resolution and accuracy, and it remains to be determined

whether better spatial resolutions can be achieved without

degrading or increasing the uncertainties. However, Houborg

et al. (2012) show the potential value of GRACE data to sig-

nificantly improve drought prediction capacity through as-

similation of these data into the Catchment Land Surface

Model using ensemble Kalman smoother and forcing data

from North American and Global Land Data Assimilation

Systems Phase 2 (NLDAS-2). Similarly, Sun et al. (2013) im-

posed GRACE observations as constraints when recalibrat-

ing a regional-scale groundwater model, further highlighting

the value of GRACE data to the study of groundwater and

GDEs.

3.3.1 Downscaling of GRACE

To fully realize the potential of GRACE data for hydrological

applications, downscaling both in space and time is required.

This will enable better predictions of changes in groundwa-

ter level (Houborg et al., 2012). Sun et al. (2013) explored

various downscaling techniques for GRACE data for use-

ful predictions of changes in water level. They developed

artificial neural network (ANN) model schemes to predict
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Figure 2. Change in (a) total water storage anomalies; (b) groundwater anomalies; (c) soil moisture storage anomalies; and (d) surface water

anomalies relative to the mean of the Murray–Darling Basin during the multiyear drought. Redrawn from Leblanc et al. (2009).

such changes directly by using a gridded GRACE product

and other publicly available hydrometeorological data sets.

Their statistical downscaling approach can be readily inte-

grated into local water resources planning activities, espe-

cially in the absence of continuous in situ groundwater ob-

servations. They noted that downscaled GRACE data could

potentially fill the gap created by the declining coverage of

in situ groundwater monitoring networks and “index” wells

used to gauge the wellbeing of aquifers.

3.3.2 Groundwater depletion studies and GRACE

GRACE satellite data have been used to estimate ground-

water depletion associated with severe droughts in Europe,

the US, China, and India (Leblanc et al., 2009; Rodell et al.,

2009). Groundwater pumping of aquifers often increases dur-

ing severe droughts for urban, agriculture, livestock, and in-

dustry needs. This results in the decline of groundwater levels

and the decrease in groundwater discharge to springs, surface

water bodies and riparian zones (Peters et al., 2003). Leblanc

et al. (2009) attempted to attribute groundwater loss dur-

ing the recent drought in the Murray–Darling Basin in Aus-

tralia to groundwater pumping. However, they found that the

pumping rate represented only less than 10 % of the decline

rate in groundwater storage as observed by GRACE from

2003 to 2008 (Fig. 2). They concluded that the observed de-

cline can mostly be explained by reductions of groundwater

recharge and the vast amount of groundwater transpired dur-

ing the drought by the widespread presence of deep rooted

trees (GDEs) as well as capillary rise from the saturated to

the unsaturated zone.

3.4 Remote sensing limitations and challenges in

studies of GDEs

Remote sensing applications in studies of GDEs vary greatly,

from basic detection, mapping, and monitoring of GDEs to

more complex and quantitative measurements of ET, func-

tioning, and energy and water balance. In most cases, map-

ping of GDE locations at appropriate management scales is

prerequisite to more detailed studies, such as groundwater

assessments that may require accurate estimates of ET (Gou

et al., 2015).

Regardless of the application, there will be certain lim-

itations in the use of remote sensing that need to be con-

sidered. Other geospatial data sources will often need to be

integrated to make the best use of remote sensing, includ-

ing climate, soils, landscape morphology, and ecologic data

layers that will enable potential areas for GDEs to be de-

lineated (Bertand et al., 2012). Multiple sensors and image

data sets are best suited for studies of GDEs because of the

inherent spectral–spatial–temporal limitations of single sen-

sor systems. For example, the use of fine spatial resolution

Landsat (30 m) and high temporal frequency MODIS data

(1–2 day) allows us to identify potential GDE vegetation

patches (Landsat) and track changes in their seasonal and

inter-annual dynamics (MODIS spectral vegetation indices,

VIs). Thus, vegetated areas that maintain high VI “green-

ness” values during extended dry periods can be flagged as

“high GDE potential”, under the premise that GDEs exhibit

low seasonality in greenness and ET between dry and wet

seasons and low inter-annual variability across years.
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However, many ecosystems may contain trees and shrubs

that are non-GDE yet also exhibit weak seasonality and inter-

annual variation due to their evergreen phenologies. In these

mixed tree–grass landscapes, seasonal variability follows the

very dynamic herbaceous grass layer that is strongly coupled

to rainfall rather than groundwater availability. The stronger

seasonality present in the grass layer can readily mask GDE

signals from the tree layer and confuse GDE detection. This

“mixed-pixel” problem restricts many remote sensing ap-

plications, particularly when the matrix background of an

area with GDEs has insufficient thermal or greenness con-

trast to enable GDE detection. The detection of “cool” ther-

mal patches (transpiring GDE trees) from relatively warmer

backgrounds (soil) will be a function of the size and magni-

tude of the cold patch relative to the pixel area. The “greener”

and “cooler” signals from a groundwater-dependent tree may

be averaged out by the non-GDE plants present in the same

pixel and a stressed GDE tree can gradually fade into the

warmer soil background matrix. Spatial heterogeneity may

overwhelm detection. Finer resolution imagery will improve

detection capabilities, but temporal information is then made

poorer, due to inherent sensor resolution trade-offs.

It should be noted that although remote sensing is a use-

ful diagnostic tool and proxy for the detection and sensing

of GDEs, most detection and mapping is done by inference

and careful user interpretation. Remote sensing often can-

not directly ascertain causes and mechanisms of GDEs, and

much remains to be done to assess GDE influences on the

water balance, their sensitivity to changing water availabil-

ity, and responses to stress conditions. Future sensor systems

planned for launch in the next few years include follow-

on GRACE twin satellite missions with improved sensing

capabilities allowing more detailed analyses of groundwa-

ter, soil moisture, and surface water distributions and trends.

The soil moisture active passive (SMAP) mission, launched

in 2014, provides improved soil moisture retrievals which

will improve upon the detection and differentiation of soil-

moisture-induced vegetation dynamics from those associated

with groundwater use.

4 Hydrological modelling of water use by GDEs

4.1 Conceptual water balance approaches

A spreadsheet tool

O’Grady and co-workers have developed a simple but

useful first-order approximation to estimate ground-

water use of vegetation in an Excel spreadsheet tool

(Leaney et al., 2011; http://www.csiro.au/products/

recharge-discharge-estimation-suite). This toolbox in-

cludes three methods to estimate rates of groundwater

discharge by vegetation:

1. Groundwater Risk Model,
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Figure 3. A representation of the Budyko formulation using the

Choudhury–Yang formulation with three different values of n

(from 1.5 to 2.0). Redrawn from Leaney et al. (2011).

2. Ecological Optimality Model, and

3. Groundwater Discharge Salinity Model (not described

here).

The groundwater risk model uses historical monthly rain-

fall and evaporation data for a site to produce a water balance.

Soil texture is used to estimate soil moisture characteristics

in each layer of the model, and groundwater uptake by veg-

etation is assumed to occur when ET exceeds rainfall, when

also accounting for soil water storage for each month. ET

is estimated from total evaporation using the Budyko frame-

work (Budyko, 1974; Donohue et al., 2007; Yang et al., 2008;

Roderick and Farquhar, 2009). The risk model in Leaney

et al. (2011) uses the Choudhury–Yang formulation of the

Budyko equation:

ETa =
(
PETp

)
/
(
P n+

[
ETp

]n)1/n
, (9)

where P is rainfall and n is a fitting parameter that deter-

mines the shape of the curve. Determining the value of n is

difficult, but a close approximation can be derived from the

climate wetness index (CWI=P/ETp). When CWI> 0.3,

n is approximately equal to CWI and when CWI< 0.3, n is

approximately 1.8 (Leaney et al., 2011). The influence of

variation in n and the Budyko formulation is shown in Fig. 3.

The model is run using historical monthly rainfall and esti-

mated ET. Pan evaporation rates can be used instead of ETp,

in which case ETp= 0.75Epan. Modest agreement between

modelled and observed rates of groundwater discharge was

found in two Australian studies where ET exceeded rain-

fall in the Wattle Range by 2 to 440 mm yr−1 (Benyon and

Doody, 2004), although the range of estimated groundwater

discharge rates was large: 107 to 671 mm yr−1 (Benyon and

Doody, 2004) and 380 to 730 mm yr−1 (Benyon et al., 2006).

As an alternative method to the risk assessment just de-

scribed, Leaney et al. (2011) applied Eagleson’s theory of

ecological optimality (Eagleson, 1978). This proposes that

the LAI of a site is maximised according to long-term rain-

fall and soil water holding capacity such that productivity

is maximised whilst minimising the development of water
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stress. In this hypothesis, native vegetation is assumed to be

at equilibrium with the local hydrological regime (Nemani

and Running, 1989). Ellis and Hatton (2008) have shown

that the LAI of a site is proportional to a climate wetness

index (CWI=P/ETp), whilst Eamus et al. (2001) used the

Baldocchi–Meyers index (foliar [N]×P/Eeq, where foliar

[N] is the concentration of nitrogen in leaves and Eeq is equi-

librium evapotranspiration) and found a strong (R2
= 0.95

for 16 sites globally) curvilinear relationship with LAI, sup-

porting the essentials of Eagleson’s optimality theory. Sim-

ilarly, Zeppel (2013) examined multiple species across sites

in Australia and found strong convergence in daily rates of

tree water use and leaf area across five evergreen sclerophyl-

lous genera. In the Eagleson optimality method of Leaney et

al. (2011), the relationship between LAI and the CWI of Ellis

and Hatton (2008) is used:

LAI= (3.31×CWI)− 0.04. (10)

In GDEs, groundwater discharge combines with precipita-

tion to supply ET (O’Grady et al., 2011); thus,

CWIg = (P +GW)/ETp, (11)

where CWIg is the climate wetness index that includes the

groundwater component (GW). Likewise, the Budyko curve

can be modified to include the contribution of groundwater

discharge to ET:

ET/ETp =1+
(
P/ETp

)
−
(
1+

[
P/ETp

]w)1/w
(Zhang et al., 2004) and (12)

(
ET/ETp

)
g
= 1+

(
[P +GW]/ETp

)
−
(
1+

[
{P +GW}/ETp

]w)1/w
(O’Grady et al., 2011). (13)

Within zones of the same CWI, sites with access to shallow

groundwater maintain a larger LAI than sites without access

to groundwater (O’Grady et al., 2011). To determine GW, the

pairs of equations (CWI, CWIg; ET/ETp, [ET/ETp]g) were

optimised by obtaining the difference in rainfall required to

attain a given LAI with a known CWI value (O’Grady et al.,

2011).

4.2 Groundwater flow and variable saturation models:

MODFLOW and HYDRUS

Two models, MODFLOW and HYDRUS, are commonly

used to investigate the hydrologic state of the coupled sur-

face water–groundwater–soil–vegetation system (McDonald

and Harbaugh, 1988; Doble et al., 2006; Shah et al., 2007;

Lowry and Loheide, 2010; Loheide and Booth, 2011; Ajami

et al., 2012). HYDRUS applies Richard’s equation to simu-

late water, heat and solute movements in soil, whereas MOD-

FLOW is a fully distributed and coupled hydrologic model of

groundwater flow (Orellana et al., 2012). Hydrologic models

that apply Richard’s equation in a soil medium of variable

saturation are important for evaluating the mechanisms that

generate groundwater hydrographs and flow. MODFLOW

can also perform spatial scaling of ET as a function of depth-

to-groundwater, although the form of ET depends upon pa-

rameterisation of the model. Often, ET is determined as ETp

or ET0, but measurements of ETa from eddy covariance can

also be used. In one example, Wilcox et al. (2007) estimated

ET from Cleverly et al. (2002) to evaluate the interaction be-

tween riparian ET and surface water–groundwater interac-

tions.

Variable saturation models have improved our understand-

ing of the interactions between groundwater and soil mois-

ture in the vadose zone. Root water uptake (RWU) creates

soil moisture deficits in the vadose zone and the capillary

fringe, thereby causing vadose zone water content to fluctu-

ate with depth-to-groundwater (Nachabe et al., 2005; Shah

et al., 2007; Logsdon et al., 2010). Using HYDRUS 1-D,

Lowry and Loheide (2010) integrated ETg and RWU from

the vadose zone by estimating the groundwater subsidy as

the difference between RWU from the shallow groundwater

and RWU from free drainage. Further complicating the re-

lationship between groundwater and soil moisture, hydraulic

redistribution of moisture from deep in the soil column to

the surface (i.e. hydraulic lift) can reduce the amplitude of

fluctuations in depth-to-groundwater, increase the amount of

ETg that is lost to groundwater evaporation, and decrease the

nocturnal recovery in depth-to-groundwater (Orellana et al.,

2012).

One of the goals of ecohydrological modelling in GDEs

is the prediction of vegetation state based upon groundwater

regime (Loheide and Booth, 2011). Likewise, the principle

drivers of water use by vegetation in GDEs were aquifer at-

tributes (Sy, regional groundwater flow), meteorology (solar

radiation, vapour pressure deficit), environmental stress, and

vegetation attributes (LAI, species composition) (Cleverly et

al., 1997; Perkins and Sophocleous, 1999; Dahm et al., 2002;

Cleverly et al., 2006; Butler et al., 2007; Lautz, 2008; Abudu

et al., 2010). In general, these controls are observed in the

wider literature on the controls of vegetation water use (Ea-

mus et al., 2006b; Whitley et al., 2009). As the meteorolog-

ical, environmental and vegetation effects on ET have been

thoroughly described, we will focus on the regional aquifer

effects on ETg here.

One geomorphologic attribute of the aquifer that controls

the flow of groundwater and thereby affects the distribution

of groundwater-dependent vegetation depends upon whether

the aquifer is gaining (i.e. water flows into the aquifer from

its surroundings) or losing (i.e. an area where groundwa-

ter is lost to adjacent unsaturated soils) (Cleverly, 2013). A

larger ETg can lead to contrasting effects on seepage from

streams to aquifers, depending upon whether along a los-

ing or gaining reach (Ajami et al., 2011). Similarly, fluctu-

ations in depth-to-groundwater can differ between gaining
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and losing reaches, of which the occurrence of the latter is

where groundwater inflow might be insufficient to support

large recovery rates in depth-to-groundwater (Schilling and

Zhang, 2012). The relationships between plant water use,

aquifer dynamics, and seasonality (e.g. Logsdon et al., 2010;

Ajami et al., 2011) are influenced by the rooting patterns and

groundwater depth–ETg relationships of the specific plant

functional types that inhabit the GDE (Baird and Maddock,

2005).

5 Field-based measurements of water use by GDEs

5.1 Sub-daily fluctuation in groundwater depth

An idealised representation of the White method in a shallow

unconfined aquifer is shown in Fig. 4.

In Fig. 4 the oscillating curve represents the cycle of

groundwater drawdown arising from evapotranspiration (ET)

during the day followed by a “rebound” of the water table

when ET returns to zero at night. The dashed straight line

(with slope= r) provides an estimate of the recovery rate,

which is how fast the water table rises in the absence of

groundwater use (Butler et al., 2007). After accounting for

recovery, the daily drawdown of the water table is scaled

by the effective specific yield (Sy), or the volume of water

(per unit surface area of an unconfined aquifer) released from

the soil pores with a given change in depth-to-groundwater

(White, 1932):

ETg = Sy(24r + s), (14)

where s is the change in aquifer storage and is deter-

mined from the 24 h change in depth-to-groundwater. This

approach has been successfully applied in the Okavango

Delta in Botswana (Bauer et al., 2004), an upland grass-

land catchment in central Argentina (Engel et al., 2005), an

oak/grassland site on the Great Hungarian Plain of eastern

Hungary (Nosetto et al., 2007), the Sopron Hills of western

Hungary (Gribovszki et al., 2008), the Gobi desert of north-

western China (Wang et al., 2014), and various sites in the

USA (Butler et al., 2007; Lautz et al., 2008; Martinet et al.,

2009).

The White method tends to over-estimate ETg (Loheide et

al., 2005; Martinet et al., 2009). A major source of error is

estimation of Sy, to which this method is very sensitive (Lo-

heide et al., 2005; Gribovszki et al., 2008; Lautz, 2008; Logs-

don et al., 2010; Miller et al., 2010). Furthermore, represen-

tative measurements of the readily available Sy are difficult to

make and are complicated by capillary flux, trapped air, hys-

teresis, and departure of the soil–water ecosystem from an

equilibrium (Logsdon et al., 2010). The value of Sy is depen-

dent upon soil texture (Loheide et al., 2005); thus, Martinet

et al. (2009) applied a value of Sy that varied with the soil

texture in contact with the capillary fringe of the water ta-

ble. With a measure of ETg (e.g. from eddy covariance), the
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Figure 4. An idealised representation of changes in depth-to-

groundwater over a 48 h period. The water table declines (depth

increases) during the day because of transpiration by vegetation but

increases (depth decreases) at night when transpiration tends to zero

and recharge exceeds loss. The dashed line represents the trajectory

of overnight recharge in the absence of transpiration on the follow-

ing day. See text for further discussion of this.

White equation can be inverted to investigate the variation

in Sy (Miller et al., 2010). Using an inversion of the White

method, estimates of Sy account for spatial heterogeneity in

soil texture and scaling effects on Sy, but further studies are

required before comprehensive predictions of Sy can be ob-

tained without independent measurements of ETg. Alterna-

tively, Nachabe et al. (2005) used a more direct estimate of

Sy in the soil column by combining measured fluctuations

of depth-to-groundwater and soil moisture across the vadose

(i.e. unsaturated) zone. In either case, additional instrumen-

tation to measure ETg or soil moisture profiles improved the

estimation of Sy.

Several modifications to the White method were evaluated

in a study by Fahle and Dietrich (2014), in which they com-

pared errors in estimation of Sy, recovery and ETg. No model

outperformed the others in each of these error benchmarks,

thus illustrating that errors in the estimation of Sy are com-

pensated by errors in the estimation of recovery (Fahle and

Dietrich, 2014). The methods that provided the best estimates

for recovery of the groundwater used approaches to estimate

sub-daily rates of ETg and recovery (Gribovszki et al., 2008;

Loheide, 2008). In both methods, recovery was estimated

from the previous and following nights, although application

to other methods might require site-specific parameterisation

of the time period that is most representative for their study

conditions (e.g. 18:00–06:00; Fahle and Dietrich, 2014). In

the method of Gribovszki et al. (2008), recovery was esti-

mated from the time rate of change in depth-to-groundwater,

and this important upgrade reduced the error of recovery es-

timates (Gribovszki et al., 2010; Fahle and Dietrich, 2014).

Groundwater hydrographs include the impact of regional

fluctuations in the aquifer that are not associated with local

changes arising from ET of vegetation (Engel et al., 2005).

A regional effect that can cause problems with the White

method occurs when tides from nearby water bodies gener-
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ate two daily peaks in the groundwater hydrograph (Miller et

al., 2010), thereby requiring measurements of the water body

that is causing the effect. After accounting for the regional

hydrograph, soil moisture content in the vadose zone can

still affect the correlation between sap flow measurements

of ETg and groundwater fluctuations (Engel et al., 2005).

This was consistent with the modelling results of Loheide et

al. (2005), who found that daily fluctuations were dampened

by root water uptake from the vadose zone alone. Spectral

methods (e.g. windowed Fourier decomposition) are effec-

tive at identifying break points in the daily signal like those

associated with regional groundwater and soil moisture ef-

fects, although variations in ETg can result in loss of am-

plitude, consequently rendering spectral analysis unsuitable

for quantitative analysis without an adequate scaling factor

(Schilling and Zhang, 2012; Soylu et al., 2012).

5.2 Using stable isotopes to estimate rates of

groundwater use

Estimates of the proportion of total vegetation water use de-

rived from groundwater can be determined from stable iso-

tope analyses (Querejeta et al., 2007; Maguas et al., 2011;

Feikema et al., 2010; Kray et al., 2012; McLendon et al.,

2008). Two types of information are required to quantita-

tively partition ETg from ET. The first is an independent es-

timate of ET0 or ETa as derived from eddy covariance (Kel-

liher et al., 1992; Baldocchi and Vogel, 1996; Baldocchi and

Ryu, 2011), sap flow (Cook and O’Grady, 2006; O’Grady et

al., 2006a, b; Zeppel, 2013) or RS techniques (Nagler et al.,

2009, 2013). The second is the stable isotope composition of

water in soil, groundwater and xylem. Upon determination

of the proportion of ET that is due to ETg (Sect. 3.2), the

amount of ETg, for example in mm day−1, is the product of

that proportion and ET.

Three generalities can be identified in the results of sta-

ble isotope studies of GDEs. First, multi-species compar-

isons at a common site generally confirm niche separation

(spatially or temporally) in patterns of water uptake, thereby

minimising competition for water (Lamontagne et al., 2005;

Querejeta et al., 2007; Kray et al., 2012). Second, increased

depth-to-groundwater results in a declining proportion of

groundwater use (O’Grady et al., 2006), although this can

vary amongst different vegetation communities (McLendon

et al., 2008). Finally, as time since last rain increases, the

proportion of groundwater used by vegetation usually in-

creases (McLendon et al., 2008), but not always (Kray et al.,

2012). Consequently, seasonality of groundwater use may

occur when rainfall is highly seasonal and groundwater avail-

ability is maintained throughout the dry season (O’Grady et

al., 2006).

Stable isotope composition varies with depth (Table 1;

Querejeta et al., 2007). Consequently, taking an average

value to represent the entire rooting depth can lead to errors.

Whilst use of two independent isotopes allows the relative

contribution of three sources to be determined, obtaining in-

dependence of both isotopes is very difficult. As an alterna-

tive, Cook and O’Grady (2006) developed a model that esti-

mates the relative water uptake by vegetation from different

soil depths. This model is based upon the following axioms:

the rate of water uptake is determined by (a) the gradient in

water potential between bulk soil and leaves; (b) root distri-

bution through the soil profile; and (c) a lumped hydraulic

conductance parameter. Soil isotopic composition as a func-

tion of depth and of xylem water is used to constrain root dis-

tributions within the model. This has the advantage over end-

member analyses (an analytic tool to determine the relative

contributions of soil water and groundwater to transpiration;

Phillips and Gregg, 2003) because (i) it produces a quanti-

tative estimation of the proportion of water extracted from

multiple depths (including groundwater); (ii) it does not re-

quire distinct values of isotope composition for end-member

analyses and therefore can deal with the more typical grading

of isotope composition observed through the soil profile; and

(iii) it is based on simple ecophysiological principles. Cook

and O’Grady (2006) applied this model and demonstrated

that two co-occurring species obtained 7–15 % of their tran-

spirational water from the water table, a third species ac-

cessed 100 % from the water table, and a fourth species de-

rived 53–77 % from groundwater.

6 Functional responses of GDEs to changes in GW

depth

Effects of groundwater on growth and

dendrochronological traits

A reduced growth rate in response to declining water avail-

ability is a universally observed plant response (Kelliher et

al., 1980; Osmond et al., 1987; Oberhuber et al., 1998; Sarris

et al., 2007). In most GDEs rainfall and groundwater pro-

vide important supplies of water, and the ratio of rainfall-

to-groundwater uptake varies spatially and temporally. Con-

sequently, increases in groundwater depth may be expected

a priori to have the potential to affect plant growth. Den-

drochronology (the study of growth in tree rings) has a long

history in ecological research spanning many decades (Drew

and Downes, 2009; McCarroll and Loader, 2004). However,

its application to the study of GDEs is much more recent

(e.g. Giantomasi et al., 2012). Similarly, recording point

dendrometers, which are sensitive stem gauges that monitor

growth increment at hourly timescales, recently have been

used for expanding applications. In this section we briefly

review some of the insights gained form dendrochronology

and dendrometry in the study of GDEs.

Tree rings represent the history of past growth events,

which are often but not always annual (Prior et al., 2012).

Quantification of growth rates from tree rings can be used

to reconstruct fluctuations in the supply water from precip-
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itation and groundwater (Oberhuber et al., 1998; Bogino

and Jobbagy, 2011; Perez-Valdivia and Sauchyn, 2011; Xiao

et al., 2014). In mountainous regions where the regional

water supply is derived from snowmelt, tree growth and

groundwater depth are correlated with precipitation during

the year prior to growth because much of the snow re-

ceived in the winter melts in the year after it fell (Oberhuber

et al., 1998; Perez-Valdivia and Sauchyn, 2011). Likewise,

tree ring growth and groundwater fluctuations are correlated

to the dominant climate driver in an area (e.g. the Pacific

decadal oscillation and El Niño–Southern Oscillation in Cal-

ifornia, USA) (Hanson et al., 2006). In some circumstances,

the effect of groundwater can be disentangled from climate

through the use of spectral analysis (Bogino and Jobbagy,

2011), but in other cases depth-to-groundwater was not found

to be a significant factor in explaining differences in either

ring width of basal area increment (Stock et al., 2012).

The timing of groundwater dependence can influence the

presence of a climate signal in tree rings: climate signals can

be weaker during formation of late wood, when growth rates

are small (Oberhuber et al., 1998), or during the dry season,

when precipitation rates are negligible and growth is sup-

ported by groundwater (Drake and Franks, 2003). Thus, anal-

ysis of tree ring chronologies can provide an insight into the

importance of access to groundwater for plant growth. Indi-

vidual events can be identified in the tree ring growth record

(Hultine et al., 2010), as can long-term trends in depth-to-

groundwater (Bogino and Jobbagy, 2011). In riparian cotton-

wood trees and willows, Hultine et al. (2010) identified rapid,

large and reversible responses of tree ring width to draining

and refilling of a reservoir (Fig. 5).

Longer-term trends in depth-to-groundwater have im-

pacted dendrochronologies in both directions, toward lower

growth rates with groundwater extraction (Lageard and

Drew, 2008) and toward increasing growth rates with

decreasing depth-to-groundwater, except in response to

root anoxia arising from flooding (Bogino and Jobbagy,

2011). However, specific responses depend upon depth-to-

groundwater and individual differences amongst functional

types; for example, riparian cottonwood trees (P. fremontii)

responded to rewetting with growth that was larger and faster

than the response of co-occurring willow (S. exigua), a small-

stature, thicket-forming shrub that is restricted to stream-

side areas with very shallow groundwater (Scurlock, 1998;

Rood et al., 2011). From an understanding of the relation-

ships between tree growth and depth-to-groundwater, histor-

ical periods of sensitivity to hydrological drought (i.e. af-

fecting groundwater levels) versus meteorological drought

(i.e. below-average precipitation) can be identified (Potts and

Williams, 2004; Adams and Kolb, 2005; Cocozza et al.,

2011). Such insights have value in developing a long-term

understanding of the relationships amongst GDEs, climate

and groundwater depth.

Wood formed during drought is enriched in 13C, reflecting

decreases in stomatal conductance relative to photosynthesis
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Figure 5. Change in tree ring width of cottonwood (solid line, di-

amonds) and willow (dashed line, squares) before (2004), during

(2005–2006) and after draining the reservoir (early 2005) and refill-

ing (mid 2006). Redrawn from Hultine et al. (2010).

and the consequential ratio of [CO2] within and outside of

the leaf (Ci/Ca) (McCarroll and Loader, 2004; Cocozza et

al., 2011; Horton et al., 2001; Maguas et al., 2011). Interpre-

tation of δ13C in tree rings can be complicated by the effects

of phloem loading (Gessler et al., 2009) and by photosyn-

thetic re-fixation in the bark (Cernusak et al., 2001), although

with independent confirmation, xylem δ13C can explain dif-

ferences in groundwater use and water stress in groundwater-

dependent trees. In one such comparison, δ13C was constant

across xylem from Populus along a perennial stream (thereby

implying access to groundwater), but changed with mois-

ture conditions in an intermittent reach (Potts and Williams,

2004). Likewise, changes in ring width over time were re-

flected by δ13C from leaves (Hultine et al., 2010), such that

less negative values of δ13C indicated increased water-use

efficiency when the supply of water was reduced.

On small timescales (hourly to daily), incremental stem

growth (and shrinkage) is measured using precision den-

drometers that contain linear-variable-displacement trans-

ducers (Zweifel et al., 2005; Drew et al., 2008; Drew and

Downes, 2009). Changes in maximum daily trunk shrink-

age arising from reduced water availability occur earlier and

stronger than changes in stomatal conductance, stem wa-

ter potential or transpiration (Ortuno et al., 2006; Cone-

jero et al., 2007, 2011; Galindo et al., 2013). Nonetheless,

rates of sap flow declined with maximum daily stem shrink-

age, both of which responded exponentially to changes in

depth-to-groundwater (Ma et al., 2013). Similarly, Febru-

ary et al. (2007) and Drake et al. (2013) found that in-

creased groundwater supply (actual or simulated) resulted in

increased stem increment, sap flow and xylem water poten-

tial.

7 Two case studies

Two case studies are now presented, one from Australia and

one from the USA. These case studies serve several purposes.
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First, they provide examples of the multiple approaches re-

quired in the study of GDEs (physiological, remote sensing,

ecological). Second, they provide a valuable bridge between

Sects. 2–6 (water use, remote sensing, modelling) and Sect. 8

(vegetation response trajectories to changes in groundwater

depth). Finally, they integrate the results of many years of

concentrated study into two diverse ecosystems.

7.1 The Gnangara Mound

The Gnangara Mound is a shallow unconfined aquifer of the

Swan Coastal Plain in Western Australia. Increased depth-to-

groundwater has occurred over the past several decades as the

result of long-term declines in annual rainfall, increased hu-

man abstraction and increased discharge arising from the de-

velopment of a plantation industry in the region (Elmahdi and

McFarlane, 2012). The impacts of groundwater abstraction

on woodlands have been documented in this region (Groom

et al., 2000; Canham et al., 2009, 2012; Stock et al., 2012). In

1985 large rates of summer abstraction in this Mediterranean

climate were associated with increased and widespread mor-

tality of native woodlands (up to 80 % mortality close to ab-

straction bores; Mattiske and Associated, 1988).

To determine long-term floristic changes associated with

groundwater abstraction, a series of transect studies were

initiated in 1988. A 2.2 m increase in depth-to-groundwater

coupled to higher-than-normal summer temperatures re-

sulted in further adult mortality of overstorey species by as

much as 80 %; additionally, 64 % mortality was recorded in

understory species 2 years after the start of groundwater ab-

straction (Groom et al., 2000). Increased rates of mortality

were not observed at control sites that were not subject to

groundwater pumping.

Large inter-specific differences in rates of mortality were

observed in these Gnangara studies. Consequently, a fur-

ther study examined the vulnerability of individual species

to increased depth-to-groundwater (Froend and Drake, 2006;

Canham et al., 2009). Using xylem embolism vulnerability

curves as a measure of sensitivity to water stress, Froend and

Drake (2006) compared three Banksia and one Melaleuca

species. They found that xylem vulnerability reflected the

broad ecohydrological distribution of species across a topo-

graphic gradient, and they identified a threshold leaf water

potential below which increased mortality was likely. Simi-

larly, Canham et al. (2009) examined Huber values (the ratio

of sapwood to leaf area), leaf-specific hydraulic conductivity

(kl) and xylem vulnerability of two obligate phreatophytes

and two facultative phreatophytes. At sites where depth-to-

groundwater was shallow, there were no inter-specific dif-

ferences in vulnerability to water stress. However, by com-

paring across a topographic gradient, Canham et al. (2009)

showed that two facultative phreatophytes (but not the obli-

gate phreatophytes) were more resistant to xylem embolism

at the upper slope (larger depth-to-groundwater) than the

lower slope.

It is not only above-ground tissues that adapt to changes

in groundwater depth. Differences in root growth also re-

spond to changes in depth-to-groundwater. Thus Canham et

al. (2012) found that root growth varied with depth within

the soil column: at the surface, root growth responded to sea-

sonality and microclimate; at depth, root growth occurred all

year and was dependent upon soil aeration (i.e. roots elon-

gated rapidly following a declining water table during the

summer and died back in the following winter as the ground-

water rebounded). These results are consistent with the in-

creases in ET following groundwater decline that were ob-

served by Cleverly et al. (2006). The ability to rapidly in-

crease root depth during the (dry) summer is a critical at-

tribute of phreatophytes occupying sites with seasonally dy-

namic depth-to-groundwater.

The development of ecosystem response trajectories for

the impact of groundwater abstraction is an important re-

source management imperative. Froend and Sommer (2010)

examined a rare, 40-year vegetation survey data set from

the Gnangara Mound. Whilst the long-term average (1976–

2008) rainfall was 850 mm, the annual average for the re-

cent past was about 730 mm and depth-to-groundwater has

increased by 1 m in the past 50 years. Depth-to-groundwater

fluctuates about 0.5–3 m seasonally, and maximal depth oc-

curs at the end of summer. Two transects were compared: a

“control” where gradual increases in depth-to-groundwater

(9 cm yr−1) have occurred as a result of the decline in annual

rainfall; and an “impacted” transect where large rates of in-

crease in depth-to-groundwater have occurred (50 cm yr−1).

Principal component analyses were used to identify three

vegetation communities: those associated with down-slope,

mid-slope and upper-slope positions. Species having a high

reliance on consistent water supplies (mesic species) were

dominant at the down-slope site, while xeric species domi-

nated the upper-slope sites.

On the control transect it was hypothesised that groundwa-

ter decline would result in a replacement of the mesic by the

xeric species. However, this hypothesis was not supported.

Indeed, most of the compositional and structural attributes

of the three communities remained unchanged. The principle

community-scale response was a change in the abundance of

mesic and xeric species rather than complete replacement of

one species for another. In contrast to the results of Shatfroth

et al. (2000), mesic species at sites with shallow groundwater

were not more sensitive to increases in depth-to-groundwater

than xeric species. By contrast, changes in composition on

the impacted transect were far more pronounced, and mass

mortality was observed across all classes (mesic to xeric)

species. This study emphasises the importance of the rate of

change in depth-to-groundwater as a determinant of the re-

sponse of species and communities.
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7.2 Riparian forest vegetation in the south-western

USA

In the south-western USA, the majority of GDEs are riparian

or littoral, where a shallow aquifer is formed by runoff from

snowmelt in the mountainous headwaters. Much of the agri-

culture in the region is found along the rivers due to the large

amount of surface water that flows past. The focus of irriga-

tion to the riparian corridors has placed intense competition

between water resources for people versus the environmen-

tal flows that are required to maintain shallow aquifers and

associated GDEs. Of further risk to riparian GDEs and agri-

culture, groundwater extraction and land use change threaten

riparian ecosystems (Scott et al., 1999; Nippert et al., 2010;

Pert et al., 2010). Thus, many studies have been undertaken

over several decades to investigate the water use of GDEs

in south-western North America (van Hylckama, 1970; Gay

and Fritschen, 1979; Sala et al., 1996; Devitt et al., 1998;

Goodrich et al., 2000a; Cleverly et al., 2002; Scott et al.,

2004; Nagler et al., 2005b).

Sunlight is plentiful in the south-western USA; thus, ri-

parian GDEs are strong carbon sinks (Kochendorfer et al.,

2011). However, seasonal variability in surface water dis-

charge and aquifer recharge can create cycles of hypoxia

and drought stress (Lowry et al., 2011), both of which act

to reduce production (Shah and Dahm, 2008). Often existing

between these two states of stress, riparian vegetation can

transpire substantial amounts of water, reaching near the the-

oretical maximum (∼ 12 mm day−1) (Cleverly, 2013). This

general release from limitations due to energy, moisture and

stress results in rates of latent heat flux that exceed precipita-

tion (i.e. ET/P > 1) (Scott et al., 2000, 2006b; Cleverly et al.,

2006) and net radiation (Devitt et al., 1998). Even when lit-

tle or no groundwater use can be identified in the vegetation

(e.g. in Sporobolis), ET losses from the riparian corridor can

exceed precipitation inputs (Scott et al., 2000), implying that

soil moisture in the vadose zone can be recharged by ground-

water and that riparian GDEs need not use the groundwater

directly.

In south-western North America, vegetation in riparian

corridors and adjacent rangelands or shrublands is classified

by reliance upon access to groundwater (i.e. obligate or fac-

ultative phreatophyte; Smith et al., 1998) or plant functional

type (obligate wetland, shallow-rooted or deep-rooted ripar-

ian, transitional riparian, or upland; Pockman and Sperry,

2000; Baird and Maddock, 2005; Baird et al., 2005). The

result of groundwater depletion has distinct effects on the

vegetation in each functional type. Shallow-rooted, obligate

phreatophytes (e.g. cottonwood, Populus spp.) can be very

sensitive to groundwater decline, resulting in reductions of

ET, productivity and canopy conductance as a consequence

of increases in vapour pressure deficit that are correlated

with depth-to-groundwater (Gazal et al., 2006; Kochendor-

fer et al., 2011). Branch sacrifice, partial crown dieback and

mortality commonly occur in Populus following substantial

groundwater drawdown (Mahoney and Rood, 1991; Kran-

jcec et al., 1998; Scott et al., 1999; Rood et al., 2000, 2003;

Cooper et al., 2003). However, stomatal closure and crown

dieback in Populus can prevent total hydraulic failure, and

thereby minimise mortality rates, by maintaining favourable

xylem water potentials within the remainder of the crown

(Amlin and Rood, 2003).

Decreased baseflow and drawdown of groundwater lev-

els has been associated with a shift in dominance to xe-

rophytic species in the American Southwest at the ex-

pense of forbs and obligate phreatophytes (Stromberg et

al., 1996, 2006, 2007, 2010). Xerophytes in the riparian

corridors of the American Southwest include deep-rooted

phreatophytes (e.g. Proposis, Tamarix) and upland species

(e.g. Chrysothamnus), any of which may be opportunistic

users of groundwater or groundwater-independent. Stress tol-

erance, opportunistic use of groundwater and use of mul-

tiple water sources (e.g. soil moisture) have contributed to

the invasive success of Tamarix (Busch et al., 1992; Clev-

erly et al., 1997; Di Tomaso, 1998; Nippert et al., 2010).

Consequently, Tamarix inhabit sites with variable depth-to-

groundwater (Lite and Stromberg, 2005), which results in an

amount of ET that is equivalently variable in time and space

(Cleverly et al., 2002; Cleverly, 2013).

The effective area of riparian vegetation has historically

increased in the American Southwest due to expansion of

deep-rooted phreatophytes like Tamarix and Prosopis (Hul-

tine and Bush, 2011). The upland vegetation that previously

occupied riverine upper terraces and grasslands supported

small rates of ET (Shafroth et al., 2005; Hultine and Bush,

2011); thus, expansion of phreatophytes into these areas has

resulted in an increase in ET losses (Scott et al., 2006b;

Cleverly, 2013) and thereby has placed a potential strain on

groundwater resources. In the case of expansion by Tamarix,

groundwater extraction may result in enhancement of ET

(Cleverly et al., 2006), contrasting with post-extraction re-

ductions in ET by native, shallow-rooted phreatophytes such

as Populus (Cooper et al., 2006; Gazal et al., 2006) and thus

representing a shift in the ecohydrology of riparian corri-

dors throughout the semi-arid regions of south-western North

America.

8 Integrating multiple-scale responses

8.1 Multiple traits across leaf, branch, whole-tree and

stand

The responses of vegetation to differences in depth-to-

groundwater have been examined extensively at leaf, tree,

canopy and population scales. Rates of leaf-scale photosyn-

thesis, stomatal conductance, whole plant hydraulic conduc-

tance, tree- and canopy-scale transpiration and plant den-

sity are known to decline in response to reduced supply

of groundwater (Table 3). Similarly, increased Huber value,
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Table 3. A summary of some of the recent literature documenting the response of vegetation, across multiple scales, to reduced availability

of groundwater.

Process/trait Response to reduced availability of References

groundwater and range of depths

Leaf-scale Decreased (zero to −9 m DGW); Horton et al. (2001)

photosynthesis

Stomatal Decrease (zero to −9 m DGW); Horton et al. (2001)

conductance Decreased (zero to >−1 m DGW increased); Cooper et al. (2003)

Stomatal resistance increased from 38.8 to 112.5 Zunzunegui et al. (2000)

(zero to >−3 m DGW) Gries et al. (2003)

Decreased (−7 to −23 m DGW) Kochendorfer et al.

Decreased (−2 to −4 m DGW) (2011)

Canopy Decreased (−1.5 to >−5 m DGW) Carter and White (2009)

conductance Decreased (−2 to −4 m DGW) Kochendorfer et al.

(2011)

Leaf and stem 9pd decrease from −0.5 to −1.7 MPa (zero to −9 m); Horton et al. (2001)

water 9pd decreased from 0.2–0.4 to −0.4 to −0.8 MPa Cooper et al. (2003)

potential (zero to >−1 m DGW increased); Froend and Drake (2006)

Decreased from −0.79 to −2.55 MPa (<−2 to Zunzunegui et al. (2000)

−20 m DGW); Gries et al. (2003)

Decreased from −1.85 to −3.99 (zero to

>−3 m DGW)

9midday decreased (−7 to −23 m DGW)

Transpiration Total Et decreased 32 % (−0.9 to −2.5 m DGW); Cooper et al. (2006)

Gazal et al. (2006)

Ford et al. (2008)

rate Et decreased (−2 to −4 m DGW) Kochendorfer et al.

E decreased from 966 to 484 mm (−1.1 to (2011)

−3.1 m DGW)

Annual E decreased (zero to −8 m DGW)

Resistance to Increased (−1.5 to −30 m DGW); Canham et al. (2009)

xylem PLC50 decreased from −1.07 to −3.24 MPa (<−2 to Froend and Drake (2006)

embolism >−20 m DGW)

Growth rate Decreased (zero to >−1 m DGW increased); Scott et al. (1999)

Decreased (−7 to −23 m DGW) Gries et al. (2003)

Leaf area Decreased from 3.5 to 1.0 (−1.5 to >−5 m DGW) Carter and White (2009)

index Decreased O’Grady et al. (2011)

Decreased from 2.5 to 0.66 (zero to >−3 m DGW) Zunzunegui et al. (2000)

Decreased from 2.7 to 1.7 (−1.1 to −3.1 m DGW) Gazal et al. (2006)

Huber value Increased from 3.3 to 4.7 (−1.1 to −3.1 m DGW) Gazal et al. (2006)

(SWA/LA) No change (−1.5 to −30 m DGW) Canham et al. (2009)

Increased from 3.4 to 4.3× 10−4 (−1.5 to Carter and White (2009)

>−5 m DGW)

Plant density Vascular species number decreased; Zinko et al. (2005)

Species composition changed (−0.9 to Cooper et al. (2006)

−2.5 m DGW); Merritt and Bateman

plant cover type changed (−1.1 to −2.5 m DGW); (2012)

vegetation cover and diversity decreased (−1 to Lv et al. (2013)

−110 m DGW)

NDVI Decreased (−1 to −110 m DGW); Lv et al. (2013)

Decreased (zero to −1.5 m DGW increased) Aguilar et al. (2012)

Decreased (−1.8 to −3.5 m DGW) Wang et al. (2011)

Crown Increased between < 40 to > 50 % (zero to −9 m); Horton et al. (2001)

dieback Leaf loss 34 % (zero to >−1 m DGW increased) Cooper et al. (2003)

Mortality Increased (>−2.2 DGW increased) Groom et al. (2000)

Increased (zero to >−1 m DGW increased) Scott et al. (1999)

Increased (−0.4 to −5 m DGW) González et al. (2012)
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crown dieback and mortality in response to reduced supply of

groundwater have been observed (Table 3). Consequently, re-

sponse functions for individual traits are readily apparent; ex-

amples include changes with depth-to-groundwater in rates

of photosynthesis (Horton et al., 2001), plant cover (Elmore

et al., 2006), NDVI (Lv et al., 2012) and crown dieback (Hor-

ton et al., 2001). However, few studies have examined mul-

tiple traits across multiple scales and then provided an in-

tegrated “ecosystem-scale” response function to differences

in groundwater availability. Integrated ecosystem-scale re-

sponses to changes in groundwater availability have been hy-

pothesised to be linear (Fig. 6), curvi-linear or a step func-

tion with which minimal damage occurs until a threshold is

reached (Leffler and Evans, 1999; Eamus et al., 2006).

Information on how vegetation adapts to differences in

water supply is critical for predicting vegetation survival,

growth and water use, which have important impacts on site

hydrology (McDowell et al., 2008; Carter and White, 2009).

The development of integrated response curves to reduced

groundwater availability would significantly enhance our un-

derstanding of water requirements and lead to the identifica-

tion of response thresholds. Such thresholds could be used to

identify the limits of reduction in water-source availability,

a useful parameter for characterising water requirements for

resource and conservation management (Froend and Drake,

2006).

In a recent comprehensive, 3-year study, Zolfaghar (2014)

examined leaf, branch, tree and stand-scale functional and

structural attributes of woodlands across a gradient of depth-

to-groundwater (2.4 to 37.5 m) in mesic Australia. She ex-

amined eighteen traits, including stand-scale basal area and

tree height, leaf turgor loss point, sapwood hydraulic conduc-

tivity, sensitivity to xylem embolism and above ground net

primary productivity. An increase in depth-to-groundwater

across these sites was hypothesised to result in

1. reduced standing biomass;

2. adjustment of leaf-, tree- and plot-scale plant traits with

associated repercussions for plant water relations;

3. increased drought tolerance; and

4. increased water-use efficiency.

Figure 7 provides a summary of the observed responses

of each trait to increasing depth-to-groundwater. Refer to Ta-

ble 4 for the abbreviations used in Fig. 7.

It is clear from Fig. 7 that increased depth-to-groundwater

was associated with declines in basal area, tree height and

LAI, and hence light interception, of native woodlands.

As a consequence, above-ground net primary productivity

was reduced as groundwater availability declined. Increased

drought tolerance, as indicated by increased water-use effi-

ciency, an increased Huber value and reduced water poten-

tial at turgor loss and solute potential at full turgor, supported

Figure 6. Hypothetical response functions for ecosystem function

to differences in groundwater availability. From Eamus et al. (2006).

the principle over-arching hypothesis of increasing depth-to-

groundwater results in a suite of leaf-branch and tree-scale

adaptations that increase tree tolerance to reduced water sup-

ply.

A key aspect of this research was to develop an

ecosystem-scale response function for depth-to-groundwater.

Zolfaghar (2014) normalised the responses (0 to 1) such that

a response of 1 indicates no effect of differences in depth-

to-groundwater and 0.5 indicates a 50 % decline/increase in

the maximal/minimum value of a particular trait. The nor-

malised response function is presented in Fig. 8. Despite the

large number of traits and species across the seven sites,

the standard error of the ecosystem-scale average for each

data point was remarkably small, indicating significant con-

vergence in normalised responses to differences in depth-to-

groundwater. Convergence of functional variations in traits

across sites and species is increasingly observed with respect

to rainfall or other climatic variables (Wright et al., 2004;

Kattge et al., 2011). Indeed, identification of plant functional

types (PFTs) is a practical means for models of land surface–

atmosphere interactions across biomes to integrate the phys-

iology of vegetation. Similarly, improved accuracy can be

obtained from dynamic global vegetation models (DGVMs)

through the construction of large data sets (cf. Wright et al.,

2004; Kattge et al., 2011) that include a representation of

groundwater-dependent ecosystems.

A second feature apparent in the response function of

Fig. 8 is the large R2 of the sigmoidal regression, reflect-

ing the relatively high degree of confidence in this threshold

response. The response curve further suggests that extrac-

tion of groundwater beyond 7–9 m depth is likely to result

in significant changes in ecosystem structure and function.

Although we cannot pinpoint the exact breakpoint with pre-

cision, it is clearly apparent that a breakpoint does occur in

the data. Furthermore, two recent reviews based on water bal-

ance concluded that groundwater uptake ceased when depths

exceeded 7.5 m (Benyon et al., 2006) or 8–10 m (O’Grady
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Table 4. The meaning of the abbreviations/traits used in Fig. 7.

Abbreviation Explanation/definition

9TLP The water potential of leaves at which turgor is zero∏
100 The solute potential at a relative water content of 100 %

RWCTLP The relative water content at which leaf turgor is zero

SWD The saturated water content of wood

Ks Sapwood-specific hydraulic conductivity of branch xylem

KL Leaf-specific hydraulic conductivity of branch xylem

PLC50 The water potential at which 50 % of the hydraulic conductivity is lost

PLC88 The water potential at which 88 % of the hydraulic conductivity is lost

Hv Huber value: the ratio of leaf area to sapwood area

BA Total basal area of trees within a plot

LAI Leaf area index of a stand of trees

AGB Above-ground biomass

ANPP Above-ground net primary productivity

WUE Water-use efficiency; calculated as the ratio of ANPP/stand water use

Height Average height of the trees in a plot

Water use Rates of stand water use; up-scaled from sap flow measurements

Stem density The number of trees per hectare

Litterfall Rates of annual litterfall within a plot

 

Figure 7. A summary of the traits examined and the general trend in response of those traits to increased depth-to-groundwater along a

natural topographic gradient. Upward/downward pointing arrows within a coloured text box indicate increasing/decreasing values of the

plant trait as depth-to-groundwater increases. Horizontal arrows indicate no change. Table 4 provides the definition of all abbreviations used

in this figure.

et al., 2010), whilst Cook et al. (1998) established a limit of

approximately 8 m for a Eucalypt savanna. Finally, Kath et

al. (2014) identified thresholds of groundwater depth across

118 sites in south-eastern Australia for two tree species rang-

ing from 12.1 to 26.6 m, further supporting our identifica-

tion of a breakpoint in the responses of trees to groundwa-

ter depth. Such a strong response, consistent across multiple
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Figure 8. Ecosystem response to increase in depth-to-

groundwater, fitted with four-parameter sigmoidal function.

From Zolfaghar (2014).

traits, should provide a strong management signal to guide

future groundwater abstraction.

8.2 Co-ordination across traits

Some plant traits are a better indicator of plant sensitivity to

water stress than others. Leaf water potential at turgor loss

is recognised as a physiological measure of plant sensitivity

to water stress (McDowell et al., 2008). Similarly, measure-

ments of vulnerability to xylem cavitation and safety margins

are critical determinants of drought tolerance (Markesteijn et

al., 2011; Sperry et al., 2008). Safety margins are equal to

the difference between minimum daily branch water poten-

tial and PLC50 (Meinzer et al., 2008; Sperry et al., 2008). A

strong linear correlation between these two traits (Fig. 9) in

the Kangaloon study (Zolfaghar, 2014) reveals co-ordination

in the response of leaf (cell trait) and xylem (branch trait)

anatomy, as has been observed previously in a study of eight

tropical dry forest species (Brodribb et al., 2003). This re-

lationship indicates that as depth-to-groundwater increased,

sensitivity to drought at both leaf cell and branch scale de-

creased (lower leaf water potential is needed to reach the tur-

gor loss point, and PLC50 declined).

9 Concluding remarks

The existence of GDEs has been known for several centuries.

The ecological, social, cultural and economic importance of

GDEs, however, has only been understood more recently.

Whilst inferential methods were the main means for deter-

mining the presence/location of GDEs for many decades,

these have now been replaced by more direct methodolo-

gies which include the use of stable isotopes and hourly di-

rect measurements of fluctuations in shallow groundwater

depth. The most revolutionary recent development has, per-

Figure 9. Co-ordination in the response of a leaf-scale and branch-

scale trait and drought sensitivity. From Zolfaghar (2014).

haps, been the application of remote sensing techniques to

identify the location of GDEs but also to reveal key features

of their functional behaviour.

Increasing frequencies, spatial and temporal extent and

severity of drought and resulting drought-induced mortality

of forests have been recorded extensively (Dai, 2011; Eamus

et al., 2013) in the past two decades. Climate-change-

induced changes in rainfall distribution and amounts pose

a new stress to both groundwater resources and associated

GDEs. For the first time, remotely sensed information on

both the structure (e.g. LAI) and functioning (e.g. rates

of water use and primary productivity) of GDEs are now

available across several decades. The challenge now is to

use this long history of remotely sensed and meteorological

data as a unique natural experiment to determine response

functions of multiple GDEs to changes in climate (and

groundwater depth) globally to inform both the science of

ecology and the practical needs of water and land resource

managers into the future.

Edited by: P. Saco
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