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Abstract. A multiresolution (MR) approach was success-
fully implemented in the context of a data assimila-
tion (DA) framework to efficiently estimate snow water
equivalent (SWE) over a large head water catchment in the
Colorado River basin (CRB), while decreasing computa-
tional constraints by 60 %. A total of 31 years of fractional
snow cover area (fSCA) images derived from Landsat TM,
ETM+, and OLI sensor measurements were assimilated to
generate two SWE reanalysis datasets, a baseline case at a
uniform 90 m spatial resolution and another using the MR ap-
proach. A comparison of the two showed negligible differ-
ences in terms of snow accumulation, melt, and timing for
the posterior estimates (in terms of both ensemble median
and coefficient of variation). The MR approach underesti-
mated the baseline peak SWE by less than 2 % and underes-
timated day of peak and duration of the accumulation season
by a day on average. The largest differences were, by con-
struct, limited primarily to areas of low complexity, where
shallow snowpacks tend to exist. The MR approach should
allow for more computationally efficient implementations of
snow data assimilation applications over large-scale moun-
tain ranges, with accuracies similar to those that would be ob-
tained using ∼ 100 m simulations. Such uniform resolution
applications are generally infeasible due to the computation-
ally expensive nature of ensemble-based DA frameworks.

1 Introduction

Spatial resolutions of 100 m or less are more commonly be-
ing recommended when using land surface models (Wood
et al., 2011; Bierkens et al., 2015; Beven et al., 2015), es-
pecially when trying to capture the heterogeneity of snow-
pack states in montane regions (Clark et al., 2011; Winstral
et al., 2014). Previous work using hydrologic response units
(HRUs; Beven and Kirby, 1979; US Geological Survey et al.,
1983; Sivapalan et al., 1987; Chaney et al., 2016), or trian-
gulated irregular networks (TINs; Tucker et al., 2001; Vivoni
et al., 2004; Mascaro et al., 2015) showed that simulating
in a “one size fits all” (uniform grid) approach is not only
computationally expensive, but also suboptimal since only
small subsets of watersheds actually require being resolved
at fine spatial resolutions. Along these lines, Baldo and Mar-
gulis (2017) developed a multiresolution (MR) scheme for
raster-based models and tested it in the context of determin-
istic snow modeling. By adapting the grid size to the physio-
graphic complexity of the terrain, runtime and storage needs
were cut in half while preserving the accuracy of a 90 m base-
line simulation.

Deterministic forward modeling itself, even at high resolu-
tion, is often insufficient due to errors in model inputs (most
notably precipitation) that are poorly characterized in mon-
tane regions. In lieu of deterministic modeling techniques,
ensemble-based data assimilation (DA) methods are now fre-
quently used to estimate snow states (Clark et al., 2006; An-
dreadis and Lettenmaier, 2006; Su et al., 2008; De Lannoy
et al., 2010; Liu et al., 2013; Arsenault et al., 2013; Girotto
et al., 2014; Margulis et al., 2015; Kumar et al., 2015). The
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advantage of such approaches is to offer spatially and tem-
porally continuous estimates, while also providing a mea-
sure of their uncertainty. However, due to their ensemble
nature, such methods can be extremely expensive to run at
high spatial resolutions, which at least partly explains why
many of the large-scale studies cited above simulate snow
processes at resolutions on the order of 1 km or greater. Sim-
ulating at these scales can solve the computational issue,
but inherently sacrifices valuable information related to sub-
grid heterogeneities in montane regions. This is undesirable
since relevant remote sensing data streams that can act as
model constraints (e.g., lidar, Landsat, MODIS) are available
at higher resolution (on scales of meters to hundreds of me-
ters).

The recently developed 30+ year Sierra Nevada and An-
des snow reanalysis datasets by Margulis et al. (2016) and
Cortés and Margulis (2017) successfully leveraged high-
resolution Landsat data using a data assimilation framework
applied at uniform resolutions of 90 and 180 m respectively.
For these regional-scale domains, this resulted in∼ 6 million
and 5.5 million simulation pixels respectively, which were
run in the context of a 100-member ensemble. For reference,
given that Northern Hemisphere snow covered area is on the
order of 8 million km2 (Derksen and Brown, 2012), using a
100 m resolution would require the simulation of 8 billion
pixels, an increase of nearly 4 orders of magnitude relative
to the combined effort for the Sierra Nevada and Andes.
Hence, extending these ensemble-based reanalysis methods
to much larger scales using a uniform resolution on the or-
der of 100 m is computationally prohibitive. Taking advan-
tage of a MR approach to significantly reduce computational
constraints might therefore greatly benefit ensemble-based
DA frameworks and allow for applications at much larger
scales. This paper aims to test the performance of the MR ap-
proach from Baldo and Margulis (2017) in the context of a
probabilistic DA framework (Margulis et al., 2015).

The MR approach as applied by Baldo and Margulis
(2017) only impacted prior (model-based) snow estimates as
a result of aggregation of model inputs. In the context of the
DA framework used by Margulis et al. (2016) and Cortés
et al. (2016), the MR approach will also coarsen the frac-
tional snow cover area (fSCA) observations derived from raw
Landsat images (Cortés et al., 2014), which can potentially
additionally impact the accuracy of the posterior snow state
estimates. We hypothesize that this additional source of ag-
gregation error will have minimal impact on the posterior es-
timates because it is expected a priori that the heterogeneity
of fSCA in areas of low complexity will be minimal. Areas
of high physiographic complexity typically correspond to ar-
eas of spatially heterogeneous snow accumulation and melt
patterns, which drive fSCA evolution. Applying the MR ap-
proach to fSCA observations will therefore coarsen regions
of the image where fSCA is most likely homogeneous and
refine regions where fSCA is most likely heterogeneous, and

should therefore mitigate the impact of reducing the number
of pixels on the reanalysis accuracy.

In this paper, a high-resolution (90 m) uniform grid base-
line snow water equivalent (SWE) reanalysis dataset was
compared to one derived using the MR scheme to address
the following questions: (1) how does the MR approach im-
pact the assimilated fSCA observations? (2) How well does
the MR approach perform in estimating the central tendency
(i.e., ensemble median) of the posterior snow state distribu-
tion in space and time? (3) How well does the MR approach
perform in estimating the uncertainty of the posterior snow
state distribution in space and time?

The rest of the paper is organized as follows: Sect. 2 illus-
trates the study area and the methodology used in this work,
Sect. 3 compares the MR approach to the 90 m baseline case
in order to answer the questions listed above, and, finally,
Sect. 4 summarizes the key points of this work.

2 Methodology

2.1 Study area

In order to maintain consistency with the work of Baldo and
Margulis (2017), this study also used the upper Yampa River
basin (UYRB, outlined in black in Fig. 1) as a representative
test domain of the Colorado River basin (CRB). The CRB
is large (6770 km2) and snow-dominated, which makes it a
critical source of fresh water for the 20 million people living
downstream (Christensen et al., 2004).

In this study, the physiographic complexity metric (CM)
was calculated for each 90 m pixel i across the CRB (Fig. 1)
following the approach described in Baldo and Margulis
(2017):

CMi = ˆσZi + ˆσNIi + ˆσfvegi , (1)

where the normalized standard deviations of elevation ( ˆσZi ),
and northness index ( ˆσNIi , Molotch et al., 2004) were derived
from the advanced spaceborne thermal emission and reflec-
tion (ASTER) global digital elevation model (DEM, JPL,
2009), and the normalized standard deviation of forested
fraction ( ˆσfvegi ) was derived from the National Land Cover
Dataset (NLCD, Homer et al., 2007). Across the CRB,
CM varies from 0 (bare and flat areas) to over 0.8 (steep and
forested areas), with the UYRB sampling a similar range of
complexity (Fig. 1).

2.2 Multiresolution approach

The MR algorithm begins with a pre-defined set of resolu-
tions across which a raster-based model implementation will
be applied. The finest baseline resolution is chosen to cor-
respond to that deemed important for representing processes
in high-complexity areas of a basin. Factor 2 multiples of a
90 m baseline up to 720 m are chosen in this study as the

Hydrol. Earth Syst. Sci., 22, 3575–3587, 2018 www.hydrol-earth-syst-sci.net/22/3575/2018/



E. Baldo and S. A. Margulis: Assessment of a multiresolution snow reanalysis framework 3577

Figure 1. Complexity metric (CM) map of the Colorado River basin (CRB) with the upper Yampa River basin (UYRB) outlined in black
and displayed in more detail in the subpanel.

Figure 2. (a) Complexity metric distribution for the upper Yampa River basin. The choice of the maximum threshold CMmax of 0.65
represented as the red vertical line leads to (b) the spatial resolution distribution map.

specific set of resolutions. The final spatial distribution of
resolutions depends on the choice of a maximum CM thresh-
old (CMmax), above which pixels are simulated at the finest
resolution and below which pixels are simulated at a mix of
coarser resolutions. The threshold is chosen based on avail-
able computational resources for an application. In this study
we chose to use a CMmax of 0.65, which corresponds to the
90th percentile of the CRB CM values (Fig. 2). Based on
the benchmarking tests performed by Baldo and Margulis
(2017), such a threshold leads to a decrease in total pixel
numbers on the order of 60 to 70 %, which corresponds to

reasonable computational costs for a full CRB snow reanal-
ysis.

By construct, all of the UYRB pixels with a CM value
larger than 0.65 were resolved at the baseline spatial resolu-
tion of 90 m, while the less complex ones were assigned ei-
ther 720, 360, 180 or 90 m by the MR algorithm developed by
Baldo and Margulis (2017). The majority of the 720 m pix-
els are located in the northwestern part of the basin (Fig. 2)
corresponding to flat and grassy areas. Modeling almost a
quarter of the pixels at this coarse resolution represents the
main source of computational savings, while minimizing the
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impact on snow accumulation and melt patterns given the ho-
mogeneous physiography of the terrain. The remaining low
CM pixels were assigned either 360 or 180 m depending on
the complexity of their neighbors. In terms of the most com-
plex pixels, 31 % of the pixels are resolved at 90 m in order
to preserve the accuracy of SWE estimates. In UYRB, these
pixels tend to be located at higher elevations, where the ter-
rain is rugged and densely forested as described in Baldo and
Margulis (2017) (Fig. 2).

2.3 SWE reanalysis framework

2.3.1 Model framework and forcings

The modeling setup used in this study is the same as de-
scribed in Margulis et al. (2016). The Simplified Simple Bio-
sphere (SSiB) model developed by Xue et al. (1991), coupled
with a three-layer snow and atmosphere soil transfer (SAST)
model (Sun and Xue, 2001; Xue et al., 2003) was used as
the land surface model (LSM) to represent the interactions
between the atmosphere, vegetation, and snow. A snow de-
pletion curve (SDC) (Liston, 2004) was used to represent the
subgrid heterogeneity in SWE and the resulting fSCA. The
coupled LSM–SDC generates time series of SWE and fSCA
as a function of the subgrid coefficient of variation (CV) and
pixel-averaged cumulative snowfall and snowmelt.

The static inputs required by the LSM are latitude, longi-
tude, elevation, slope, and aspect, which were derived from
the ASTER DEM (JPL, 2009), as well as land cover derived
from the NLCD (Homer et al., 2007). The static inputs were
aggregated from their original 30 m resolution to the model
resolution (either 90 m for the baseline or a mix of 90, 180,
360, and 720 m for the MR case). The dynamic meteorolog-
ical forcings were obtained from the Phase 2 North Amer-
ican Land Data Assimilation System (NLDAS-2, Cosgrove
et al., 2003; Xia et al., 2012) hourly forcing dataset. NLDAS-
2 variables include precipitation, incident shortwave radia-
tion, near-surface air temperature, humidity, wind speed, and
pressure at a coarse spatial resolution of 1/8◦. The NLDAS-2
forcings were downscaled to the model resolution using to-
pographic correction methods that have been previously ap-
plied over the Sierra Nevada and the Andes (Girotto et al.,
2014; Girotto et al., 2014a; Margulis et al., 2016; Cortés
et al., 2016) as well as the upper Yampa in Baldo and Mar-
gulis (2017). Lapse rates of 6.5 and 4.1◦K km−1 were used
for air temperature and dew-point temperature respectively.
Downscaling approaches for atmospheric pressure, specific
humidity, and the incoming longwave and shortwave radia-
tion fluxes are explained in detail in Girotto et al. (2014) (Ap-
pendix A). The downscaling is not deterministic, but also in-
corporates a priori uncertainty in the forcings (Girotto et al.,
2014; Appendix A). It is important to note that the precip-
itation is not downscaled a priori, but treated as an uncer-
tain random variable following a lognormal distribution with
a mean of 2.25 and a standard deviation of 0.5 that is then

implicitly downscaled and updated as part of the data assim-
ilation framework.

2.3.2 Assimilation of Landsat-based fractional snow
cover area using a particle batch smoother

The probabilistic DA framework used in this study is re-
ferred to as the Particle Batch Smoother, or PBS, and was
developed by Margulis et al. (2015) in order to improve the
probabilistic reanalysis framework used previously for SWE
reanalysis in Durand et al. (2008) and Girotto et al. (2014);
Girotto et al. (2014a). The coupled LSM–SDC provides a
prior ensemble estimate for all snow states and fluxes based
on the specified input uncertainty and its propagation through
the model. The prior ensemble treats each replicate as an
equally likely (equal weight) realization based on the pos-
tulated input uncertainty. The goal of the PBS approach is
to optimally weight the different uncertainty sources com-
ing from the meteorological forcing and fSCA retrievals in
order to generate posterior snow estimates. Specifically, the
reanalysis step is applied to a batch of the full set of fSCA
measurements (retrospectively) over the water year. A likeli-
hood function updates the prior weights whereby the poste-
rior weights can be used to determine the probability density
function or moments (i.e., mean, median, variance, interquar-
tile range, etc.) of any of the snow states and fluxes. The
mathematical framework is presented in detail in Margulis
et al. (2015).

Landsat-5 thematic mapper (TM), Landsat-7 enhanced
thematic mapper (ETM+), and Landsat-8 operational land
imager (OLI) images from water year 1985 to 2015 were
used to calculate fSCA and fractional vegetation cover over
each pixel. For a given sensor, measurements are available
every 16 days at a spatial resolution of 30 m, and only clear-
sky images were processed to obtain fSCA. The raw data
consist of multispectral top-of-atmosphere radiance mea-
surements that are transformed into top-of-atmosphere re-
flectance before being atmospherically corrected. The spec-
tral unmixing algorithm validated by Cortés et al. (2014) and
based on Painter et al. (2009) then retrieves the fraction and
type of constituent (snow, vegetation, or bare rock or soil)
within each pixel through a least-square-error optimization.
The linear unmixing model estimates reflectances from each
constituent and selects the combination of constituents lead-
ing to the lowest root mean square error (RMSE) between
the modeled reflectance and a library of snow reflectances
that have previously been calculated for different combina-
tions of constituents within each pixel. The validation of
the algorithm by Cortés et al. (2014) showed an fSCA re-
trieval error of approximately 15 %. The vegetation cover
fraction (fVEG) was also retrieved from the spectral unmix-
ing algorithm and annually averaged and used within the
LSM–SDC. The fVEG derived from Landsat observations
was chosen over the static NLCD for use in the LSM–SDC
model to allow for interannual variability and because it is
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also, by construct, more consistent with the fSCA observa-
tions used in the assimilation step. Similar to the static input
data, the fSCA and fVEG images at 30 m were then aggre-
gated to either 90 m for the baseline case, or a mix of 90,
180, 360, and 720 m for the MR case.

2.3.3 Verification of posterior SWE estimates

A posterior set of SWE reanalysis estimates was first gen-
erated for 31 years (WY 1985–WY 2015) at the baseline
resolution of 90 m, and compared to in situ measurements
to assess its accuracy. A total of 203 peak SWE measure-
ments from six SNOTEL stations and 1421 monthly manu-
ally sampled SWE from seven snow courses were used. Not
all locations have full records for the full period, with two
snow pillows or courses starting in 1986 and one in 1998.
All snow pillows are collocated with snow courses and sta-
tion no. 5 is a snow course only (Fig. 3). All in situ ob-
servations are taken at high elevations, between 2500 and
3200 m, in densely forested clearings; some representative-
ness errors are therefore expected when compared to grid-
averaged SWE estimates.

The prior SWE estimates are highly uncertain by con-
struct and overestimated in situ observations from both snow
courses and pillow (Fig. 4). Prior estimates had a mean
difference (MD) of 30 cm with a root mean square differ-
ence (RMSD) of 41 cm for snow courses, and a MD of 43 cm
with a RMSD of 51 cm for snow pillows. Both showed a
similar correlation coefficient (R2) of 0.86. Note that, based
on previous work (Luo et al., 2003; Girotto et al., 2014),
the NLDAS-2 precipitation was assumed biased and there-
fore bias-corrected using the prior distribution (using a mean
of 2.25 as indicated above). The fact that the prior SWE
overestimates in situ data is an indication that there is likely
an overcorrection in the prior precipitation (at least at these
sites). In contrast, the reanalysis generated posterior SWE es-
timates that are much more consistent with the in situ data,
are extremely well correlated to in situ measurement, and
show limited mean differences. The MD is less than 2 cm
for snow courses and less than 5 cm for snow pillows, with
RMSD of 10 cm and R2 higher than 0.95 for both. The small
differences observed may be partly explained by undercatch
problems with SNOTEL pillows measurements, and also by
the fact that in situ SWE measurements are usually made in
easily accessible areas such as clearings and therefore not
fully representative of the collocated 90 m pixel-average val-
ues. The difference in errors between the prior and poste-
rior is primarily indicative of the data assimilation method
of properly selecting ensemble members with precipitation
forcing that is consistent with the fSCA observations. Based
on the comparison with in situ data, the posterior SWE esti-
mates generated at 90 m can be considered to be an accurate
representation of the true underlying SWE for the UYRB and
are thus used as a baseline throughout.

Figure 3. Elevation map of the upper Yampa River basin with the
location of the seven snow courses shown in red and the location of
the six snow pillows shown in blue.

3 Performance of the MR SWE reanalysis compared to
the 90 m baseline

As shown previously in Sect. 2.3.3, performing a SWE re-
analysis at 90 m yields an accurate reference solution for our
test basin. However, such a simulation is very expensive in
terms of computational resources. Modeling the basin uni-
formly at 90 m meant running almost 840 000 pixels with an
ensemble size of 100 replicates, which took over a month on
the UCLA computer cluster and required 850G of space to
store the resulting outputs. By contrast, the MR approach de-
creased the number of pixels and storage needed by 59 %.
Since pixels are simulated independently from each other,
they are run in parallel, which is why runtime also decreased
by 59 % and took less than 2 weeks. Knowing that the
MR SWE reanalysis can decrease computational constraints
by a factor of 2 or more, the following section aims to assess
its performance in terms of accuracy.

3.1 Impact of the MR approach on the assimilated
fSCA observations

The MR modeling approach as applied previously in Baldo
and Margulis (2017) impacts the prior snow simulations, but
in the context of a DA (reanalysis) framework as done herein,
it also coarsens the fSCA observations that provide the key
constraint that generates the posterior estimates. Assessing
the difference between the baseline and MR fSCA is there-
fore crucial to understanding the full effect of the MR ap-
proach on the data assimilation step.

In order to first understand the seasonality of the fSCA
differences, all observations were binned by month and av-
eraged over the 31 years of record (Fig. 5a). The differences
are negligible between the 90 m baseline and the MR case
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Figure 4. Left panels show scatter plots of prior estimated snow water equivalent (SWE) vs. in situ, middle panels show posterior estimated
SWE vs. in situ, and right panels show histograms of the difference for (a) all snow courses and (b) snow pillows. The markers represent en-
semble medians while the intervals represent the interquartile range (IQR). The mean difference (MD), root mean square difference (RMSD),
and correlation coefficient (R2) are displayed.

during the accumulation season (October to January), while
the MR method slightly overestimates the baseline fSCA by
4 % or less during the ablation season (February to August).
The annual average difference is 0.87 %. The expected im-
pact of assimilating larger fSCA values during the ablation
season is an overestimation of the length of the snowmelt
period, which, for the same amount of melt season energy
inputs, would translate into larger posterior SWE estimates.
As seen in Fig. 5b and c, fSCA from both the baseline and
the MR case share a similar distribution with respect to CM
and Peak SWE (SWEpeak). As expected, areas of high fSCA
correspond to areas of high SWE accumulation at the higher
elevation of the basin, which also tend to be the most com-
plex. By design, the MR approach does not coarsen areas
of high physiographic complexity that can experience sharp
differences in accumulation and/or ablation from one pixel
to another. Hence, by construct, the MR fSCA is identical to
the baseline for CM larger than 0.65 and differs slightly from
the baseline in low-complexity areas as seen in Fig. 5b. In
addition, Fig. 5c shows that the difference in fSCA over re-
gions of high SWE accumulation is negligible as well (1.3 %
or less). Given the small differences observed, the effect of
the MR approach on the assimilated fSCA observations is
minimal and therefore is not expected to significantly alter

the performance of the data assimilation scheme (discussed
in more detail below).

3.2 Impact of the MR approach on snow climatology
metrics

The following analysis focuses on the comparison of the
posterior ensemble median SWE estimates for the baseline
and MR cases. Peak SWE (SWEpeak), day of peak (DOP),
and duration of melt (DOM) were chosen for analysis.
SWEpeak is defined as the maximum daily SWE in a
given WY. DOP is defined for each WY as the day when
SWE is equal to SWEpeak. DOM is the difference between
the melt-out day, defined as the day when only 1 % of the
original SWEpeak remains, and DOP, which effectively quan-
tifies the duration of the ablation season. These metrics can
be defined either pixel-wise or for basin-averaged values.

3.2.1 Mean spatial distribution

Figures 6a–8a show maps of the 31-year-average pixel-
wise SWEpeak, DOP, and DOM, while Figs. 6b–8b show
the distribution of the respective 31-year-average relative
differences binned by CM, elevation (Z), slope, fVEG,
and SWEpeak. In these figures, the baseline estimates were al-
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Figure 5. The fSCA climatology derived from the 31-year record
of Landsat observations over the upper Yampa River basin: bin-
averaging of all observations across the range of (a) months of the
water year, (b) CM values, and (c) peak SWE (SWEpeak) values
for the 90 m baseline and MR case. The CM maximum thresh-
old CMmax of 0.65 is represented by the vertical dashed line (b).

ways subtracted from the MR estimates, which means that a
positive difference represents an overestimation of the base-
line by the MR case and vice versa.

As expected, the climatological SWEpeak shows signifi-
cant spatial variability for both the MR and 90 m baseline
with values ranging from zero to well over 1 m of SWE
(Fig. 6a). The middle and western parts of the basin that
are not physiographically complex (see Fig. 1) receive 25 cm
or less on average. Given their location and relatively low
elevation (less than 2000 m) the SWE accumulation is not
orographically driven, but more heavily influenced by the
few winter snowstorms occurring over the basin. The more
complex areas in the eastern and southern edges of the basin
accumulate a much larger amount of SWE (on the order of
1 m or more). On average, the MR approach underestimated
pixel-wise SWEpeak by 7.2 mm or 1.6 %, with the most com-
plex areas showing no difference since they were modeled
at 90 m by design, and the less complex but high-elevation
areas showing larger differences on the order of 10 cm, or
roughly 10 % of SWEpeak. As seen in the density scatter
plot, the majority of pixels have a SWEpeak around 20 cm,
and the correlation between the baseline and the MR case
is very strong, with a correlation coefficient of 0.96. Fig-
ure 6b shows that the bin-averaged relative differences be-

tween the pixel-wise MR and baseline SWEpeak are con-
strained between −5 and 5 %. By construct, the CM bands
larger than 0.65 show no difference because all the MR pix-
els were simulated at the baseline resolution. All elevation
bands show an underestimation of SWEpeak, with the largest
differences observed at middle elevations between 2600 and
3200 m. Since the UYRB is densely forested at these eleva-
tions, this is consistent with the largest underestimation oc-
curring for the highest fVEG bands. Regarding the distribu-
tion of the differences with slope, the lower slope bands (0–
15◦) underestimate SWEpeak while the higher slope bands
(20–35◦) show overestimation. As discussed in Baldo and
Margulis (2017), the coarsening of pixel properties by the
MR method leads to a slight increase in fVEG for densely
vegetated pixels, as well as an increase in more gently sloped
and north-facing pixels. In the context of the SWE reanalysis,
the magnitude of melt energy flux largely dictates the peak
SWE that is consistent with a given fSCA depletion time se-
ries. The increase in fVEG as a result of the MR approach
leads to an underestimation of the melt (energy) flux at the
snow surface (as a result of attenuation of solar radiation),
which decreases the posterior MR SWEpeak for these pix-
els. Since the minimum solar zenith angle during the ablation
season over the UYRB is 16◦, reducing gentle slopes (0–15◦)
leads to an underestimation of the melt flux (as a result of be-
coming less perpendicular to the incoming direct beam solar
radiation), which decreases the posterior MR SWEpeak for
these pixels. Reducing steeper slopes (20–35◦) has the op-
posite effect and overestimates the melt flux, increasing the
posterior MR SWEpeak for these pixels.

The posterior SWEpeak estimates are therefore impacted
by the MR approach in two ways: (i) an overestimation of the
assimilated fSCA during the ablation season and (ii) a gen-
eral underestimation of the melt flux due to the coarsening
of the basin physiography, with the exception of steep pix-
els where the melt flux is overestimated. The basin-averaged
underestimation of SWEpeak observed in Fig. 6 suggests that
the effect of coarsening the static inputs and meteorological
forcing on SWEpeak is more important than the effect from
the coarsened assimilated fSCA images. More importantly,
the differences are the largest for the lowest SWEpeak band
(less than 15 cm). The MR approach therefore concentrated
the largest SWEpeak differences to areas of low CM that tend
to accumulate less SWE.

Regarding DOP, Fig. 7a shows that SWE in the middle
and western regions of the basin that are not physiographi-
cally complex peaks early during the winter between January
and March. In contrast, the more complex regions in the east-
ern and southern parts of the UYRB accumulated SWE until
much later during the spring (April to June). These complex
regions show very good agreement between the baseline and
MR case in terms of timing, with larger differences over the
rest of the basin. The average underestimation of 0.8 days or
−0.5 % is negligible. As seen in the density scatter plot, the
majority of pixels have peak values around 1 March, with a
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Figure 6. (a) Maps of pixel-wise 31-year-average posterior peak SWE (SWEpeak) over the upper Yampa River basin for the 90 m baseline,
the MR case, the percentage difference between the two approaches (MR− baseline), and the corresponding scatter plot. Basin averages are
displayed at the bottom of each map. (b) Distribution of SWEpeak relative difference with complexity metric (CM), elevation (Z), slope,
forested fraction (fVEG), and SWEpeak. Pixels with a 31-year-average SWEpeak lower than 5 cm were discarded from the analysis.

Figure 7. (a) Maps of pixel-wise 31-year-average day of peak (DOP) over the upper Yampa River basin for the 90 m baseline, the MR case, the
percentage difference between the two approaches (MR− baseline), and the corresponding scatter plot. Basin averages are displayed at the
bottom of each map. (b) Distribution of DOP relative difference with complexity metric (CM), elevation (Z), slope, forested fraction (fVEG),
and SWEpeak. Pixels with a 31-year-average SWEpeak lower than 5 cm were discarded from the analysis.

strong correlation coefficient of 0.89. Figure 7b shows DOP
difference distributions with CM, elevation, slope, fVEG,
and SWEpeak similar to SWEpeak (Fig. 6b), while the magni-
tude of the DOP differences is much smaller and ranges be-
tween 0.5 and −2 %. The MR approach therefore preserves
the accuracy of areas accumulating large amounts of SWE,
that peak later in the spring.

Regarding the duration of the ablation season, DOM can
vary from less than 1 month over the areas that accumu-
lated little SWE and started melting as soon as the snowstorm
events ended, to almost 5 months over the southwestern edge
of the basin (Fig. 8a). The average DOM is 61.7 days, or
2 months, for the MR case, which overestimates the 90 m
baseline by 1 day or 1.6 %. The density scatter plot shows
that the majority of pixels have a DOM between 1 and 2
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Figure 8. (a) Maps of pixel-wise 31-year-average duration of melt (DOM) over the upper Yampa River basin for the 90 m baseline, the
MR case, the percentage difference between the two approaches (MR− baseline), and the corresponding scatter plot. Basin averages are
displayed at the bottom of each map. (b) Distribution of DOM relative difference with complexity metric (CM), elevation (Z), slope, forested
fraction (fVEG), and SWEpeak. Pixels with a 31-year-average SWEpeak lower than 5 cm were discarded from the analysis.

months, with a strong correlation coefficient of 0.88. The
slight overestimation of DOM by the MR case was expected,
given the underestimation of melt fluxes from the increase in
gently north-facing and densely forested pixels (Baldo and
Margulis, 2017) and the higher assimilated fSCA observa-
tions in the MR case. Figure 8b shows that the largest DOM
overestimation occurs at the lowest band for all five variables.
When looking at the distribution with SWEpeak specifically,
pixels accumulating 15 cm of SWE or less show a DOM dif-
ference of 7 %, while pixels accumulating 1 m or more only
show a DOM difference of 1 % or less. Pixels accumulating
low amounts of SWE can be very intermittent in nature, with-
out a clear SWEpeak or DOP, which can explain the higher
difference seen in Fig. 8b.

Based on these results, when applying the MR approach
to the SWE reanalysis framework, we therefore expect the
largest differences to occur over areas of low physiographic
complexity. These types of areas tend to peak early during
the winter, accumulate less SWE, and melt within a month
and display lower levels of spatial variability that are easier
to model at coarser resolutions.

3.2.2 Basin-average mean seasonal cycle

The mean seasonal cycle of MR SWE underestimates the
baseline case by less than 1 cm, as shown by the 31-year-
average difference displayed in black in Fig. 9b. Figure 9a
and b show that the seasonal cycles for both the MR and
baseline case closely match during the accumulation sea-
son (November to March) with differences in the range of
+1/−1 cm and a negative mean around −5 mm as shown

Figure 9. (a) Daily time series of basin-averaged posterior SWE
from WY 1985 to WY 2015. The 31-year averages are displayed in
solid lines, while the shaded regions represent the full range across
WYs. (b) The 31-year-averaged difference between the MR case
and the baseline is displayed in black, with the full range of differ-
ences shaded in grey.

by the grey shaded area and the black line respectively in
Fig. 9b. The basin-averaged mean SWEpeak is 0.374 m for the
MR case, and 0.381 m for the 90 m baseline (Fig. 9a), which
leads to a mean difference of−7.1 mm (or−1.95 %, Fig. 9b).
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Figure 10. Left panels show annual time series and right panels show scatter plots with linear regressions of basin-averaged (a) peak
SWE (SWEpeak), (b) day of peak (DOP), and (c) duration of melt (DOM) for the 90 m baseline and the MR case.

In terms of timing, DOP based on the mean seasonal cycle
fits almost perfectly within a day, with the MR case peaking
on 15 March and the baseline case on 16 March on average
(Fig. 9a). The underestimation is more pronounced during
the early ablation season (March to June), where the differ-
ence in assimilated fSCA observations is the largest (Fig. 5a),
with the entire range of WYs showing negative differences,
and a maximum of −2.1 cm (or −5.4 %) observed for the
wettest year, WY 1996. Even though the MR case is assim-
ilating slightly larger fSCA observations during the ablation
season (Fig. 5a), the coarsening of the static inputs shown
in Baldo and Margulis (2017) decreases the energy inputs,
which ultimately lowers the posterior MR SWE estimates,
and therefore explains the slight underestimation observed
during the ablation season in Fig. 9.

3.2.3 Interannual variability

The baseline and MR annual time series of SWEpeak
show close agreement in interannual variations (Fig. 10a).
The scatter plot illustrates the positive performance of the
MR case, including at both ends of the spectrum, which con-
firms that the MR case is estimating dry and wet years ac-
curately. Figure 10b and c also illustrates the similarities in
DOP and DOM interannual variability. WY 1985 shows the
largest differences because there were two similar values of
maximum SWE within 1 cm that occurred 15 days apart. The
MR case identified the first peak as SWEpeak, while the base-
line did the opposite, which does not impact the SWEpeak
estimate, but does impact both DOP and DOM. Beyond this

single year, the MR case closely represents the interannual
variability in the timing and length of accumulation and ab-
lation seasons over the reanalysis period.

3.3 Impact of the MR approach on spatial variations of
SWE uncertainty

The previous analysis focused on the impact of the MR ap-
proach on the posterior ensemble SWE median (i.e., a metric
of central tendency). However, another strength of the reanal-
ysis framework is to also provide a measure of uncertainty
via the posterior ensemble. In this section the impact of the
MR approach on the posterior ensemble SWEpeak coefficient
of variation (<CV>) is examined, where the angle brack-
ets (<>) are used to emphasize the ensemble operator.

In order to focus on the spatial distribution of the ensem-
ble posterior SWEpeak uncertainty, the 31-year-average maps
of<CV> (Fig. 11) were created by pooling<CV> for each
pixel from its mean and standard deviation over all 31 WYs
as follows (Bingham and Fry, 2010):

< σ>i =

√√√√√ 31∑
y=1

(
< σ>

y
i

)2
+

31∑
y=1

(
< µ>

y
i −< µ>i

)2
31

,

< CV>i =
< σ>i

< µ>i
, (2)

where the overbar notation denotes the 31-year average,
< σ>i is the 31-year-average ensemble SWEpeak standard
deviation for pixel i, < µ>i is the 31-year-average ensem-
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Figure 11. (a) Maps of pixel-wise 31-year-average SWEpeak coefficient of variation (< CV>) over the upper Yampa River basin for the
90 m baseline, the MR case, the percentage difference between the two approaches (MR− baseline), and the corresponding scatter plot.
(b) Distribution of < CV> relative difference with complexity metric (CM), elevation (Z), slope, forested fraction (fVEG), and SWEpeak.
Pixels with a 31-year-average SWEpeak lower than 5 cm were discarded from the analysis.

ble SWEpeak mean for the same pixel i, and < σ>yi and
< µ>

y
i are respectively the ensemble SWEpeak standard de-

viation and mean for each individual WY y. The 31-year-
average SWEpeak coefficient of variation (< CV>i) for each
pixel i was calculated as the ratio between the pixel 31-year-
average ensemble SWEpeak standard deviation and mean.

As seen in Fig. 11a, the spatial distributions of < CV>

is highly variable. For both the baseline and MR cases, the
high-elevation areas accumulating large amounts of SWE
(see Fig. 6a) show a < CV> on the order of 10–20 %,
while the lower parts of the UYRB have a < CV> higher
than 60 %. Regarding the relative difference between the MR
and baseline cases (Fig. 11a), regions accumulating the most
SWE with the lowest < CV> also have the lowest relative
difference between the MR and baseline cases (white areas
on the eastern and southern edges of the UYRB). The basin-
average difference in < CV> of 0.47 % is, however, negli-
gible.

The spatial distributions of these differences are shown in
Fig. 11b. Besides highlighting again the low magnitude of the
difference, its distribution is also in accordance with the way
the MR was designed. Most of the difference observed in
SWEpeak uncertainty is concentrated over areas of low com-
plexity, elevation, slope, heterogeneously dense forests, and,
most importantly, low SWEpeak.

4 Conclusions

This study demonstrated the performance of a new MR ter-
rain discretization approach in the context of a snow reanal-
ysis framework using the assimilation of Landsat-derived

fSCA observations. The MR approach was shown to have
an insignificant impact on the fSCA observations assimilated
and the reanalysis framework led to posterior SWE ensem-
bles similar to the high-resolution 90 m baseline. The SWE
reanalysis dataset generated with the MR approach matched
the 90 m baseline ensemble median within 1 cm on average
for peak SWE magnitude and within 1 day on average for
timing of the accumulation and melt seasons. Most of the
difference between the two approaches occurs in areas accu-
mulating less than 15 cm of SWE, while areas accumulating
more than that are estimated with a high degree of accuracy.
In addition, the MR approach also preserved the SWE uncer-
tainty, where the coefficient of variation showed differences
on the order of 0.5 %. This study has demonstrated the feasi-
bility of the MR approach in the context of a snow reanalysis
framework, where the significant decrease in computational
costs will allow much larger scale implementations of the
SWE reanalysis over full mountain ranges, while preserving
the accuracy of fine spatial resolution simulations.

Data availability. The raw data presented herein include the
ASTER DEM (available at http://asterweb.jpl.nasa.gov/; JPL,
2009), the National Land Cover Database (NLCD; available at
http://www.mrlc.gov/; Homer et al., 2007), the NASA NLDAS-2
forcing dataset (available at http://ldas.gsfc.nasa.gov/nldas/; Cos-
grove et al., 2003), and the Landsat reflectance data (available at
http://earthexplorer.usgs.gov/; Landsat, 2018). All simulations were
performed by using computational and storage services associated
with the Hoffman2 Shared Cluster provided by the UCLA Institute
for Digital Research and Education’s Research Technology Group.
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