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Abstract. Over northeastern Canada, the amount of water
stored in a snowpack, estimated by its snow water equiva-
lent (SWE) amount, is a key variable for hydrological ap-
plications. The limited number of weather stations driving
snowpack models over large and remote northern areas gen-
erates great uncertainty in SWE evolution. A data assimila-
tion (DA) scheme was developed to improve SWE estimates
by updating meteorological forcing data and snowpack states
with passive microwave (PMW) satellite observations and
without using any surface-based data. In this DA experiment,
a particle filter with a Sequential Importance Resampling
algorithm (SIR) was applied and an inflation technique of
the observation error matrix was developed to avoid ensem-
ble degeneracy. Advanced Microwave Scanning Radiometer
2 (AMSR-2) brightness temperature (TB) observations were
assimilated into a chain of models composed of the Crocus
multilayer snowpack model and radiative transfer models.
The microwave snow emission model (Dense Media Radia-
tive Transfer – Multi-Layer model, DMRT-ML), the vegeta-
tion transmissivity model (ω-τopt), and atmospheric and soil
radiative transfer models were calibrated to simulate the con-
tributions from the snowpack, the vegetation, and the soil,
respectively, at the top of the atmosphere. DA experiments
were performed for 12 stations where daily continuous SWE
measurements were acquired over 4 winters (2012–2016).
Best SWE estimates are obtained with the assimilation of
the TBs at 11, 19, and 37 GHz in vertical polarizations. The
overall SWE bias is reduced by 68 % compared to the origi-

nal SWE simulations, from 23.7 kg m−2 without assimilation
to 7.5 kg m−2 with the assimilation of the three frequencies.
The overall SWE relative percentage of error (RPE) is 14.1 %
(19 % without assimilation) for sites with a fraction of forest
cover below 75 %, which is in the range of accuracy needed
for hydrological applications. This research opens the way
for global applications to improve SWE estimates over large
and remote areas, even when vegetation contributions are up
to 50 % of the PMW signal.

1 Introduction

In Quebec, eastern Canada, snowmelt runoff has become a
major economic issue and plays a considerable role in flood
events (Perry, 2000). Good forecasting of this water supply
is essential in optimizing hydroelectric dam management.
The amount of water stored in a snowpack is estimated by
the snow water equivalent (SWE). Accurately predicting the
evolution of the SWE is challenging over large and remote
areas due to the high spatial and temporal variability of the
snowpack and to the lack of in situ data, which are time-
consuming and expensive to measure. Current operational
hydrological forecasting models used by Hydro-Québec, one
of the larger energy producers in North America, rely on the
interpolation of surface snow survey measurements (Tapsoba
et al., 2005; Brown et al., 2018). It has been shown that the
highest uncertainties in hydrological forecasting related to
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snow result from a lack of accurate estimates of the amount
of snow accumulated over a large area during the winter sea-
son (Turcotte et al., 2010). To better determine the spatial dis-
tribution of the SWE, many approaches use snowpack mod-
els to simulate the evolution of the snow cover in response to
meteorological conditions (Brun et al., 1989; Jordan, 1991;
Lehning et al., 2002). However, using these models is chal-
lenging due to the incomplete meteorological forcing data
for remote areas where weather stations are scarce (Raleigh
et al., 2015) and the snow physics simplifications used in the
models (Foster et al., 2005).

The assimilation of satellite observations is a promising
approach for reducing uncertainties related to the lack of
in situ data (Pietroniro and Leconte, 2005; Durand et al.,
2009; Touré et al., 2011; De Lannoy et al., 2012; DeChant
and Moradkhani, 2011; Andreadis and Lettenmaier, 2012;
Kwon et al., 2017). In particular, passive microwave (PMW)
satellite observations, which measure brightness tempera-
tures (“TB”), are sensitive to the volume of snow and provide
information at a good temporal and spatial coverage (Hal-
likainen, 1984; Chang et al., 1996; Tedesco et al., 2004). It
has been shown that the assimilation of PMW satellite data
into snow models adds valuable information to compensate
for initialization errors and improve SWE simulated by snow
models (Sun et al., 2004). These approaches appear to be
very promising to evaluate and predict water resources but
are still under development for further use in operational hy-
drological applications (Xu et al., 2014). Larue et al. (2017)
showed that the GlobSnow-2 SWE product (Takala et al.,
2011), which assimilates both TB satellite data and local
snow depth observations, was not accurate enough for hy-
drological modeling, mainly because of its dependence on in
situ data in remote areas.

The main difficulty in the assimilation of PMW satellite
observations in boreal forest areas is the quantification of
all the contributions that affect the measured signal. PMW
satellite observations have a low spatial resolution (∼ 10×
10 km2) and satellite sensors measure many contributions
in addition to the PMW emission from the volume of the
snowpack (vegetation canopy, ice crust, frozen/unfrozen soil,
lakes, moisture in the snow, topography, etc.) (Kelly et al.,
2003; Koenig and Forster, 2004). In boreal areas, the PMW
emission from the forest canopy within a pixel can contribute
up to half of the PMW signal measured by satellite sensors
(Roy et al., 2012, 2016). This contribution does not only de-
pend on the fraction of forest cover, but also on the biomass
(liquid water content, LWC), the vegetation volume, and the
canopy structure (stem, leaf, trunk) (Franklin, 1987). To ad-
just snowpack model simulations, several studies suggest us-
ing radiative transfer models, coupled to a snowpack model,
to take into account the different contributions to the PMW
signal at the top of the atmosphere and to directly assimilate
PMW satellite observations (Brucker et al., 2011; Durand
et al., 2011; Langlois et al., 2012; Roy et al., 2016). How-
ever, the assimilation of PMW must be used with care, and

a good understanding of the interactions between the prop-
erties and microwave emission of the snowpack is crucial to
avoid degradation of the SWE estimates. For instance, the as-
similation of passive microwave in wet snow conditions can
introduce large uncertainties since the presence of liquid wa-
ter in the snowpack increases TBs, whereas increases in snow
grain size decrease the brightness temperature independent
of any change in SWE (Klehmet et al., 2013). The assimila-
tion of PMW thus can help to adjust the modeled snowpack
states during the winter, but it cannot be used at the beginning
and at the end of the season (snowmelt periods).

This paper aims at developing and validating the assimila-
tion of PMW satellite observations for SWE improvements
over Quebec by adjusting meteorological forcing data and
simulated snowpack states without using any surface-based
observations. Advanced Microwave Scanning Radiometer 2
(AMSR-2) satellite sensors provide the TB observations at
11, 19, and 37 GHz. The data assimilation scheme (DA) is
a Sequential Importance Resampling particle filter (referred
to as PF-SIR) (Van Leeuwen, 2009, 2014). The PMW emis-
sion from the snowpack is computed by using the Crocus
snowpack model (Brun et al., 1989) coupled to a microwave
snow emission model, the Dense Media Radiative Transfer
– Multi-Layer model (DMRT-ML) (Picard et al., 2013). This
scheme is further referred as the Crocus/DMRT-ML chain
and was previously calibrated over Quebec (Larue et al.,
2018). As a first step, the previous study of Larue et al. (2018)
tested the feasibility of the DA scheme in a controlled en-
vironment by using synthetic TBsnow observations, obtained
by running the Crocus/DMRT-ML chain with perturbed me-
teorological forcings. The results showed SWE root mean
square error (RMSE) reduced by 82 % with the multivariate
assimilation of TBs at 37, 19, and 11 GHz in vertical polar-
izations, compared to SWE RMSE without assimilation. In
the present study, the same DA setup as described in Larue et
al. (2018) was implemented, except that real satellite obser-
vations were used. For the assimilation of satellite data, the
challenge is to accurately simulate the TB measured at the
top of the atmosphere (TB TOA) by including contributions
other than snow (i.e., soil, vegetation, and atmosphere). The
vegetation transmissivity model (ω-τopt), the Wegmüller and
Mätzler (1999) soil emission model, and the Liebe (1989)
atmospheric emission model were added and calibrated to
simulate the PMW emission of satellite observations (Roy et
al., 2016).

The specific objectives of this paper were thus to (1) cal-
ibrate the soil and the vegetation radiative transfer mod-
els coupled with the Crocus/DMRT-ML chain to simulate
TB TOA over several years (2012 to 2016); and (2) evaluate
the performance of the assimilation of PMW data in Crocus
using SWE measurements obtained over 12 reference nivo-
metric stations from 2012 to 2016 (43 winters). This paper
opens the way to a functional spatialized method for improv-
ing SWE estimates over large and remote areas without using
surface-based data.

Hydrol. Earth Syst. Sci., 22, 5711–5734, 2018 www.hydrol-earth-syst-sci.net/22/5711/2018/



F. Larue et al.: Assimilation of AMSR-2 satellite observations for SWE estimates 5713

Figure 1. SWE measurement stations with the “GMON” SWE sen-
sors (yellow squares; see Table 1 for details) in the province of Que-
bec. The red circles are the snow depth sensors (“SR50”) used by
Hydro-Québec for hydrological purposes, overlaid on a relief map
(from blue – low – to brown – higher altitudes) and watershed con-
tours (black lines).

2 General framework

2.1 Study area and evaluation database

Figure 1 shows the region of interest located in the province
of Quebec, eastern Canada (46–56◦ N). This area includes
the La Grande (LG) watershed, in north-central Quebec (be-
low 56◦ N), and the Outaouais and Saint-Maurice water-
sheds, in southwestern and south-central Quebec, respec-
tively (46–48◦ N), which are equipped with SWE and snow
depth sensors for hydrological purposes. Quebec is charac-
terized by different ecoclimatic conditions, a high percentage
of forested area (dense boreal forests and mixed coniferous
and deciduous), and a flat topography.

To evaluate SWE simulations, SWE measurements were
acquired from 2012 to 2016 by 12 nivometric stations (see
numbered stations on Fig. 1), located through a north–south
gradient in Quebec. This SWE database (coordinates, sen-
sors, operating period, etc.) was fully described in Larue et
al. (2018). Table 1 describes the main station characteristics,
including the mean maximum SWE values over operating pe-

riods. Daily SWE measurements were derived from gamma
ray SWE sensors (Campbell Scientific CS725, “GMON”)
with an average error of +5 % (Choquette et al., 2008). Two
stations (nos. 5 and 12) were located in the subarctic ecocli-
matic zone (53–54◦ N, James Bay area), eight in the conif-
erous boreal zone (46–48◦ N), and two (Nos. 4 and 11) in
a mixed forest area in southern Quebec (45.3◦ N). Sensors
were calibrated by Hydro-Québec from numerous field mea-
surement campaigns during the first year following their in-
stallation.

A total of 43 winters were studied (Table 1). These win-
ters were all very different. Winter 2012–2013 had the low-
est snow accumulation in 10 years (165 cm), whereas winter
2013–2014 was very snowy (379 cm) compared to the av-
erage snow accumulation (217 cm). Winter 2014–2015 was
unusually cold (3◦ below average temperatures), and winter
2015–2016 was the warmest in 60 years (statistics can be
found at http://www.mddep.gouv.qc.ca, last access: 18 Octo-
ber 2018).

2.2 General setup

Figure 2 shows the general methodology developed to simu-
late and to assimilate AMSR-2 satellite observations into the
snowpack model.

To simulate the signal measured by satellite sensors at
the top of the atmosphere (TB TOA), a chain of models was
implemented and calibrated over eastern Canada. The 3-
hourly continuous atmospheric forcing database provided
by the Global Environmental Multiscale weather prediction
model (referred to as “GEM”; Coté et al., 1998) was used
to drive the multilayer Crocus snowpack model (described
in Sect. 3.2.1). Each GEM grid cell has a spatial resolu-
tion of 10× 10 km2, which is on the same order as the ob-
servation scale. The Crocus model updates the snowpack
every 15 min by interpolating meteorological inputs, but in
this study we used daily Crocus outputs (SWE, snow depth,
density, etc.) computed at 14:00 local time (19:00 UTC), in
agreement with the AMSR-2 pass (Sect. 3.1.1). The DMRT-
ML radiative transfer model (Sect. 3.2.1), driven with Crocus
outputs, was used to simulate the PMW emission from the
modeled snowpack (referred to as “TBsnow”) at 11, 19, and
37 GHz, at vertical and horizontal polarizations (“V-pol” and
“H-pol”, respectively). The contribution of the atmosphere
was estimated by using an atmospheric model (Liebe, 1989)
driven with the total precipitable water integrated over 28 at-
mospheric layers and provided by GEM (Sect. 3.3). The sur-
face emissivity for a rough soil was deduced by calibrating
the Wegmüller and Mätzler (1999) soil model, and vegeta-
tion contributions were quantified with the (ω-τopt) radiative
transfer model (Sect. 3.3). To take canopy emissivity vari-
ability into account, the inversions of the (ω, τopt) parame-
ters were linked to the 4-day leaf area index (LAI) product
from MODIS data (1× 1 km2), averaged for each AMSR-2
grid cell (10× 10 km2) (Sect. 3.3). These inversions of soil

www.hydrol-earth-syst-sci.net/22/5711/2018/ Hydrol. Earth Syst. Sci., 22, 5711–5734, 2018

http://www.mddep.gouv.qc.ca


5714 F. Larue et al.: Assimilation of AMSR-2 satellite observations for SWE estimates

Figure 2. Methodological scheme describing the DA scheme in the chain of models for SWE retrievals by updating perturbed atmospheric
forcing data and snowpack states (“Ft” and “xt”, respectively; see Sect. 3.4).

Table 1. Characteristics of the nivometric SWE stations: site number, latitude (Lat.), longitude (Long.) and elevation (El., a.s.l. in meters)
of stations. Dist. GEM–station is the distance between the station and the center of the associated GEM grid cell (with GEM, Global
Environmental Multiscale weather prediction model; Sect. 2.2). The time period of observations, average of the maximum observed data
over the studied period, and data provider are given (HQ: Hydro-Québec, U. Sherb: University of Sherbrooke, U. Laval: University of Laval).

Sites Lat. Long. El. Dist. GEM– Time period Mean maximum Data
no. station (km) SWE value (kg m−2) provider

1 48.3 −74.1 100 3.4 2012–2016 272 HQ
2 48.9 −74.2 100 4.9 2012–2016 277 HQ
3 47.9 −72.9 100 4.7 2012–2016 252 HQ
4 46.6 −72.8 136 4.2 2012–2016 253 HQ
5 53.7 −78.2 103 4.2 2012–2016 213 HQ
6 46.7 −76.0 229 2.3 2012–2016 161 HQ
7 47.0 −74.3 469 3.3 2012–2016 235 HQ
8 46.9 −76.4 330 1.8 2012–2016 212 HQ
9 46.9 −73.7 372 1.9 2012–2016 180 HQ
10 47.7 −73.6 398 3.5 2012–2016 202 HQ
11 47.3 −71.2 669 2.6 2015–2016 396 U. Laval
12 53.4 −75.0 389 4.0 2014–2016 211 U. Sherb

Mean 3.4 2012–2016 237

and vegetation parameters were performed over the summer
period to avoid bias due to the presence of the snowpack.

The brightness temperatures (TBs) measured by AMSR-
2 satellite sensors were assimilated in a DA scheme (see
Sect. 3.4). Raleigh et al. (2015) have shown that meteorologi-
cal forcing data are the major sources of errors in snow model
simulations. Hence, we assume here that the uncertainties of
GEM meteorological forcing data are the only sources of er-
rors in the TB modeling. It is very difficult to quantify mod-
eling errors due to physical simplifications inside the model
due to the spatial scale of the observations. Further studies
are needed to estimate these errors over the study area and

to take them into account in the DA experiment. The ob-
servation error was assumed to be known and the modeling
errors were estimated by perturbing selected meteorological
forcing variables. An ensemble of 150 TB simulations was
obtained and the distribution of these prior estimates repre-
sents the modeling error in response to GEM uncertainties. A
particle filter with an SIR algorithm was used to update the
simulated TB TOA over the winter by adjusting meteorolog-
ical forcing data and snowpack states (posterior estimates)
when an observation was available (Fig. 2).

Several configurations of the DA scheme were tested over
three evaluation sites representing different environmental
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conditions. The best configuration was evaluated over the
validation reference sites from 2012 to 2016 (for 43 winters;
Sect. 3.4).

Comparing data simulated at the station against model
cells involves uncertainty due to spatial variations of the
snowpack and land cover. This is a well-known problem for
model validation studies and we assume here that the high
number of sites (12 SWE stations or 43 snowpack simula-
tions) provides a useful assessment of simulations. It is also
known that the spatial localization of measurements can lead
to some biases (Molotch and Bales, 2005). To diversify its
measurements, Hydro-Québec has installed two SWE sen-
sors in the forest, and not in a clearing as is the usual practice
for ease of maintenance.

3 Materials and methods

3.1 Data

3.1.1 AMSR-2 observations

AMSR-2 satellite sensors (Imaoka et al., 2010) provide
PMW satellite observations on the 11 (10.7), 19, and 37 GHz
channels at V-pol and H-pol. Images produced by AMSR-
2 are freely available on the Japan Aerospace Exploration
Agency (JAXA) website. This study used the Level 3 Ver-
sion 2 product, which provides daily TBs normalized on a
North Hemisphere polar stereographic projection with a spa-
tial resolution of 10×10 km2 (see https://gportal.jaxa.jp/, last
access: 18 October 2018, for the specifications of the projec-
tion), from 1 August 2012 to 1 July 2016. TBs from AMSR-
2 are computed twice a day: around 13:30 local time, or
17:30 UTC (ascending pass), and around 01:30 local time, or
05:30 UTC (descending pass). Only the ascending pass was
used in this study since the snowpack was computed once a
day at 14:00 (local time). The use of the ascending pass al-
lowed the nighttime refreezing process to be avoided. To re-
duce observation errors due to the daytime melting process,
the approach was evaluated during the dry snow period, from
December to mid-March. This aspect is further discussed in
Sect. 5.1.

3.1.2 LAI MODIS data

The 4-day LAI product provided by MODIS TERRA data
(MOD15A3; Myneni et al., 2002) was used to characterize
the vegetation contributions to the total emissivity (Fig. 2).
The product has a spatial resolution of 1×1 km2 and was re-
sampled on the AMSR-2 grid of 10× 10 km2 by averaging
all LAI data within each AMSR-2 grid cell (referred to as
“LAIAMSR−2”). For each site, Table 2 describes the summer
and winter average values (“LAIsummer” and “LAIwinter”) cal-
culated using LAIAMSR-2 from 1 July to 31 August and from
1 January to 1 March over the 2012 to 2016 time period, re-
spectively (Roy et al., 2014).

3.1.3 Land cover map of Canada

The land cover map of Canada Circa 2000 (available at http://
www.geobase.ca/geobase/en/data/landcover/index.html, last
access: 18 October 2018) (referred to as “LCC”) was used
to extract the fraction of forest cover (“fcover”) within each
AMSR-2 grid cell. This product provides the percentage of
coniferous, herbaceous, deciduous, and water areas with a
spatial resolution of 1×1 km2 and was resampled to generate
average values within each 10× 10 km2 AMSR-2 grid cell.
Table 2 shows the fractions of forest cover provided by the
LCC and resampled over AMSR-2 grid cells for each site. As
expected, Sites 5 and 12, which are located in the subarctic
area (Fig. 1), have a low fcover (below 32 %). The other sites
in boreal areas have an fcover of up to 60 %. Sites 6 and 9
are in particularly densely forested areas, with a high fcover
(up to 80 %). The measured TB signal can be significantly
affected by the forest and the signature of the underlying
snow is attenuated during the winter period in such densely
forested areas. The sensitivity of the DA scheme to the fcover
was analyzed for sites with an fcover above and below 75 %
(Sect. 4.2.1).

Moreover, the presence of lakes can affect the PMW sig-
nal. Lake ice (when snow cover is absent) increases the PMW
signal at high frequencies, and at low frequencies, the con-
tribution of water bodies acts as a reflector and the emis-
sivity remains low (De Sève et al., 1999). With snow cover
on lakes, the different snow states on the lakes compared to
snow cover under forest also modified the emitted signal (see
Derksen et al., 2012, 2014). Nevertheless, we made the hy-
pothesis that these impacts were negligible over our studied
sites, which have lake water fractions under 7 % within their
AMSR-2 grid cells (Table 2) (masks are generally applied for
water fractions of up to 20 %; Takala et al., 2011).

3.2 Simulation of the PMW emission from the
snowpack

3.2.1 Coupling of Crocus and DMRT-ML

The chain of models developed to simulate TBsnow is identical
to that of Larue et al. (2018), so only a brief description of
the approach is detailed here (see Fig. 2).

The Crocus snowpack evolution model (Brun et al., 1989,
1992; Vionnet et al., 2012) is coupled with the ISBA land
surface model within the SURFEX interface (Surface Exter-
nalisée, in French) (Decharme et al., 2011; Masson, 2013).
SURFEX/ISBA/Crocus (hereafter referred to as “Crocus”)
computes the evolution of the physical properties of the
snowpack and the underlying ground (soil). In particular, the
snow layers are modeled with a set of variables represent-
ing the morphological properties of snow grains (shape and
size), including the specific surface area (SSA), which is one
of the most sensitive variables for snowpack emission simu-
lations. The snow microstructure evolves in time according
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Table 2. LAIsummer is the mean of the LAI provided by MODIS for the summer period (1 July to 31 August) and averaged over the AMSR-2
grid cell (10× 10 km2), LAIwinter is the mean LAI for the winter period (1 January to 1 March). fcover is the fraction of forest cover within
the AMSR-2 grid cell extracted from the land cover map Circa 2000 (see Sect. 3.1.3). The percentages of coniferous, deciduous, and water
areas are the percentages distributed within the fcover. Sites are ranked in the increasing order of fcover. The three highlighted sites (gray
cells) are the sites selected to test the configuration of the DA scheme in Sect. 3.4.3.

Site LAIsummer LAIwinter fcover Coniferous Deciduous Water
no. (%) (%) (%) (%)

No. 12 1.07 0.04 24.2 77.6 14.4 4.9
No. 5 1.07 0.08 31.5 66.5 25.9 7.0
No. 4 2.63 0.06 47.6 8.5 70.3 1.4
No. 7 3.13 0.28 59.3 49.9 45.8 4.0
No. 10 2.47 0.17 61.8 67.3 30.1 2.4
No. 1 2.96 0.28 63.7 41.6 55.8 2.2
No. 3 3.69 0.25 65.5 44.6 52.1 3.3
No. 2 1.99 0.12 66.6 79.4 16.6 3.5
No. 8 4.11 0.22 72.1 15.5 80.2 4.3
No. 11 2.43 0.19 74.5 52.5 46.6 0.5
No. 6 2.82 0.11 81.5 18.1 75.3 6.5
No. 9 3.65 0.43 84.0 60.9 36.1 2.9

to semi-empirical laws (Vionnet et al., 2012). Crocus is the
only model able to simulate the SSA as a prognostic variable
(rather than as a diagnostic variable) by using the formula-
tions of Carmagnola et al. (2014). The number of snow lay-
ers is dynamic and evolves with physical properties updated
at each time step. The maximum number of simulated snow
layers was fixed at 15 in this study as a compromise between
accuracy and computing time (not shown). Configuration and
initialization of the Crocus snowpack model are the same as
described in Larue et al. (2018).
TB snow was computed by driving the radiative transfer

model DMRT-ML with Crocus outputs. The DMRT-ML
model is well detailed in the literature (Tsang et al., 1992;
Tsang and Kong, 2001; Picard et al., 2013, Royer et al.,
2017), so only the calibration is described here. Snow grain
size, and more generally snow microstructure, are factors that
most affect the accuracy of simulated PMW emission from a
snowpack as they determine the strength of scattering mech-
anisms in the snowpack at the high frequencies used (Roy et
al., 2013; Leppänen et al., 2015; Sandells et al., 2017, Larue
et al., 2018). In DMRT-ML, snow grains are represented as
spheres of ice with variable interactions between them. The
potential formation of clusters of grains, which increases the
effective snow grain size, is not taken into account, generat-
ing uncertainties (Picard et al., 2013). Several studies have
shown that DMRT-ML needed an effective scaling factor to
represent the stickiness between snow grains and to correct
the snow microstructure representation (Brucker et al., 2011;
Roy et al., 2013; Royer et al., 2017). Larue et al. (2018) have
shown that a mean snow stickiness parameter (τsnow) of 0.17
was optimal to simulate TBsnow over boreal snow in Quebec
(RMSE of 27 K) when DMRT-ML is driven by Crocus snow
profiles. This constant τsnow value was thus used in the im-

plemented chain of models (Sect. 3.4.3; Experiment A and
B). Nevertheless, this effective parameter could change with
snow type (Royer et al., 2017; Larue et al., 2018). Hence, the
quality of the DA scheme with the use of the τsnow parameter
as a free variable was studied (Sect. 3.4.3, Experiment C).

3.2.2 Ice lens detection algorithm

Since ice lenses (“ILs”) within a snowpack significantly re-
duce TB mainly at H-pol (Montpetit et al., 2013; Roy et al.,
2016), ice layers must be detected and added in the simu-
lated Crocus snow profiles to improve TBsnow simulations.
TB in H-pol are much more attenuated by the presence of
an IL than TB in V-pol, since the coefficient of reflectivity
is stronger in H-pol (Montpetit et al., 2013). Therefore, by
following the daily evolution of the PMW emission from the
snowpack with AMSR-2 observations, the formation of an IL
can be detected by using a threshold on the polarization ratio
(PR) defined by Cavalieri et al. (1984) for a given frequency
(ν):

PR(ν)=
TB (ν, V-pol)− TB (ν, H-pol)
TB (ν, V-pol)+ TB (ν, H-pol)

. (1)

In this study, an IL was added on the top of the simu-
lated snowpack if the AMSR-2 PR(11) was above 0.06 (Roy,
2014). This IL was represented as a 1 cm layer with a den-
sity of 900 kg m−3 and with the snow grain radius set to zero
(Roy et al., 2016). The difficulty is to know how to evolve
this IL in the snowpack. The Crocus snowpack model has not
yet been adapted to integrate the formation of ILs and evolve
them in a coherent way (Quéno et al., 2016). Nevertheless, it
was shown in Larue et al. (2018) (from field measurements)
that an IL of 1 cm located at 4 cm from the surface of the
simulated snowpack minimized the bias of DMRT-ML sim-
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ulations due to the presence of an IL (regardless of its real
location in the snow profile). Hence, the IL first added at the
surface of the snowpack was moved to 4 cm from the sur-
face as soon as snowfall was detected with GEM precipita-
tion data or, if not, after 5 days to take into account the snow-
pack transformations (percolations, sublimations, etc.). The
maximum number of detected IL was fixed at two. When a
second IL was detected (IL2), IL2 was added at the surface
while the first detected IL (IL1) was left at 4 cm. After the
next snowfall (or after 5 days otherwise), IL1 was moved to
8 cm from the surface and IL2 to 4 cm. For instance, during
winter 2014–2015, one IL was detected at Sites 1 and 12 (22
and 15 December 2014). At Site 9, two ILs were detected:
one on 10 December 2014 and another on 1 January 2015.

This is a simplified way to take into account the presence
of ILs, and further studies are needed to dynamically evolve
these ILs in the snowpack and to model the impact on the
neighboring layers. This work is particularly complex, and
no solution has yet been found (D’Ambroise et al., 2017), in
particular because measurements are difficult to take.

3.3 Simulation of the PMW emission at the top of the
atmosphere

The PMW brightness temperature (TB,TOA) emitted at the
scale of the AMSR-2 product can be written for each grid
cell as

TB,TOA = fseason · TB forest+ (1− fseason)TB open+ TB atm↑, (2)

where TB atm↑ is the ascending atmospheric contribution, es-
timated using the Liebe (1989) model implemented in the
Helsinki University of Technology (HUT) snow emission
model (Pulliainen et al., 1999). The model considers radia-
tive transfer through the atmospheric layers and provides
TB atm↑ values at the satellite sensor level (Liebe, 1989) ac-
cording to the precipitable water integrated for all atmo-
spheric layers provided by GEM. fseason is the seasonal (win-
ter or summer) fraction of forest cover in the AMSR-2 grid
cell, TB forest is the PMW emission with vegetation contribu-
tions, and TB open is the PMW emission without vegetation
contributions.

The fcover values provided by the LCC map were con-
stants, whereas these fractions of forest evolve with the sea-
son. To take into account the temporal evolution of the for-
est cover for the winter and summer periods (defined as the
time period with and without snow, respectively) and to esti-
mate the fseason used in Eq. (2), fcover was linked respectively
to LAIwinter and to LAIsummer by comparing the fcover map
to the two resampled maps (both resampled on the AMSR-
2 projection) throughout Quebec (not shown). The seasonal
fractions of fcover were related to seasonal LAIs with Eqs. (3)

and (4) for summer and winter, respectively:

fsummer = 0.9 · (1− exp(−2.7 ·LAIsummer))
3.2 (3)

fwinter = 0.9 · (1− exp(−16.0 ·LAIwinter))
0.3. (4)

The linear correlation between the fsummer values esti-
mated from the LCC and the fsummer values fitted to LAI
data with the Eq. (3) had a coefficient correlation R equal to
0.94 and a p value below 0.01. For the LCC fwinter values
and the fwinter values fitted to the LAI data (see Eq. 4), the
coefficient correlation R was equal to 0.95 and the p value
was below 0.01.

3.3.1 Vegetation contributions

The PMW emission from the vegetation varies with the forest
characteristics, such as the biomass, the structure of the vege-
tation, or the liquid water content of the canopy. In this study,
the vegetation contribution was modeled with the simplified
radiative transfer model (ω-τopt) (Mo et al., 1982), in which
the parameters should be estimated by fitting the simulated
TBs with observations (Grant et al., 2008; Roy et al., 2012).
The ω is the single scattering factor of the albedo. Given the
incidence angle θ = 55◦ of AMSR-2 satellite sensors, the op-
tical thickness of the vegetation τopt was a function of the
forest transmissivity (γ ) such that γ = exp(−τopt/cosθ ). The
forest transmissivity varies with the frequency (ν) used and
is further called γν . At the satellite sensor, the expression of
TB TOA in boreal areas was described by Eq. (2), which can
be detailed with Eqs. (5) and (6) (see Roy et al., 2012):

TB forest =
[
γν · esurf · Tsurf+ (1−ω) · (1− γν) · Tveg

+ γν · (1− esurf) · (1−ω) · (1− γν) · Tveg

+ (1− esurf) · γν
2
· TB atm↓+ (1− γν) ·ω

·TB atm↓
]
γatm (5)

TB open =
[
esurf · Tsurf+ (1− esurf) · TB atm↓

]
γatm, (6)

where Tsurf is the surface temperature, esurf is the surface
emissivity under the canopy (with or without snow) for a
given frequency, and Tveg is the temperature of the vegeta-
tion (taken as equal to the air temperature at 2 m, provided by
GEM). TB atm↓ is the descending atmospheric contributions
and γatm is the transmittance of the atmosphere. These atmo-
spheric contributions were modeled using the Liebe (1989)
model, as were the TB atm↑ values. Thus, for snow-free con-
ditions, only forest (ω, γν) and soil (esurf) parameters were
unknown and needed to be adjusted for each site by fitting
the model output to the observations.

3.3.2 Soil contributions

To deduce the surface emissivity for rough soil (esurf, p for a
given polarization p), the Wegmüller and Mätzler (1999) soil
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model was used to calculate the surface reflectivity of rough
soil under the canopy (rsurf, p for a given polarization p), with
or without snow by using Eqs. (7) and (8):

rsurf,H = 1− esurf,H = 0Fresnel,H · exp(−σ
√
α·cosθ

s ) (7)

rsurf,V = 1− esurf,V = rsurf,Hcosθβν , (8)

where rsurf, p mainly depends on the surface roughness and
Fresnel coefficients (0Fresnel,H). In Eq. (7), the simplified pa-
rameter σs = kσ was used, where k is the wave number and
σ the standard deviation of the surface height (in meters); α
is a constant parameter fixed to −0.1 (Wegmüller and Mät-
zler (1999). For frozen soil, parameters derived from Mont-
petit et al. (2018) were used (see Sect. 4.1). For thawed soil,
0Fresnel,H was estimated from the dielectric constant calcu-
lated with the Dobson (1985) equations according to the soil
moisture and soil temperature. These variables were com-
puted with the Crocus model, coupled to the ISBA land sur-
face model, and extracted daily (at 14:00, as the other vari-
ables). The soil reflectivity in vertical polarization also de-
pends on a parameter βν (Montpetit et al., 2018), which
describes the polarization of the signal and is frequency-
dependent. Note that we will often use the “ν” subscript here-
after to denote quantities that are dependent on frequency.

Hence, the soil parameter esurf was linked to the set of val-
ues (σs, βν) and mainly evolved with soil moisture and soil
temperature.

3.3.3 Inversions of vegetation and soil parameters

The inversion of forest (ω, γν) and soil (σs, βν) parameters
was carried out in summer to avoid the bias due to the pres-
ence of a snowpack. Forest parameters (ω, γν) depend on the
forest characteristics, such as the biomass and the structure
of the canopy at each site. They also depend on LAI, which
allows the season forest emission cycle to be accounted for.
Using the vegetation water content equation defined by Pam-
paloni and Paloscia (1986), the parameter γν was related to
the 4-day LAI for a given frequency ν with the Eq. (9):

γν = e
−b·ka ·

(
exp

(
−

LAI
3

)
−1
)
/cosθ

, (9)

where a and b are two constants to calibrate. To reduce the
number of unknown variables, Eq. (9) was simplified to use
only one constant ην such as ην = e−b·k

a
.

The vegetation and soil parameters were inverted by
minimizing the difference between TB TOA simulations and
TB TOA measured with AMSR-2 sensors at 11, 19, and
37 GHz in vertical polarizations. We used the same approach
developed by Roy et al. (2014) since it was well adapted for
PMW emission in boreal areas: the two frequency-dependent
parameters (ην,βν) and two frequency-invariant parameters
(ω, σs) were inverted with a two-stage calibration by per-
muting all possible combinations of the two frequency in-
variant parameters. Specifically, ω values varied from 0.02

Figure 3. Overall TB RMSE (at 11, 19, and 37 GHz, for the 12 sites
and for the summer period) between the simulated and measured
TB TOA as a function of the values of ω. A σs value at 0.2 cm gives
the best results but TB RMSE is not very sensitive to this variable.
The parameters βν and ην were optimized for each (ω, σs) couple
according to the frequency used.

to 0.16 in steps of 0.01, and σs varied from 0.01 to 1.1 in
steps of 0.05. This yields a total of 300 possible combinations
of the frequency invariant parameters. Then, for each possi-
ble combination of the frequency-invariant parameters, a cal-
ibration of the frequency-dependent parameters, ην and βν ,
was performed for each frequency. A total of 900 frequency-
dependent calibrations were thus computed. Finally, for each
possible combination of the frequency-invariant parameters,
the total post-calibration TB RMSE across all three frequen-
cies was computed. The combination of frequency-invariant
parameters resulting in the lowest TB RMSE was chosen.
TB TOA were simulated from 2012 to 2016. The inversion

was not very sensitive to σs (not shown) and Fig. 3 shows the
optimal overall TB TOA RMSE between simulated and mea-
sured TB TOA for the 12 sites and for the summer period ac-
cording to ω values. Over the summer period, a ω value at
0.07 and a σs value at 0.2 cm gave best results for TB TOA
simulations, with a minimum overall RMSE equal to 9.0 K.
These parameters were previously optimized over the same
study area by Montpetit et al. (2018). A value of ω = 0.07
was coherent with the literature for dense boreal forest areas
(Pellarin et al., 2006; Meissner and Wentz, 2010; Roy et al.,
2012). For this optimal (ω, σs) set of values, the mean opti-
mal values of the ην and βν factors were estimated, by con-
sidering the soil contribution constant if the soil was frozen.

3.4 Data assimilation setup

The DA setup is the same as the one developed in Larue et
al. (2018) except that we added an inflation technique of the
covariance matrix of observation errors (R matrix) to avoid
ensemble degeneracy, i.e., when an ensemble collapses to a
unique particle (Arulampalam et al., 2002).
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3.4.1 DA framework

The DA scheme is a particle filter with a Sequential Im-
portance Resampling algorithm (PF-SIR) that is well doc-
umented in Van Leeuwen (2009, 2014) and Gordon et
al. (1993) and relatively easy to implement with a snowpack
model (Dechant and Moradkhani, 2011; De Lannoy et al.,
2012; Charrois et al., 2016; Larue et al., 2018). The PF-SIR
represents the probability density function (pdf) of the model
state with an ensemble of states (called particles), which is
updated when an observation is available. An ensemble ap-
proach was preferred because of the nonlinearity of the sys-
tem. Moreover, the particle filter approach can cope with the
variable number of state variables resulting from the chang-
ing number of snow layers in Crocus. The created ensemble
represents uncertainty in SWE and in TB simulations due to
the uncertainties of meteorological inputs (Fig. 2).

Assuming that the meteorological forcing data were the
only source of uncertainties, the ensemble of TBs was cre-
ated by running the chain of models described in Fig. 2 with
an ensemble of perturbed inputs. The assimilation was per-
formed daily (at 13:00) and the ensemble was composed of
150 members, which was found to be an adequate size (Larue
et al., 2018). The daily ensemble of meteorological forcing
data was created by perturbing selected GEM data (air tem-
perature, wind speed, precipitation, and short- and long-wave
radiation) with Gaussian noise according to their respective
uncertainties (estimated in Larue et al., 2018). Meteorolog-
ical forcing perturbations were propagated in time follow-
ing a first-order autoregressive process to simulate their re-
alistic temporal variations (Charrois et al., 2016). Precipita-
tion, wind speed, and short-wave radiation (“SWdown”) were
perturbed by a multiplicative factor centered at 1. Perturba-
tion boundaries were fixed at −0.9 and 0.9. The air tem-
perature was perturbed by an additive factor, with bound-
aries fixed at −3 and +3 K. Perturbed long-wave radiation
(“LWdown”) was estimated with perturbed Tair from a linear
regression estimated in Larue et al. (2018). In order to main-
tain physical consistency in the simulations, SWdown was
limited to 200 W m−2 when there was precipitation (presence
of clouds) (Charrois et al., 2016).

The observation error standard deviation associated with
AMSR-2 observations was assumed to be 2 K (Durand and
Margulis, 2006, 2007). Note that in reality it was probably
larger since it represents all mismatches between observa-
tions and simulations obtained if the model was run with
“correct” inputs. This observation error cannot be easily esti-
mated (low spatial resolution, representativeness, etc.), but it
is only a sort of initial value here, since we used a covariance
inflation to adjust it.

DA experiments were applied between 1 November and
1 May. To avoid wet snow conditions, which increase the
emissivity of the snowpack, whereas the SWE does not
change, the DA was not performed when liquid water con-
tent was observed in the modeled snowpack. This variable

was computed by Crocus, driven with original meteorolog-
ical forcing data. SWE values were evaluated over both the
dry snow period (from 1 December to 15 March) and the
whole winter (when a snowpack was detected).

3.4.2 DA and inflation technique

The snowpack prior state xt at time t is computed with the
updated past state of snowpack simulations at time t−1 (pos-
terior state xt−1) and the prior perturbed meteorological forc-
ing data Ft from time t − 1 to t (see Fig. 2). The predicted
observation is computed with

yit = h
(
xit

)
, (10)

where yit is TB TOA predicted from particle i (i = 0 . . .N ,
with N the ensemble size). The observation operator h is the
τsnow-calibrated DMRT-ML model and the calibrated radia-
tive transfer models estimating soil, atmosphere, and vegeta-
tion contributions. In the analysis step, the new posterior dis-
tribution is updated by weighting each particle xit according
to the distance between yit and the AMSR-2 TB observation
(with the weight weit ). With the SIR algorithm, the pdf is
resampled by duplicating particles with high weights (i.e.,
close to observations) and dropping with negligible weights
(far from observations). With Arakawa’s procedure used here
for ensemble resampling (Arakawa, 1996; same as Charrois
et al., 2016), a particle is definitely selected if its weight
is higher than or equal to the inverse of the ensemble size
(weit>1/N , with N = 150).

Ensemble resampling considerably reduces the risk of de-
generacy but does not eliminate it. Degeneracy starts when
only a few particles have significant weights. These particles
are selected many times, leading to a loss of diversity of the
posterior ensemble. After several assimilation steps, the en-
semble quickly reduces to a single particle. Ensemble degen-
eracy can be detected when the number of selected particles
(those with high weights) is below an effective limit number
Nkeep, here fixed at 25 as a compromise between the quality
of the DA scheme and the size of the ensemble (not shown).
In this study, we developed a new technique to avoid a de-
generacy problem, which consists in the online adjustment
of the R matrix (i.e., observation standard deviation squared
times the identity matrix) such that the weight of the 25th
selected particle (wekeep) is at least equal to 1/N . The ratio-
nale here is that, because the weights are nonlinear functions
of the observation error covariance matrix, a larger matrix
tends to flatten the distribution of weights and favors the se-
lection of more particles. This adjustment is performed with
an inflation of the initial matrix, and the detailed algorithm is
provided in Appendix A.

Ensemble degeneracy is often caused by extreme precipi-
tation events resulting in very high TB values difficult to rep-
resent with the model. The online adjustment technique miti-
gates the consequences of this model deficiency on the snow
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Table 3. Experiment setup information. Exp. is the experiment identifier (see text). TBs are in V-pol.

Exp. State Sites Time period Assimilated Acronyms
variables frequencies

A

Tair, wind,
precipitation 1, 9, 12, 1 November 2014 1TB 19-37 DA1_DTB19-37
SWdown, one winter to 1 May 2015 1TB 19-37 and 1TB 11-19 DA2_DTB19-37, DTB11-19
LWdown TB 11, TB 19, TB 37 DA3_TB_11,19,37

B

Tair, wind,
precipitation, 12 sites, From 1 November TB 11, TB 19, TB 37 DA_b_TB_11,19,37
SWdown, 43 winter to 1 May, winters
LWdown simulations 2012 to 2016

C

Tair, wind,
precipitation, 12 sites, From 1 November
SWdown, 43 winter to 1 May, winters TB 11, TB 19, TB 37 DA_c_TB_11,19,37
LWdown, ω, simulations 2012 to 2016
τsnow

simulations over the rest of the season. The other side of the
coin is that a “good” observation can be ruled out if the model
is not able to reproduce it, thereby reducing the accuracy of
the snowpack estimation.

3.4.3 Experimental setup

To study the sensitivity and the quality of TB assimilation for
SWE improvements, three experiments were performed.

(a) Experiment A: to test the feasibility of the DA scheme
for several environmental conditions, and to find the best
DA configuration to apply, TB assimilation for three repre-
sentative sites was performed in a preliminary experiment
for winter 2014–2015. Following a north–south gradient, we
selected Site 12 (fcover = 24.2 %, northern coniferous area),
Site 1 (fcover = 63.7 %, coniferous area), and Site 9 (fcover =

84.0 %, mixed forest area), each representing a different en-
vironmental condition. Over these three sites, we estimated
the quality of the DA scheme according to the assimilated
frequencies: (a) assimilation of the TB difference between
19 and 37 GHz (referred to as 1TB 19-37); (b) assimilation of
the 1TB 19-37 and the TB difference between 11 and 19 GHz,
in V-pol (referred to as “1TB 11-19”); and (c) assimilation of
the three TBs at 11, 19, and 37 GHz in V-pol (TB 11, TB 19,
TB 37). Table 3 summarizes the experiment setup information
(acronyms of the experiments, sites, time period). We used
V-pol TB because H-pol TB is more sensitive to the stratig-
raphy of the snowpack and to the presence of ILs (Mätzler,
1987). While the DA of TBs at 11, 19, and 37 GHz in V-pol
should give best results since this combination of frequencies
imposes more constraints, the risk of encountering a degen-
eracy problem is higher. The combination of both 1TB 19-37
and 1TB 11-19 is commonly used in the literature for SWE
retrievals (Chang et al., 1987; Tedesco et al., 2004; Tedesco
and Nervekar, 2010). The assimilation of the 1TB 19-37 only

was also studied to analyze the sensitivity of TB assimila-
tion for deep snowpack when TB 37 saturates for a SWE up to
about 150 mm (Mätzler et al., 1994) and to evaluate the sup-
ply of information from 11 GHz in the assimilation of both
1TB 19-37 and 1TB 11-19 for SWE improvements.

To quantify the performance of the DA scheme, the daily
RMSEs of ensembles of simulated SWE obtained with and
without the DA scheme were compared by using Eq. (11):

RMSEt =

√√√√( 1
N

N∑
i=1

(
Xsim i, t −XObs t

)2)
, (11)

where N is the ensemble size, Xsim i, t is the simulated vari-
able from the member i at time t , andXObs t is the diagnostic
variable at time t obtained from AMSR-2 observations.

(b) Experiment B: the best configuration of the DA scheme
(DA of the three TBs at 11, 19, and 37 GHz in V-pol, called
the “DA_b_TB_11, 19, 37” experiment in Table 3) was ap-
plied over the 43 winters. To estimate the accuracy for hydro-
logical applications, the median of the resampled SWE en-
semble obtained with the DA_b_TB_11, 19, 37 experiment
(called “SWEDA”further) was compared to SWE measure-
ments. The median was used instead of the mean to reduce
the potential impact of extreme perturbations. The evalua-
tion of this experiment was performed by comparing SWEDA
RMSE and the relative percentage of error (“RPE”) values to
the original SWE simulations (SWECrocus), obtained by driv-
ing Crocus with original meteorological forcing data. The
RPE is defined as

RPE= 100 ·
|Bias|

MEANobs
. (12)

The mean biases of SWE estimates obtained without and
with assimilation were also compared. Performance was esti-
mated for SWE higher than 48 kg m−2(about 20 cm of snow
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Table 4. Effective parameters calibrated for the 12 studied sites to quantify soil contributions esurf (calibrated surface roughness “cal. σs”
and calibrated polarization ratio “cal. βν”) and vegetation contributions (controlled by the calibrated (ω, ην ) parameters “cal. ω” and “cal.
ην” according to the daily LAI) measured at the top of the atmosphere. The parameterization of frozen ground was estimated by Montpetit
et al. (2018). εeff is the effective dielectric constant estimated with the permittivity of frozen and unfrozen soils derived from Dobson’s
equations (1985). Annual and seasonal TB TOA RMSEs estimated for the summer and the winter period (RMSEsummer and RMSEwinter) are
calculated from 2012 to 2016 with the calibrated parameters.

Frequency Frozen Unfrozen Cal. Cal. Mean RMSEsummer Mean annual RMSE
(GHz) soil soil ω ην (K) (K)

εeff σs βν Cal. Cal.
(cm) σs βν

(cm)

11 3.18-0.006134i 1.08 0.69 0.01 8.6 8.4
19 3.42-0.00508i 0.19 0.72 0.2 0.60 0.07 0.05 8.7 9.1
37 4.47-0.32643i 0.42 0.67 0.23 10.1 26.0

depth), derived from measurements, to attenuate problems
of shallow snow cover variability or heterogeneity in the
AMSR-2 grid cells. To analyze the impact of the vege-
tation, results were separated according to the fraction of
fcover: moderate fcover (fcover<75 %, 10 sites) and high
fcover (fcover>75 %, 2 sites) (see Table 2 for fcover site in-
formation).

The accuracy needed for hydrological applications is a
SWE RPE lower than 15 % (Vachon, 2009; Larue et al.,
2017), which is the same performance objective as the
CoreH2O project (10 % for SWE>30 cm and 3 cm for
SWE<30 cm, Rott et al., 2010) and the GlobSnow2 prod-
uct (Luojus et al., 2014). This error threshold corresponds to
an RMSE of about 45 kg m−2 for a measured average Que-
bec snowpack about 300 kg m−2 of SWE. The ability to ac-
curately estimate the annual SWE maximum (SWEmax) was
also studied since it is one of the most important variables
for hydrological applications. It allows the amount of water
stored in the snowpack before the spring snowmelt to be de-
scribed. To avoid extreme values, the SWEmax is estimated as
the average of the SWE for a time period of ±2 days around
the detected SWEmax.

(c) Experiment C: the quality of the DA scheme could
strongly depend upon the choice of state variables. In the
A and B experiments, we chose to pre-calibrate forest and
soil parameters and to use a constant snow stickiness pa-
rameter (τsnow) fixed at 0.17 (Larue et al., 2018). Nev-
ertheless, these calibrations are empirical and should be
adjusted for each site. It depends on several parameters
that are difficult to measure at a 10× 10 km2 spatial scale
(snow grains, canopy, biomass, etc.). The forest parame-
ter ω strongly affects the PMW emission from the vege-
tation, which can represent more than 60 % of the signal
measured by satellite sensors (see discussion in Sect. 5.2).
Kwon et al. (2017) have shown that the contribution of
TB Veg to TB TOA was better represented by considering ω
free in the DA scheme, and improvements in the resulting

SD were evident for the forest land cover type (about 5 %
with DMRT-ML). In Experiment C, the DA scheme was
thus tested using ω and τsnow as free variables in the as-
similation process (called the “DA_c_TB_11,19,37” exper-
iment). The DA_c_TB_11,19,37 experiment is identical to
the DA_b_TB_11,19,37 experiment (over the 43 winters);
only the state variables were changed. The ω parameter was
perturbed with Gaussian noise, centered on 0.07 (as cali-
brated), with a standard deviation of 0.02 and bounded by
0.05 and 0.12 (reasonable range of TB TOA RMSE values;
Fig. 3). The snow stickiness parameter was perturbed by
Gaussian noise, centered on 0.17, with a standard deviation
of 0.15 and bounded by 0.1 and 0.46. These limits correspond
to the range of τsnow values extracted from Larue et al. (2018)
over the same study area. The ensemble size was kept to 150
members.

4 Results

4.1 Results of model inversions

The mean optimal values of the ην and βν factors were es-
timated for the optimal (ω, σs) set of values (0.07 and 0.2,
respectively; see Table 4). The (σs, βν) soil parameters are
given in Table 4 and are used to estimate the TB TOA RMSE
obtained with the calibrated chain of models. Without param-
eter inversions, the annual mean RMSE of the original TB
simulations varies from 12.9 to 47.1 K for the three frequen-
cies (not shown). With parameter inversions over the summer
period, the three frequencies have a similar TB RMSEsummer
(8.6–10.1 K, Table 4), while over the year (using parameters
inverted over the summer period) the annual TB TOA RMSE
significantly increases at 37 GHz due to the presence of the
snowpack (26.0 K). The inversions make it possible to re-
duce the annual TB,37 RMSE by 21.1 K. Figure 4a, b, and
c show the multiyear TB TOA variations for Sites 12, 1, and
9, respectively, from 2012 to 2016 and at 37 GHz. At this
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Table 5. Averaged SWE ensemble RMSE (see Eq. 11) obtained with and without DA, according to the experiment (see Sect. 3.4.3, Table 3
for acronyms) for each tested site. RMSEdry-snow is the SWE ensemble RMSE obtained from 1 December to 15 March. RMSEannual is
estimated over the whole winter (when snowpack is detected). No. corresponds to the site (see Table 1).

SWE ensemble
Experiments RMSE (kg m−2)

No. 1 No. 12 No. 9 Overall

RMSEdry snow (kg m−2)

Without assimilation (prior estimates) 50.7 28.6 47.8 42.4
DA1_DTB19-37 21.1 18.1 32.4 23.8
DA2_DTB19-37, DTB11-19 14.0 26.9 28.2 23.0
DA3_TB_11,19,37 10.5 19.7 21.0 17.1

RMSEannual (kg m−2)

Without assimilation (prior estimates) 47.2 28.9 48.9 41.7
DA1_DTB19-37 21.6 22.1 40.1 27.9
DA2_DTB19-37,DTB11-19 16.7 28.1 38.5 27.8
DA3_TB_11,19,37 15.1 21.9 29.1 22.1

frequency, the simulated TB TOA is strongly underestimated
when a snowpack is observed. This is likely due to an overes-
timation of the SWE or snow grain sizes since TB,37 are atten-
uated in the snowpack as snow grains act as diffusers while
the TB,19 and TB,11 are relatively unaffected by snow grains
(RMSEsummer similar to RMSEwinter at 11 and 19 GHz; Ta-
ble 2). Simulated SWE values were overestimated by 16 %
and 20.2 % compared to SWE measurements for Sites 1 and
9, respectively, for winter 2014–2015. The objective of TB
assimilation is to reduce these overestimations. Note that the
SWE simulated at Site 12 is underestimated by 19 %. The
underestimation of TB,37 can also be caused by an underesti-
mation of the vegetation contributions. This aspect is further
discussed in Sect. 5.2.

By integrating ILs within the snowpack when the PR11 is
above 0.06, the annual TB TOA RMSE at 37 GHz is reduced
and goes from 28.9 to 26.0 K.

In winter, the overall TB TOA RMSE (all frequencies) is
equal to 17.4 K from 2012 to 2016 (not shown), similar to the
overall RMSE estimated for the τsnow-calibrated DMRT-ML
driven by in situ measurements in an open area and equal to
19.9 K compared to surface-based radiometric measurements
in Quebec (Larue et al., 2018).

4.2 Results of AMSR-2 data assimilation (DA)

4.2.1 Experiment A

Figure 5 shows variations of the daily RMSE of the SWE en-
semble (see Eq. 11) obtained without and with DA (prior and
posterior estimates) according to the combination of frequen-
cies used as observations (DA1_DTB19-37, DA2_DTB19-
37, DTB11-19 and DA3_TB_11,19,37 experiments; see Ta-
ble 3). Table 5 summarizes these averaged RMSEs for the
studied period (dry snow period and whole winter) for tested
sites.

Over the three sites and for the dry snow period, the
DA reduced the overall SWE ensemble RMSE by 43.9 %,
45.8 %, and 59.7 % with the DA1_DTB19-37, DA2_DTB19-
37,DTB11-19, and DA3_TB_11,19,37 experiments, respec-
tively, compared to the SWE ensemble RMSE obtained with
prior estimates (Table 5). The assimilation of the three fre-
quencies (DA3_TB_11,19,37) helps to improve SWE simu-
lations, giving the lowest RMSE compared to other scenar-
ios. The same trend is observed over the whole winter and
the assimilation of the three frequencies reduces the overall
SWE ensemble RMSE by 47.0 % (SWE ensemble RMSE of
22.1 kg m−2) compared to the SWE ensemble RMSE of prior
estimates (SWE ensemble RMSE of 41.7 kg m−2).

In our previous work (Larue et al., 2018), we have shown
a reduction of 82 % of the SWE RMSE by assimilating both
the 1TB 19-37 and 1TB 11-19 and using synthetic observation
data over a dry snow period. The differences between results
using synthetic and real data in DA experiments are likely
due to two aspects. Firstly, the snow model does not resolve
the intra-pixel surface variability. We assumed homogeneous
snow cover within the pixel in open areas, thus with no in-
teractions between snow and vegetation. Even if we compare
simulations with surface-based measurements in open areas,
this could introduce large uncertainties (Roy et al., 2016).
Secondly, the land cover variability and heterogeneity within
each pixel also induce uncertainties in the mean TB simula-
tion over a pixel (TB weighted by the fraction of forest cover;
see Eq. 2).

Figure 6 illustrates the comparison between SWE
measurements, the original SWE Crocus simulations
(SWECrocus), and the median of the SWE ensemble obtained
with the DA3_TB_11,19,37 experiment. The yellow enve-
lope corresponds to the SWE ensemble obtained without DA
(prior estimates) and shows a large ensemble spread in re-
sponse to meteorological forcing uncertainties. The gray en-
velope is the resampled SWE ensemble (posterior estimates).
SWE simulations are very sensitive to the uncertainties of
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Figure 4. Multi-year variations of simulated TB TOA (red dotted lines) and measured TB TOA (black full lines) from 2012 to 2016 at 37 GHz
in vertical polarization: (a) Site 12 (fcover of 24 %), (b) Site 1 (fcover of 64 %), and (c) Site 9 (fcover of 84 %) (see Table 2).

Figure 5. Variations of the SWE ensemble RMSE (Eq. 11) obtained with and without DA for the dry snow period (from 1 December to
15 March). Experiments are performed for (a) Site 12, (b) Site 1, and (c) Site 9, over the winter 2014–2015. The red line is the SWE ensemble
RMSE obtained without DA (open loop runs), the blue line is the RMSE obtained with the DA1_TB19-37 experiment, the green dashed line
the RMSE with the DA2_TB19-37,TB11-19 experiment, and the black dotted line the RMSE with the DA3_TB_11,19,37 experiment.
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Table 6. Averaged SWE RMSE, bias, and RPE (Eq. 12) over the 43 winters for original SWE simulation (SWECrocus) and assimilated
SWEDA(Experiment B). Statistical performances were estimated for SWEobs>48 kg m−2 (snow depth higher than ∼ 20 cm). SWEobs and
SWEsim are the averaged observed and simulated SWE, respectively.

SWECrocus SWEDA with the DA_b_TB_11,19,37

SWEobs RMSE Bias RPE SWEsim RMSE Bias RPE SWEsim
(kg m−2) (kg m−2) % (kg m−2) (kg m−2) %

fcover<75 % 162.2 42.5 17.3 19.0 179.4 37.1 −1.2 14.1 161.0
fcover>75 % 139.0 62.0 47.8 33.9 186.8 68.0 40.2 38.0 179.2

Mean 157.3 45.0 23.7 22.1 41.2 7.5 18.4 164.8

meteorological forcing data at the beginning of the winter
season. If an event (melting or precipitation) is missed, a con-
stant bias on SWE estimates is kept throughout the winter.
For Sites 1 and 9, the DA scheme allows the correction of
these uncertainties at the beginning of the season: the SWE
ensemble RMSEs of posterior estimates are reduced by about
30 kg m−2 at the beginning of the season, compared to the
RMSE of prior estimates (Fig. 5). For these two sites, the
SWE ensemble RMSE obtained with the DA1_DTB19-37
experiment increases as the snowpack becomes deeper, espe-
cially from mid-January when the snowpack becomes deeper
than 100 kg m−2 (Fig. 6). The PMW signal from the snow-
pack at 37 GHz saturates for such deep snowpack (Mätzler et
al., 1982; Mätzler, 1994; De Sève et al., 1997, 2007) and the
assimilation of 1TBv,19−37 only does not give enough infor-
mation to significantly improve SWE retrievals. For Site 9,
posterior estimates are deteriorated at the end of the season
compared to prior estimates with the DA1_DTB19-37 exper-
iment. By adding1TBv,11−19 (DA2_DTB19-37,DTB11-19),
this effect is reduced but stays sensitive to the depth of the
snowpack (Fig. 5).

Note that the gray envelope does not always include the
observations (Fig. 6a, c). This could be due to an under-
estimation of the R matrix. In the developed approach, the
inflation technique of the R matrix is limited by a threshold
on the α factor fixed at 5 since the simulations are limited
by the simplifications of physical parameters in the models
and we may introduce a bias if we force them to follow the
observation by perturbing meteorological forcings only. Fur-
ther work is needed to quantify the model errors in order
to consider it in the DA scheme and to improve the repre-
sentativeness of the simulations. To represent the uncertain-
ties about the physical processes simulated with the Crocus
snow model, a new system based on snow model ensem-
bles could be an alternative. Such an approach was recently
developed by implementing different configurations estimat-
ing the physical parameters of the Crocus snow model (ES-
CROC, Lafaysse et al., 2017).

4.2.2 Experiment B

The median of the resampled ensemble of SWE obtained
with the DA of the three frequencies (SWEDA) is used
to estimate the global performance of the DA scheme for
SWE improvements. Table 6 details the statistical perfor-
mance of simulated SWEDA compared to measurements and
to the original SWE Crocus simulations (SWECrocus) over
the 43 winters. Figure 7 compares the SWEDA, SWECrocus,
and SWE measurements (SWEobs) from 2012 to 2016 for
four sites with different fcover taken as an example: Site 5
(fcover = 31.5 %), 10 (fcover = 61.8 %), 1 (fcover = 63.7 %),
and 9 (fcover = 84.0 %). In this section, we first analyze the
overall SWE improvements obtained with TB assimilation
compared to original SWE simulations, and the impact of
the vegetation on the quality of the DA scheme is discussed.

Overall SWE improvements compared to original
Crocus simulations

The overall SWECrocus RMSE, bias, and RPE are of
45.0 kg m−2, 23.7 kg m−2, and 22.1 %, respectively (Ta-
ble 6). In comparison, the overall SWEDA RMSE, bias, and
RPE are improved and equal to 41.2 kg m−2, 7.5 kg m−2,
and 18.4 %, respectively. The overall bias is reduced by
16.2 kg m−2 (68 % of SWECrocus bias) with the DA scheme.
The DA of the three frequencies thus helps to improve SWE
estimates over Quebec. Correlation between SWEDA simu-
lations and SWE measurements gives a similar R coefficient
to the one obtained with SWECrocus simulations (R = 0.79
and R = 0.78, respectively), but the offset is significantly re-
duced with SWEDA compared to SWECrocus (offset= 10 and
29 kg m−2, respectively). We analyzed the number of cases
with significant improvements for the total of 43 simulations
studied by considering a 5 % threshold on the bias and RMSE
differences before and after assimilation. The SWEDA bias
is significantly reduced for 26 winters (60 % of cases) com-
pared to original SWE simulations. However, the RMSE is
significantly improved for only 35 % of simulations, and in
35 % of cases, RMSEs are similar.
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Figure 6. Evolution of SWE measurements (black points) and SWE simulations. The SWECrocus is the red line, and the SWE obtained with
the DA3_TB_11,19,37 experiment is the gray dotted line. The yellow envelope is the spread of the SWE ensemble obtained with open loop
runs (prior estimates). The gray envelope is the spread of the SWE ensemble obtained with the assimilation of the three frequencies (posterior
estimates). Both spreads are delimited by the 5th and the 95th percentiles. Experiments are computed for (a) Site 12, (b) Site 1, and (c) Site
9, over the winter 2014–2015.

Figure 7. Evolution of SWE measurements (black points), original SWE simulations (red full line), and the median of the SWE ensemble
obtained with the DA_b_TB_11,19,37 experiment (SWEDA) (blue dotted line). The gray envelope is the spread of the SWEDA ensemble
(posterior estimates). Experiments are computed for (a) Site 5 (fcover = 31.5 %), (b) Site 1 (fcover = 63.7 %), (c) Site 9 (fcover = 84 %),
and (d) Site 10 (fcover = 61.8 %), from 2012 to 2016.
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Evaluation of SWEmax

The mean observed SWEmax is equal to 235.6 kg m−2 from
2012 to 2016, and the mean simulated SWEmax is equal
to 278.3 and 266.8 kg m−2 without and with the assimila-
tion, respectively. Compared to original SWE simulations,
the DA scheme improves 63 % of SWEmax simulations with
an overall improvement of 12.2 kg m−2, corresponding to
8 % of SWE measurements (Table 6). Such an uncertainty
extended over the whole territory could have a strong im-
pact, considering that 1 mm of SWE in the LG watershed
could represent USD 1 million in hydroelectric power pro-
duction (Brown and Tapsoba, 2007).

SWE accuracy for sites according to the fcover

The overall RPE obtained with the DA scheme is below 15 %
(RPE= 14.1 %) for sites with an fcover below 75 % (Table 6),
which is the accuracy required for hydrological applications
(Larue et al., 2017). Hence, the accuracy of SWEDA esti-
mates, obtained without the use of any surface-based data,
is very encouraging for hydrological needs in remote areas.
In comparison, the GlobSnow-2 SWE product (Takala et al.,
2011), which assimilates both TBs and in situ snow depth
measurements, has a SWE RPE equal to 35.9 % over the
same area in Quebec (Larue et al., 2017), twice the uncer-
tainty of SWEDA. Figure 7a and b (Sites 5 and 1) show that
for a single site, the original SWECrocus simulation works
well for some years but can be underestimated or overesti-
mated over other years. The DA scheme allows a more stable
solution when the overall fcover is under 75 % (not the case
for Site 9, for example).

Nevertheless, even if the overall RMSE is improved, the
DA scheme does not help to improve SWE estimates for sites
with an fcover above 75 % (RMSE of 66 kg m−2) compared to
original SWE simulations (RMSE of 62.0 kg m−2). The pres-
ence of vegetation is a major source of uncertainty in TB TOA
simulations. The emission of the trees is superimposed on
the signal emitted by the underlying snowpack and increases
the TB measured at the satellite level (Chang et al., 1996;
Brown et al., 2003). At same time, the canopy also attenuates
the surface emission toward the satellite. These contributions
are complex to quantify since it depends not only on the tree
fraction within the pixel but also on the tree species and states
which emit/attenuate a different PMW signal depending on
their biomass (liquid water content), volume, and structure
(stem, leaf, trunk) (Franklin, 1987). Also, the presence of
trees modifies snow accumulation on the ground, depending
on interception, shade, and sublimation effects (Dutra et al.,
2011; Wang et al., 2009), which increases the spatial variabil-
ity of the snowpack within the same pixel. These interactions
between the vegetation and the snowpack are not taken into
account in Crocus, and this might induce uncertainties due to
model errors. Note that SWE sensors are mostly installed in

Table 7. Same as Table 6 but using the forest parameter ω and
the snow stickiness parameter (τsnow) as free variables in the DA
scheme (Experiment C) to improve SWE retrievals (SWEDA, ω, τs ).

SWEDA, ω, τs with the DA of
the three frequencies

SWEobs RMSE Bias RPE SWEsim
(kg m−2) (kg m−2) %

fcover<75 % 162.2 45.6 −14.8 21.6 147.4
fcover>75 % 139.0 45.1 −7.1 17.5 131.9

Mean 157.3 45.5 −13.2 20.7 144.1

clearings, which reduces this impact in comparisons against
surface-based measurements.

Kwon et al. (2016) used a similar snow radiance assim-
ilation system to correct SD by updating the Community
Land Model, version 4 (CLM4), snow and soil states, and
radiative transfer model with the assimilation of the 19 and
37 GHz of AMSR-E. Over North America, it produced sig-
nificant improvements of SD for the tundra type, but also pro-
duced degradations for taiga snow class and forest land cover
(7.1 % and 7.3 % degradations, respectively). In the present
study, the use of a multilayer snowpack model makes it pos-
sible to represent PMW emission from the snowpack with
DMRT-ML well, and to improve overall snowpack simula-
tions with TB assimilation in boreal areas when the fcover is
below 75 %. Kwon et al. (2017) obtained better results for
areas with a high fcover in comparison to their previous study
(Kwon et al., 2016) over North America by using the vegeta-
tion parameter ω as a free variable in the DA scheme, instead
of pre-calibrating it as we chose to do. This aspect is further
studied with the experiment C.

4.2.3 Experiment C

Table 7 shows the statistical SWE performances obtained
with the DA_c_TB_11,19,37 experiment (see Table 3 for
definitions), where ω and τsnow are taken as free variables
in the DA scheme (“SWEDA, ω, τs”) over the 43 winters.

The overall SWEDA, ω, τs RMSE, bias, and RPE are equal
to 45.5 kg m−2, −13.2 kg m−2, and 20.7 %, respectively,
very close to the statistical performances of the original
SWECrocus simulations. The use of ω and τsnow as free vari-
ables does not help to improve SWECrocus simulations for
sites with an fcover below 75 %, but the bias is significantly
reduced for sites with an fcover above 75 % (−7.1 kg m−2 and
a RPE of 17.5 %). In addition, the simulated SWEmax is im-
proved for 86 % of the 43 simulations (37 cases), with a re-
duction of the SWEmax bias of 26.6 kg m−2 (17 % of SWE
measurements) compared to the original SWECrocus simula-
tion.

The use of pre-calibrated parameters is justified because
the parameters ω and τsnow were not measurable and could
not be directly validated. Furthermore, if parameters are
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added as state variables in the DA scheme, a larger en-
semble size in the DA scheme would be needed to im-
prove the representativeness of TB uncertainties and to en-
sure the solution’s stability (or at least to prevent a degen-
eracy problem). The ensemble size was kept to 150 here
but this DA_c_TB_11,19,37 experiment should produce im-
proved results with a larger ensemble size. However, this
would require a significant computational effort. This study
is a preliminary step of a PMW DA implementation for op-
erational hydrological applications, so there was a need to
limit computing time. These results suggest that the devel-
oped approach using pre-calibrated ω and τsnow parameters
helps to improve the retrievals for sites with an fcover below
75 %, and the use of ω and τsnow parameters as free variables
in the DA scheme should be investigated in further work for
sites with more than 75 % forest cover.

5 Discussion

In this section, we discuss (a) the sensitivity of wet snow con-
ditions for TB assimilation, and (b) the percentage of surface,
vegetation, and atmospheric contributions in the PMW signal
measured by satellite sensors.

5.1 Wet snow conditions

In wet snow conditions, water droplets act as emission
sources (especially at frequencies above 30 GHz), and the
snowpack becomes close to a blackbody (Brucker et al.,
2011; Picard et al., 2013; Klehmet et al., 2013). The PMW
observations are thus complex to use for SWE retrievals, es-
pecially at the end of the season before the spring snowmelt
when the SWE is maximal. Figure 8 illustrates the SWEDA
obtained with the DA of the three frequencies applied over
the whole winter and when the snow is dry only (with an
LWC equal to 0 kg m−2), for Site 3 (winter 2013/2014). SWE
estimates are strongly deteriorated when TB assimilation is
performed in wet snow conditions. For this example, the
SWEDA RMSE is equal to 31.1 kg m−2 with a DA performed
over the dry snow period only and significantly increases to
70.2 kg m−2 by assimilating TBs over the whole winter (dry
and wet snow conditions).

Here we used the LWC simulated by Crocus to detect wet
and dry snow. This variable is subject to model errors and is
linked to the original atmospheric forcing data and to their
uncertainties. Further studies are needed to automatically de-
tect wet snow events by using direct satellite observations.
Previous studies have shown the potential to use the gradi-
ent ratio (GR= TB 37–TB 19/TB 37+ TB 19) to detect rain-on-
snow events in arctic areas (Langlois et al., 2017; Dolant et
al., 2016), and this approach should be investigated for boreal
forest areas in further work. The use of active microwave ob-
servations is also a promising approach with a good spatial
resolution (Roy et al., 2010).

5.2 Land cover contributions within the simulated
TB TOA

To properly assimilate PMW satellite observations, all con-
tributions that affect the observed signal need to be well iden-
tified and quantified. The estimation of TB TOA (see Eqs. 5
and 6) can be written as the sum of the PMW contributions of
the open surface (TB surf), vegetation (TB veg), and atmosphere
(TB atm) according to the fraction of forest (fcover, estimated
with the LAI as in Eqs. 2 and 3) and open area (1− fcover)
with Eqs. (13), (14), and (15) as

TB veg = fcover ·
[
(1−ω) · (1− γν) · Tveg

+γν · (1− esurf) · (1−ω) · (1− γν) · Tveg
]
· γatm (13)

TB surf = fcover ·
[
γν · esurf · Tsurf

]
· γatm

+ (1− fcover) · [esurf · Tsurf] · γatm (14)

TB atm = fcover ·

([
(1− esurf) · γν

2
· TB atm↓

+(1− γν) ·ω · TB atm↓
]
· γatm+ TB atm↑

)
+(1− fcover) ·

(
(1− esurf) · TB atm↓γatm+ TB atm↑

)
. (15)

Figure 9 illustrates the percentage of each contribution be-
fore DA at 11, 19, and 37 GHz in V-pol from 2012 to 2016,
for the summer and for the winter periods (defined when
snowpack is detected) for Site 12 (fcover of 24.2 %), Site 1
(fcover of 63.7 %), and Site 9 (fcover of 84.0 %). The percent-
ages of each contribution are similar at 11 and 19 GHz. The
contributions from the atmosphere are weak. As expected
for all frequencies, the surface contributions increase for the
winter period with the presence of the snowpack, while the
vegetation contributions decrease as the LAI decreases, espe-
cially at 37 GHz. For Site 12, the surface contributions rep-
resent more than 80 % of the PMW signal in winter when
the vegetation contributions represent less than 10 % of the
PMW signal (same magnitude as atmosphere contributions).
For Site 1, the surface and the vegetation contributions are
similar in winter (40 %–55 %), whereas the vegetation con-
tributions were more than 60 % of the PMW signal in sum-
mer. For Site 9, the vegetation contributions remain the main
contribution to the PMW signal in comparison to the sur-
face contributions, even in winter (50 %–70 % of the PMW
signal for 37–10 GHz). In this dense boreal forest area, the
measured snowpack emission represents less than 30 % of
the measured signal, and SWE improvements using only TB
observations are challenging. This high vegetation contribu-
tion (emission and attenuation) explains why the developed
DA scheme does not succeed in significantly improving SWE
estimates for these sites with an fcover exceeding 75 %.

6 Summary and conclusion

An ensemble data assimilation (DA) scheme was imple-
mented in a calibrated chain of models (Crocus/DMRT-ML,
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Figure 8. Evolutions of measured SWE (black points) for Site 3 from 2013 to 2014, original SWE Crocus simulation (red full line), and
SWEDA obtained with a DA of the three frequencies applied for the entire winter (green dotted line) and when LWC= 0 only (blue full line).
The simulated total liquid water content (LWC) in the snowpack (dotted gray lines) is also shown.

Figure 9. Percentage of surface (black), vegetation (dark gray), and atmosphere (light gray) contributions to the simulated PMW signal at the
top of the atmosphere (before DA) at the three frequencies 11 (a), 19 (b), and 37 GHz (c). ID12, ID1, and ID9 are Site 12 (fcover of 24.2 %),
1 (fcover of 63.7 %), and 9 (fcover of 84.0 %), respectively (see Table 2). Summer and winter periods are defined as periods when snowpack
is observed or not.

soil, vegetation, and atmosphere radiative transfer models)
to improve SWE estimates by updating forcing data and
snowpack states with the AMSR-2 satellite observations.
The developed approach does not use any surface-based data
and was tested over a boreal forest area in Quebec (eastern
Canada). The proposed DA scheme is a particle filter with
a resampled SIR algorithm, using an inflation technique of
the R matrix to avoid degeneracy problems. The multilayer
snowpack model, Crocus, coupled to the surface land model
ISBA, was used to simulate the evolution of the snowpack.
The DMRT-ML, the (ω-τopt) model, an atmospheric model,
and the Wegmüller and Mätzler (1999) radiative transfer
model were pre-calibrated to simulate the PMW contribu-

tions from the snowpack, the vegetation, and the soil, respec-
tively, at the top of the atmosphere. The DA scheme was per-
formed over 43 winters (12 sites from 2012 to 2016; Table 1),
only in the presence of dry snow. Ice lenses were detected
and integrated in the snowpack by using a thresholding ap-
proach on the polarization ratio at 11 GHz. The study shows
the following.

1. TB TOAcan be well simulated with the developed chain
of models. By calibrating soil and forest parameters
(ω = 0.07 and σs = 0.2 cm), the annual TB TOA RMSE
(all frequencies) is equal to 14.5 K from 2012 to 2016.
This RMSE is similar to the overall RMSE estimated
with the τsnow-calibrated DMRT-ML model driven by
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in situ measurements in an open area (19.9 K compared
to surface-based radiometric measurements in Quebec;
Larue et al., 2018).

2. The assimilation of TBs at 11, 19, and 37 GHz (V-pol)
improves the SWE estimates compared to the assimi-
lation of 1TB 19−37 only (sensitive to snowpack depth)
or to the assimilation of both 1TB 19−37 and 1TB 11−19.
For three sites (with different fcover), the SWE ensem-
ble RMSE of posterior estimates is reduced by 47 %
over the whole winter compared to the SWE ensemble
RMSE of prior estimates (open loop runs).

3. By using pre-calibrated ω and τsnow parameters in the
DA scheme, the overall bias (for 43 winters) of the
original SWECrocus simulations is significantly reduced
by assimilating TBs at 11, 19, and 37 GHz (from 23.7
to 7.5 kg m−2). The bias on SWEmax is reduced by
12.2 kg m−2 (8 % of SWE measurements). The over-
all RPE goes from 22.1 % to 18.4 %, which is close
to the range of accuracy needed for hydrological appli-
cations (SWE RPE<15 %). This accuracy is achieved
with the TB assimilation for sites with an fcover below
75 %, but the DA deteriorates SWE simulations for sites
with an fcover above 75 %. However, by using ω and
τsnow as free variables, the DA significantly improves
SWE simulations for sites with an fcover above 75 %
(RPE= 17.5 %).

Even with the difficulties associated with quantifying all
the different factors that contribute to the PMW signal mea-
sured by satellite sensors in remote boreal areas (canopy, ice
crust, frozen/unfrozen ground, presence of lakes, moisture in
the snow, topography, etc.) (Kelly et al., 2003; Koenig and
Forster, 2004), and even when vegetation contributions are
50 % of the PMW signal, the implementation of a DA scheme
in a well-calibrated chain of models reduces SWE uncertain-
ties without using any surface-based data. This assimilation
scheme can be easily implemented in an operational system
using real satellite-borne observations, despite the relatively
significant computing time required. This research opens the
way for global applications to obtain more accurate SWE es-
timates over large and remote areas where few meteorologi-
cal weather stations are present.

Data availability. The daily SWE data provided by Hydro-Québec
are used for hydrological purposes and are not available to the
public due to legal constraints on the data’s availability. For the
SWE and SD data, and field campaign measurements provided by
the University of Sherbrooke, please contact the coauthor Alain
Royer (Alain.Royer@USherbrooke.ca). Meteorological GEM data
are freely available on the government of ECCC’s website (Envi-
ronment and Climate Change Canada) at https://weather.gc.ca/grib/
grib2_reg_10km_e.html, last access: 10 October 2018). Other data
used are listed in the references.
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Appendix A: Online adjustment of the observation
error covariance matrix R

Online adjustment of covariance matrices in data assimila-
tion is quite a common approach with the ensemble Kalman
filter (Dee, 1995; Miyoshi, 2011; Brankart et al., 2010) but
not with the particle filter. However, in many implementa-
tions of the particle filter, the measurement pdf is considered
Gaussian, so the particle weights are computed using the ob-
servation error covariance matrix R. This matrix can there-
fore also be subject to adjustment in the context of the par-
ticle filter. Online adjustment can be and is often performed
by tuning a simple inflation of the initial covariance matrix.
This is the approach chosen here.

Noting δi = y−h(xi), the innovation for particle i, the
weight of this particle, is

w̃ei =
wei∑
j

wej
, (A1)

where

wei = exp
(
−

1
2
δTi R−1δi

)
. (A2)

An inflation of matrix R by a factor 1/α (larger than 1) can
be interpreted as an exponent α (smaller than 1) to wei . Be-
cause the weights wei are nonlinear functions of R, inflating
R tends to flatten their distribution. Online adjustment con-
sists in finding a value for α that flattens the distribution of
weights to the point at whichNkeep particles are selected with
certainty, Nkeep being a number to be prescribed. If the num-
ber Nkeep is fixed, when the resampling step is performed us-
ing Arakawa’s procedure (Arakawa, 1997), the weight of the
Nkeep−th particle to be selected, w̃ekeep, must become equal
to w̃eref = 1/Nkeep. Consequently,

w̃ekeep =

(
wekeep

)α∑
j

(
wej

)α = w̃eref, (A3)

or, written differently after taking the logarithm:

α =

(
log(w̃eref)+ log

(∑
i

(
wej

)α))
/log(wekeep). (A4)

This equation for α is not solvable analytically. Instead, we
find α after the convergence of the series:

αn =

(
log(w̃eref)+ log

(∑
i

weαn−1
j

))
/log(wekeep). (A5)

The result of this adjustment is illustrated in Fig. A1. The
blue dots show the first 20 weights of a sorted distribution
for an ensemble of 50 particles strongly prone to degener-
acy: only 4 particles have a weight larger than 1/50= 0.02.

Figure A1. Weight distribution of the first 20 weights of a sorted
distribution for an ensemble of 50 particles: distribution before the
adjustment (blue dotted points), showing a degeneracy problem, and
distribution after the adjustment procedure (red dotted points), in
which weight distribution is flattened and significant weights are
distributed around Nkeep particles (10 particles for this example).

The minimum number of particles to be selected is fixed to
Nkeep = 10. After the adjustment procedure, the identified in-
flation factor for matrix R is 3.6 (α = 0.277), and the weight
wekeep of the 10th particle is exactly equal to 0.02.

Obviously, this procedure is only used if the number of
selected particles is below theNkeep threshold with the initial
weights.
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