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Abstract. Up until now, erosivity required for soil loss pre-
dictions has been mainly estimated from rain gauge data
at point scale and then spatially interpolated to erosivity
maps. Contiguous rain data from weather radar measure-
ments, satellites, cellular communication networks and other
sources are now available, but they differ in measurement
method and temporal and spatial scale from data at point
scale. We determined how the intensity threshold of erosive
rains has to be modified and which scaling factors have to be
applied to account for the differences in method and scales.
Furthermore, a positional effect quantifies heterogeneity of
erosivity within 1 km2, which presently is the highest resolu-
tion of freely available gauge-adjusted radar rain data. These
effects were analysed using several large data sets with a to-
tal of approximately 2× 106 erosive events (e.g. records of
115 rain gauges for 16 years distributed across Germany and
radar rain data for the same locations and events). With de-
creasing temporal resolution, peak intensities decreased and
the intensity threshold was met less often. This became espe-
cially pronounced when time increments became larger than
30 min. With decreasing spatial resolution, intensity peaks
were also reduced because additionally large areas without
erosive rain were included within one pixel. This was due
to the steep spatial gradients in erosivity. Erosivity of single
events could be zero or more than twice the mean annual sum
within a distance of less than 1 km. We conclude that the re-
sulting large positional effect requires use of contiguous rain
data, even over distances of less than 1 km, but at the same
time contiguously measured radar data cannot be resolved to
point scale. The temporal scale is easier to consider, but with

time increments larger than 30 min the loss of information
increases considerably. We provide functions to account for
temporal scale (from 1 to 120 min) and spatial scale (from
rain gauge to pixels of 18 km width) that can be applied to
rain gauge data of low temporal resolution and to contiguous
rain data.

1 Introduction

Prediction of rain-induced soil erosion using models like the
Universal Soil Loss Equation (USLE) requires quantification
of the potential of rain to cause soil detachment and trans-
port. This potential is called rainfall erosivity and is typically
obtained from point rainfall measurements using rain gauges.
For the conversion of erosivities from point to spatial infor-
mation, isolines, interpolation techniques and relations to pa-
rameters such as the mean summer rainfall depth have been
used (Rogler and Schwertmann, 1981; Wischmeier, 1959;
Wischmeier and Smith, 1958, 1978). The characteristic re-
lation between erosivity and rain depth of the same period
was termed erosivity density and used in RUSLE2 (Dabney
et al., 2012; USDA, 2013). It is recommended for areas with
poor data availability (Nearing et al., 2017).

Rainfall is now able to be measured contiguously by
radars and adjusted by rain gauges so that information about
the spatio-temporal distribution of rain is combined with
hyetographs measured at ground level. Several countries pro-
vide rain-gauge-adjusted radar data products with spatial res-
olutions of, for example, 1×1 km2 (Bartels et al., 2004; Fair-

Published by Copernicus Publications on behalf of the European Geosciences Union.



6506 F. K. Fischer et al.: Scale and positional effects on erosivity

man et al., 2015), 2×2 km2 (Koistinen and Michelson, 2002;
Michelson et al., 2010) or 4×4 km2 (Hardegree et al., 2008).
Contiguous data of even coarser scale may result from other
sources such as satellite data (Vrieling et al., 2010, 2014) or
the output of regional climate models (e.g. Christensen et al.,
2007; Flato et al., 2013).

Despite the important advantage that radar rain data are
contiguous and temporally resolved, they cannot easily be
used in place of rain gauge data for erosivity estimations
because the scales of measurement differ a lot between
both techniques. While rain gauges measure the rain near
ground level at point scale (in Germany the collection area
is 200 cm2), radars usually deliver rain measurements with
an azimuthal resolution of approx. 1◦ and a range of 125 to
1000 m. The data are then typically aggregated in grids of
square pixels 1 to 16 km2 in size. Rain intensity may differ
greatly between point and grid measurements due to reduc-
tion in peak intensities with decreasing temporal and spa-
tial resolution. Furthermore, sources of error differ between
both measurement techniques. For radar measurements, er-
rors may result from shading of rain cells by objects such as
buildings, orographic elevations or hydrometeors and from
the influence of the melting layer causing bright-band effects
(Wagner et al., 2012). Major limitations of rain gauges are
caused by adhesion, evaporation, wind drift and splashing
(Habib et al., 2001). Finally, strong gradients can, in par-
ticular, be expected for thunderstorm cells of limited spa-
tial extent. Thus, heterogeneity within pixels will be espe-
cially pronounced for erosive rains (Fiener and Auerswald,
2009; Fischer et al., 2016; Krajewski et al., 2003; Pedersen
et al., 2010; Peleg et al., 2016). This heterogeneity cannot
be resolved but needs to be quantified because it is the un-
certainty that can be expected for predictions at a resolution
higher than the pixel size. This uncertainty also applies in
cases where a point measurement of rain erosivity is within
a certain distance (e.g. 1 km) from the target area for which
erosion is to be calculated. The resulting deviation between
point measurement and grid pixel average will be called “po-
sitional effect” in the following. The positional effect also de-
termines the uncertainty, caused by the spatial variability of
rain, of soil loss predications in the proximity of a point rain
measuring location. This positional effect should level out
in long-term measurements as long as grid pixels are small
enough not to include a consistent orographic pattern.

By definition in the USLE, erosivity is the product of a
rain event’s maximum 30 min intensity and its total kinetic
energy (Wischmeier and Smith, 1958). Both factors depend
on rain intensity; thus, intensity is squared in erosivity. Con-
sequently, a difference in rain intensity of just 10 % would
result in difference in erosivity of 21 %. Therefore, larger ef-
fects of variation in rain intensity can be expected for erosiv-
ity than for rainfall. In particular, an average of squares, as
obtained from several point measurements within an area of
non-uniform rainfall, will always be higher than the square
of the average calculated from the same measurements. This

difference between both squares caused by the difference in
spatial scale of the measurements is expected to be a robust
factor in the long run. We will call this the “spatial-scale ef-
fect”. A spatial-scale effect for erosivity, to the best of our
knowledge, has not been studied. This is probably due to the
novelty of operational radar measurements and the lack of
long-term data sets required for erosivity estimations. Long-
term and revised radar rain data now exist and can help to im-
prove contiguous erosivity and soil loss estimations. There-
fore, it is crucial to know to what extent erosivity, and sub-
sequently also soil loss, is underestimated due to the spatial-
scale effect by gridded rain data as provided by radar mea-
surements and also by climate models or satellites that em-
ploy an even coarser spatial resolution than typical radars
(Chen and Knutson, 2008; Vrieling et al., 2014). Rain inten-
sities from radar may additionally be smoothed by measur-
ing and subsequent processing procedures. The contribution
of erosivity underestimation due to these procedures is called
the “method effect” in the following. Thus, the difference in
erosivity from rain gauge data and from radar data is caused
by spatial-scale and method effects.

Another effect is induced by the temporal scale of the
data used for erosivity calculations. With decreasing tempo-
ral resolution, maximum 30 min intensity and hence erosivity
are increasingly underestimated. Therefore, temporal scaling
factors are required to compensate for this underestimation
(e.g. Auerswald et al., 2015; Agnese et al., 2006; Istok et al.,
1986; Williams and Sheridan, 1991; Weiss, 1964; Yin et al.,
2007). These are especially important for contiguous data,
for which temporal resolution of rain data is decreased, often
to 60 min, as a requirement for the adjustment to rain gauge
data and to reduce the enormous amount of data caused by
the high spatial resolution and wide spatial and temporal cov-
erage.

We therefore hypothesize that (1) with decreasing tempo-
ral and spatial resolution of rain data, calculated erosivities
decrease due to a smoothing of intensities; (2) radar mea-
surements cause an additional underestimation of erosivities
due to the measuring principle and the required calculation
and correction steps; and (3) large uncertainty of erosivity
within 1 km2 is due to strong gradients of erosive rains as
determined by the positional effect. The effects of hypothe-
ses (1) and (2) have to be compensated for by changes in
the calculation of erosivity, while the effect of hypothesis (3)
quantifies uncertainty of erosivity of individual events at any
location within an area of 1 km2 around a rain gauge. We will
quantify these effects and discuss their implications.

2 Material and methods

2.1 Data sets

To cover a wide range of spatial and temporal resolutions,
several large and overlapping data sets had to be combined

Hydrol. Earth Syst. Sci., 22, 6505–6518, 2018 www.hydrol-earth-syst-sci.net/22/6505/2018/



F. K. Fischer et al.: Scale and positional effects on erosivity 6507

(for an overview see Table 1). The spatial resolution from
point scale to 1 km pixel width (with an intermediate pixel
width of 0.5 km) was covered by a high-density network of
12 rain gauges which operated over 4 years within an area
of 1 km2 (taken from Fiener and Auerswald, 2009; for lo-
cation of the measuring site see Fig. 1a; for the spatial dis-
tribution of rain gauges see Fig. 1c). The data of the net-
work comprised 542 events at point scale. The spatially in-
tegrated hyetographs at 0.5 or 1 km pixel width generated by
the Thiessen polygon method (see Fig. 1c) will be referred to
as “pseudo-radar” data.

Point scale and 1 km pixel width were also compared for
a much wider data set covering 16 years and the whole of
Germany. Erosivities at 115 rain gauges were compared to
erosivities obtained from radar data with 1 km resolution
(for location of the rain gauges and the coverage of weather
radars see Fig. 1a). Rain gauge data were taken from the Cli-
mate Data Center of the German Weather Service (Deutscher
Wetterdienst: DWD; ftp://ftp-cdc.dwd.de/pub/CDC/, last ac-
cess: 11 December 2018). DWD also provided the radar
data, which were a revised version of the RADar OnLine
ANeichung (RADOLAN) radar rain data product (Winter-
rath et al., 2012, 2017). This resulted in point–pixel pairs for
> 20 000 erosive rain events. For this data set the effect of
temporal resolution was also evaluated. For spatial resolu-
tions lower than 1 km pixel width (up to 18 km pixel width),
a third data set was used. It comprised 1.9× 106 events at
1 km pixel width determined by radar measurements within
an area of 800× 600 km2 (Table 1).

Precipitation measurements of the DWD station network
were conducted with OTT Pluvio weighing rain gauges
(OTT Hydromet GmbH, Kempten, Germany) with a collec-
tor area of 200 cm2, a measurement range of 0–1800 mm h−1

and a 1 min resolution of 0.1 mm h−1. The precipitation
data passed a quality control system testing for complete-
ness, carrying out climatological tests, and checking con-
sistency over time as well as internal and spatial consis-
tency (Spengler, 2002; Kaspar, 2013). The data were nei-
ther corrected for wind drift effects nor homogenized. A
thorough overview of the precision of rain gauge mea-
surements is given in Vuerich et al. (2009). Information
on the stations’ metadata can be found in the Climate
Data Center (ftp://ftp-cdc.dwd.de/pub/CDC/observations_
germany/climate/hourly/precipitation/historical/; last access:
11 December 2018) of DWD.

The DWD weather radar network underwent several up-
grades during the analysis period. In the beginning of
the considered time period five single-polarization systems
(DWSR-88C, AeroBase Group Inc., Manassas, USA) op-
erated without a Doppler filter, the latter being added be-
tween 2001 and 2004. Between 2009 and today, DWD has
exchanged the network of C-band single-polarization sys-
tems of the next generation of type METEOR 360 AC
(Gematronik, Neuss, Germany) and DWSR-2501 (Enterprise
Electronics Corporation, Enterprise, USA) by modern dual-

polarization C-band systems of type DWSR-5001C/SDP-CE
(Enterprise Electronics Corporation), all equipped with a
Doppler filter. During the time of exchange, a portable in-
terim radar system of type DWSR-5001C was installed at
some of the sites. Radar data underwent an operational qual-
ity control system. They were adjusted to gauge data within
a reprocessing suite applying a consistent software version
(version 2017.002) and optimized quality control algorithms
with 5 min resolution (Winterrath et al., 2018a) and 60 min
resolution (Winterrath et al., 2018b).

2.2 Erosivity calculation procedures

Following Wischmeier (1959) and Wischmeier and
Smith (1978) erosivity of a single rain event (Re) was calcu-
lated as the product of the maximum 30 min rain intensity
(Imax30) and the kinetic energy (Ekin) (Eq. 1). A rain event
is erosive by definition if it has a total precipitation (P)
of at least 12.7 mm or a minimum Imax30 of 12.7 mm h−1

(min(Imax30)).

Re = Imax30 · Ekin (1)

The Ekin,i per millimetre rain depth (in kJ m−2 mm−1) was
calculated for intervals i of constant rain intensity I follow-
ing Eq. (2a)–(2c). For all intervals i, Ekin,i was multiplied by
the rain amount of this interval and then summed up to yield
Ekin for the entire event.

Ekin,i =
(
11.89+ 8.73× log10I

)
× 10−3

for 0.05mmh−1
≤ I < 76.2mmh−1 (2a)

Ekin,i =0 for I < 0.05mmh−1 (2b)

Ekin,i =28.33× 10−3 for I ≥ 76.2mmh−1 (2c)

When Imax30 was derived from data with intervals longer
than 30 min, Imax30 was determined as the maximum rain in-
tensity of the event. Erosive events are separated from each
other by rain breaks of at least 6 h (Wischmeier and Smith,
1958, 1978). For example, using 60 min rain data, we defined
events as being separate when five subsequent 60 min inter-
vals without rain occurred. This assumes that rain events stop
and start on average in the middle of the first and the last non-
zero rain interval. The same concept was used for all data sets
with temporal resolutions > 60 min.

The annual erosivity of a specific year (Ry) is the sum of
Re of all n erosive events within this year. The long-term
average annual erosivity (R) is then calculated as

R =
1
k

∑k

j
(
∑n

i
Re,i)j =

1
k

∑k

j
Ry,j , (3)

which is the average of Ry for a number of k years, in the
case of this study 16 years.

While in the USA and other countries often the unit
MJ mm ha−1 h−1 is used, we use N h−1 for Re, because it
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Figure 1. (a) Locations of the 115 rain gauges (dots), the coverage (circles) of the 17 weather radars (crosses) and the location of the 12
rain gauges used for the pseudo-radar data (square; size exaggerated) in Germany. (b) One rain gauge (dot) within one 1× 1 km2 pixel
(bounding box) and isolines of rain depth (taken from Fiener and Auerswald, 2009) illustrating the variability of a single erosive rain event
at 1× 1 km2 grid scale causing positional effects. (c) Distribution of the 12 rain gauges (dots) within an area of 1× 1 km2 (bounding box)
and their corresponding Thiessen polygons. Dashed lines separate the area to a spatial scale of 0.5× 0.5 km2.

Table 1. Overview of the data used to determine the positional effect, the spatial-scale effect, the temporal-scale effect and the method effect.

Purpose Measurement Spatial Temporal Number of Period Event
scale scale stations/pixels number

Positional and spatial-scale effect Rain gauge Point 60 min 115 16 yr 29 610
Radar 1 km2 60 min 115 16 yr 25 884

Spatial-scale and method effect Rain gauge Point 1 min 12 4 yr, Apr–Oct 542
Radar 1 km2 60 min 480× 103 2 months 1.9× 106

Temporal-scale effect Rain gauge Point 1 min 17 16 yr 4599
Radar 1 km2 5 min 17 16 yr 3924

is the unit most often used in Europe and because of its sim-
plicity. The units can be easily converted by multiplying the
values in N h−1 by a factor of 10 to yield MJ mm ha−1 h−1.

2.3 Determination of scale effects

The smoothing caused by decreasing resolution in time and
space mainly decreases intensity, while the total amount of
rainfall should, in principle, be unaffected. This decrease in
intensity has two consequences. First, the intensity threshold

min(Imax30) that defines an erosive event is less often met and
thus has to be adjusted to arrive at the same number of ero-
sive rains irrespective of resolution. Second, scaling factors
forRe are required. A temporal scaling factor tτ,σ scales from
temporal resolution τ to 1 min resolution at a certain spatial
scale with pixel width σ . A spatial scaling factor sσ scales
from spatial resolution σ to point resolution (rain gauge).
A method effect m may additionally occur, which quantifies
the difference between erosivities obtained from rain gauges
and from radar measurements at identical spatial and tempo-
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ral scales. It is caused by the additional smoothing resulting
from the radar technique and the adjustment and correction
steps subsequently required. It may also include the errors
of rain measurement that differ between the rain gauge and
radar methods. The positional effect pRe describes the aver-
age relative deviation of erosivity of single events derived at
1 km resolution and at point scale from rain gauges located
within the respective 1 km pixel including the spatial-scale
and method effects. The positional effect cannot be used for
correction, but it is a measure of variability within a certain
pixel.

Adjusting the intensity threshold to account for smoothing
at low resolution is appropriate only for the temporal reso-
lution. With decreasing spatial resolution some areas will be
included within a pixel that actually received erosive rain,
while other areas within the pixel did not. Without adjust-
ment of the intensity threshold the entire pixel may be classi-
fied as non-erosive, while adjustment of the threshold would
then indicate an erosive event also in those areas within a
pixel where no erosive rain had occurred. Adjusting the in-
tensity threshold with decreasing spatial resolution could not
correct both errors simultaneously. Even more important, the
criterion of breaks that separate between events is biased for
large areas. Any rain at some place within a large pixel ab-
rogates an existing break even if it does not fall at a site that
experienced an erosive rain event. The loss of a break with in-
creasing pixel size decreases the number of events even when
all events are considered. Adjusting the number of events in
this case would be a wrong correction. Hence for the spatial
resolution the threshold effect was included in sσ , while for
the temporal-scale effect the intensity threshold could be ad-
justed. As a result the number of erosive events can correctly
be estimated at low temporal resolution with this adjustment
at point scale, while for a spatial resolution lower than point
scale the number of erosive events will be wrong compared
to point scale. Only the sum of erosivities over a longer pe-
riod of time (months, years or longer) can then be corrected
with the spatial scaling factor.

The hyetographs of the high-density network of 12 rain
gauges were spatially integrated to yield hyetographs at 0.5
or 1 km pixel width. The average deviation of annual ero-
sivities calculated from hyetographs at point scale and from
spatially integrated hyetographs at 0.5 or 1 km pixel width
yielded the spatial scaling factors sσ=0.5 and sσ=1. The indi-
vidual deviation of event erosivities at point scale from the
average was due to the positional effect pRe (for an example
see Fig. 1b). The average positional effect pRe was calculated
as the geometric mean of the k ratios of Re derived from rain
gauge (σ = 0) and 1 km2 pixel data (σ = 1), for which nei-
ther rain gauge Re nor pixel Re was zero:

pRe = 10(
∑k
i=1log10(Re,σ=0/Re,σ=1)i/k). (4)

The positional effects were determined separately for events
with Re,σ=1 larger and Re,σ=1 lower than Re,σ=0. Rains that

were erosive at only one of both spatial scales were excluded
from the calculation of the geometric mean, and the percent-
ages of these events were determined for both cases.

Erosivity at point scale and at 1 km2 pixel scale were also
compared based on > 20 000 erosive rain events at 115 lo-
cations distributed over Germany, where a rain gauge was
situated within a radar pixel. The long-term (16 years) aver-
age deviation of R between point and pixel scale was due to
the smoothing effects of the spatial-scale effect and the radar
technique (method effect). The method effect was quantified
by subtracting the spatial-scale effect, as obtained from the
dense rain gauge network, from the combined effect, as ob-
tained by comparing erosivities from rain gauges with radar-
derived erosivities. The combined effects of spatial scale and
method were also tested for seasonal variation.

For spatial resolution lower than 1 km pixel width, radar
data were aggregated to yield pixel widths of up to 18 km.
Erosivities were calculated from the aggregated rain data
and compared to the erosivities at 1 km pixel width, which
were averaged for the pixel width being examined. This com-
parison was carried out for radar data covering an area of
800×600 km2 over 2 months (1.9×106 events at 1 km pixel
width; Table 1).

The temporal resolutions of the rain gauge data and the
radar data differed (1, 5, 60 min). Erosivities derived from
these data were adjusted to 1 min resolution with the appro-
priate temporal scaling factor. The temporal scaling factors
were determined on two spatial scales, at point scale and
at 1 km pixel width. To this end, 17 out of the 115 point–
pixel pairs were selected randomly, and rain data for the
period 2001 to 2016 (16 years) with 1 min resolution from
rain gauges and 5 min resolution from radar measurements
were used. The rain gauge data yielded a total of 4599 ero-
sive events, for which rain data were aggregated to 2, 5, 10,
15, 30, 45, 60, 80, 100 and 120 min intervals, and Re was
determined as described in Sect. 2.1. The intensity threshold
min(Imax30)τ was adjusted until the annual number of erosive
rain events at the respective temporal resolution τ was equal
to that at τ = 1 min. The temporal scaling factor (tτ=x,σ=y)
for Re was then obtained at point scale (σ = 0) from

tτ=x,σ=0 =
∑N

i=1
(Re,τ=1,σ=0)i/

∑N

i=1
(Re,τ=x,σ=0)i, (5)

which is the ratio of the sums of Re derived from 1 min data
and Re derived from data with τ > 1 min at point scale. Ad-
ditionally, for 1 km pixel width tτ=x,σ=1 was estimated by
using an intermediate radar product of RADOLAN with a
temporal resolution of 5 min that was recursively adjusted
corresponding to the 60 min RADOLAN data (analogously
to Fischer et al., 2016). This was done for the 17 grid pixels
where the 17 rain gauges were located. The temporal scal-
ing factors were derived from RADOLAN data as described
above (Eq. 5) but relative to τ = 5 min. The resulting fac-
tors were then multiplied by the scaling factor for τ = 5 min
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obtained from the rain gauge data to yield scaling factors rel-
ative to a temporal resolution τ = 1 min.

The temporal scaling factors tτ=x,σ=0 were additionally
determined for each month (January–December) and sepa-
rately for rain gauges located in the northern and southern
halves of Germany (7 and 10 rain gauges, respectively) to
test for any seasonal or regional dependence of the factors.

Finally, the combined procedure of an adjusted intensity
threshold and a temporal scaling factor was validated by
comparing annualRy obtained from 60 min RADOLAN data
to Ry derived from RADOLAN data with 5 min resolution.
This was done for the remaining 98 (115–17) grid pixels and
16 years, yielding a total of 1568 Ry.

2.4 Statistics

We mainly used arithmetic means even though most distri-
butions were strongly skewed. Arithmetic means are less ro-
bust than other measures like geometric means, but our huge
sample size compensated for this. Using arithmetic means
instead of robust measures is a requirement of the USLE,
which sums up erosivities over 1 year or longer. The arith-
metic mean provides an unbiased estimator of event erosivity
that allows sums to be calculated over longer periods of time
(e.g. 1 year). Otherwise different scaling factors would be-
come necessary for individual events and for temporal sums
depending on their temporal length.

Statistical spread is quantified by the standard deviation
(SD) or the root mean squared error (RMSE), and the uncer-
tainty of the scaling factors is quantified by their 95 % inter-
val of confidence (CI). Validation included the calculation of
the Nash–Sutcliffe efficiency (Nash and Sutcliffe, 1970).

3 Results

3.1 Temporal-scale effect

With 17 rain gauges operating at 1 min resolution, 4599 ero-
sive events were determined in 16 years. Re ranged from 0.1
to 178.4 N h−1 with an average of 5.8 N h−1. The number
of events with P ≥ 12.7 mm or Imax30 > 12.7 mm h−1 de-
creased pronouncedly when resolution decreased from 1 min
down to 120 min (by 1, 14 and 16 % at a resolution of 2,
60 and 120 min, respectively). To avoid this loss of events,
min(Imax30)τ was decreased continuously with decreasing
temporal resolution (Fig. 2b). The decrease was less steep
below a temporal resolution of 30 min than above:

min(Imax30)=−0.59τ 0.5
+ 13.23 for τ ≤ 30min, (6a)

min(Imax30)= 147τ−0.79 for τ > 30min. (6b)

This change at a resolution of 30 min is because 30 min is the
time interval in which the maximum is searched for. For reso-
lutions higher than 30 min, there is a discrepancy between the
true period of Imax30 and the period of Imax30 that is coerced

Figure 2. (a) Time periods influencing the underestimation of
Imax30 when temporal resolution is 30 min (or higher) or when tem-
poral resolution is 60 min (or any resolution > 30 min). (b) Mini-
mum threshold for Imax30 (min(Imax30)τ ) derived from rain gauge
(solid circles) and radar data (open squares) required to obtain the
same number of erosive events as with a temporal resolution of
1 min; lines show Eq. (6a) and (6b) (RMSE is 0.10 and 0.39).
(c) Scaling factor tτ,σ to scale Re or R for temporal resolution τ
when spatial resolution σ is either rain gauge scale (solid circles) or
1×1 km2 (open squares), respectively; lines show Eq. (7a), (7b) and
(7c) (for all RMSE ≤ 0.04). The x axes in (b) and (c) are square-
root-scaled.
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by the temporal resolution (see grey bars in Fig. 2a). The
error caused by this discrepancy only results from the dif-
ference in intensity immediately before and after true Imax30.
When the temporal resolution becomes less than 30 min, at-
tenuation caused by the period exceeding the 30 min inter-
val additionally decreases in intensity (see 60 min resolution
in Fig. 2a). This attenuation increases the lower the tempo-
ral resolution becomes, and it caused Eq. (6b) to be much
steeper than Eq. (6a).

The decrease in min(Imax30)τ was identical for both the
rain gauge scale and the 1 km2 scale (slope between both
scales: 1.0067, r2

= 0.9858, n= 9). For both scales com-
bined, RMSE was only 0.10 and 0.39 for Eq. (6a) and (6b),
respectively. Thus, both equations were valid for point scale
and for a grid width of 1 km.

Rain erosivity also decreased with decreasing temporal
resolution; in turn, the scaling factor tτ,σ increased (Fig. 2c;
Eq. 7a–7c). For intervals τ ≤ 30 min, the increase was iden-
tical for rain gauge scale and for radar pixels of 1 km pixel
width. The increase of tτ,σ was much steeper when τ be-
came longer than 30 min. This increase then depended on
the spatial scale and was larger for rain gauge scale than for
radar pixels of 1 km pixel width (Fig. 2c). The behaviour of
tτ,σ was caused by underestimating Ekin and underestimat-
ing Imax30. The underestimation of Imax30 was the stronger
effect (data not shown). It prevailed for time intervals greater
than 30 min and caused the break at a temporal resolution of
30 min, as already shown for min(Imax30)τ . The identical be-
haviour of intensity with decreasing temporal resolution at
rain gauge scale and at 1 km2 radar pixel scale that was al-
ready evident for min(Imax30)τ thus also led to identical tτ,σ
for both spatial scales as long as τ was less than 30 min. For
τ > 30 min the attenuation of intensity peaks came into play.
This attenuation was less for the 1 km radar data than for the
rain gauge data because the time a moving intensity peak re-
mains in a 1 km2 grid pixel is longer than the time it requires
to pass a rain gauge. In consequence, three equations for tτ,σ
(Eq. 7a–7c) were necessary to adjust Re, Ry or R to 1 min
resolution at the respective spatial scale.

For τ ≤ 30min and point or 1× 1km2grid scale:

tτ,σ =
τ

100
+ 1 (7a)

For τ ≥ 30min and point scale or :

tτ,σ=0 =
τ

40
+ 0.55 (7b)

For τ ≥ 30min and 1× 1km2 grid scale:

tτ,σ=1 =
τ

50
+ 0.70 (7c)

The RMSE of all three equations was less than 0.04. The
validity of combining the effects of min(Imax30)τ=60 and
tτ=60,σ=1 was supported by the close correlation of tem-
porally scaled Ry derived from 5 and 60 min RADOLAN

Figure 3. Spatial scaling factors for long-term average annual R.
Open circles result from rain gauges aggregated to pseudo-radar
pixels. Open squares result from radar and aggregation of radar data.
Error bars represent the 95 % confidence interval. Lines denote a
multiple regression (see text). The x axis is square-root-scaled to
improve visibility at low pixel width.

data, for which the Nash–Sutcliffe efficiency was 0.9483
(n= 1568) while RMSE was 8.8 N h−1 yr−1.

Variation among monthly tτ,σ=0 was small, especially
for τ ≤ 60 min. The coefficient of variation among monthly
tτ,σ=0 was ≤ 6 % for τ ≤ 60 min and 11 % to 14 % for τ >
60 min. It was not clear if there was seasonality in this varia-
tion because for some temporal resolutions tτ,σ=0 was higher
for summer than for winter months, while for other resolu-
tions the opposite was the case.

There was also a negligible regional variation for τ >
30 min, while no difference could be found for τ ≤ 30 min.
For intervals longer than 30 min the scaling factor tτ,σ=0 in-
creased slightly more in northern Germany (+4 %) than in
southern Germany (−2 %), compared to the whole of Ger-
many. This small difference will only become relevant if data
of very low temporal resolution are used.

3.2 Spatial-scale effects

Erosivities from all data of rain gauge–radar pixel pairs were
calculated by application of appropriate min(Imax30)τ and
temporal scaling factors to enable comparison. Annual ero-
sivity Ry for the 0.5× 0.5 km2 pseudo-radar data set was
7.3 % lower than the average Ry of the rain gauges. This re-
sulted in a factor sσ=0.5 of 1.08 (CI: 1.00–1.16). This factor
increased to sσ=1 = 1.15 (CI: 1.04–1.26) when Ry was cal-
culated from 1× 1 km2 pseudo-radar data (Fig. 3).

For the rain gauges of the 115 rain gauge–radar pixel
pairs, long-term average annual R varied between 42
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Table 2. Percentage of cases that were erosive at point (115 rain
gauges) or pixel scale (115 radar pixels) relative to a total of 35 124
point–pixel pairs of rain events that were erosive on at least one of
both scales.

Point scale Pixel scale Percentage

Erosive Not erosive 27 %
Not erosive Erosive 16 %
Erosive Erosive 57 %

and 223 N h−1 yr−1 over 16 years and was on average
90.2 N h−1 yr−1. For the radar pixels, R varied between 26
and 146 N h−1 yr−1 but was on average only 62 N h−1 yr−1

(Fig. 4). In this case the deviation was equal to a factor of
1.48 (CI: 1.43–1.52), which was considerably larger than
sσ=1 obtained from pseudo-radar data, for which no differ-
ence in measurement method occurred between point scale
and pixel scale. This difference was hence assigned to a
method effect (Fig. 3).

The monthly comparison of the 115 rain gauge–radar pixel
pairs over 16 years did not yield significant differences be-
tween months due to the large CI of the combined scale and
method effects (CI between ±4 % and ±9 % for the individ-
ual months), but on average this combined effect was lower
during the hydrological winter months (1.16; CI: 1.12–1.21)
than during the hydrological summer months (1.42; CI: 1.30–
1.53). This difference, despite being significant (p < 0.001),
was unimportant because of the small contribution of winter
months to annual erosivity.

For the large and contiguous radar data set of 800×
600 pixels, 1.9×106 events were recorded at 1×1 km2 scale.
For these events, Re was on average 5.1 N h−1 and ranged
from 0.5 to 1270 N h−1. Aggregating these pixels to larger
square pixels decreased Re. At 18× 18 km2, Re was on
average 4.4 N h−1 and ranged from 0.2 to 221.6 N h−1. In
consequence, the spatial scaling factor sσ increased further
(Fig. 3). The increase in scaling factors over the entire range
from point scale to 18 km grid width could be described by
a multiple regression (r2

= 0.9995, n= 21) accounting for
pixel width σ (in km) and the method effect m depending
on the method µ (which is 0 for rain gauges and 1 for radar
data):

m+ sσ = 1+ 0.35µ+ 0.092σ 3/4. (8)

The CI was ±0.004 for the slope of σ and ±0.02 for the
method effect.

On average for the pseudo-radar pixel, rain was erosive for
only 10 out of 12 rain gauges. Hence only 83 % of the 1 km2

pixel was covered by an erosive event. The fraction covered
by the erosive event decreased further the larger the pixel size
became (fraction = 83 % −10.3× ln(pixel size (km2)), r2

=

0.9974, n= 18). On average only about 50 % of a 5× 5 km2

pixel and 25 % of a 17×17 km2 pixel received an erosive rain
event. This makes it increasingly difficult to detect erosive

Figure 4. Annual erosivity Ry (grey points) and multi-annual mean
erosivity R (black circles) derived from radar pixel and rain gauge
data for 115 point–pixel pairs and 16 years. The difference in slope
between the solid line and unity (dashed line) is due to the spatial
scale and method effects.

rains the larger pixel size becomes.This caused the strong
increase in the spatial scaling factor and indicated a strong
positional effect.

3.3 Positional effects

The positional effect as defined here describes the variabil-
ity of Re within 1× 1 km2. Using the pairs with the true
radar data, 29 610 erosive rain events were recorded dur-
ing 16 years at the 115 rain gauges. On average, Re was
5.6 N h−1 and ranged from 0.1 to 547.2 N h−1. For the cor-
responding 115 radar pixels, 25 884 erosive events were
recorded during the 16 years. Mean Re was 4.4 N h−1 and
ranged from 0.2 to 318.9 N h−1.

Combining all events of the 115 rain gauge–radar pixel
pairs during 16 years that were at least erosive at rain gauge
scale or at radar pixel scale resulted in 35 124 events. Only
57 % of them were erosive at both scales, while the crite-
ria for an erosive event were met exclusively at pixel scale
for 16 % of all events and exclusively at rain gauge scale for
27 % of all events (Table 2). The gradients of erosivity within
1 km2 were huge. The largest event that was recorded at a
rain gauge while the radar pixel indicated no erosive event
was 156 N h−1. The largest event for the opposite case, i.e.
that radar recorded an erosive event while the rain gauge
recorded no erosive event, was similarly high (180 N h−1).
The mean Re of erosive events which were recorded for the
radar pixel while Re at the corresponding rain gauge was
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Table 3. Percentage of cases that were erosive at point (rain gauge)
or pixel scale, using the pseudo-radar data; in total 579 point–pixel
pairs of rain events were erosive on at least one of both scales.

Point scale Pixel scale Percentage

Erosive Not erosive 9 %
Not erosive Erosive 6 %
Erosive Erosive 85 %

zero was 2.9 N h−1 (SD:±4.9 N h−1). The meanRe of events
which were erosive at a rain gauge but not for the correspond-
ing radar pixel was also 2.9 N h−1 (SD: ±5.6 N h−1).

The percentage of unpaired events was not significantly
related to the geographical location, neither longitude (r =
−0.02, p = 0.23) nor latitude (r =−0.01, p = 0.83). It was
also independent of the distance to the adjacent radar sta-
tion (r =−0.02, p = 0.79), which might be used as a proxy
for increasing noise in the radar data. The percentage was
higher in winter (October–March) with 34 % (SD: ±2.4 %)
than in summer (April–September) with 25 % (SD:±2.4 %).
The probability of remaining just below the threshold of an
erosive event on one of both scales was higher in winter than
in summer as in general winter events are less intensive than
summer events. Mean Re in winter was only 35 % of mean
Re in summer.

Rain gauge Re was larger than radar Re for 74 % of those
point–pixel pairs (points above the line of unity in Fig. 5)
which were erosive on both scales (19 944 events). Mean pRe

was 1.54 (CI: ±0.01) for these events. This value quantifies
the mean deviation of all locations within a 1 km2 pixel that
experience a higher erosivity than the mean. For individual
locations, the deviation can be much larger, which was al-
ready evident from the magnitude of the largest events that
were recorded only on one of both scales. For individual
locations with an erosive event on both scales, pRe could
be considerably higher than 10 (see “outliers” in Fig. 5).
Rain gauge Re was lower than radar Re for only 26 % of all
events (points below the line of unity in Fig. 5), and pRe was
0.72 (CI:±0.01). Again, the deviation of individual locations
within 1 km2 could be much larger.

For the dense rain gauge field used to create pseudo-radar
data, 579 point–pixel pairs of events were at least erosive at
rain gauge scale or at pseudo-radar pixel scale. For these 579
events, Re derived from rain gauge data ranged from 0 to
45.5 N h−1 (mean: 3.9 N h−1), and Re derived from pseudo-
radar data ranged from 0 to 28.1 N h−1 (mean: 3.4 N h−1)
(Fig. 6). For 9 % of these events, the event was not erosive
with pseudo-radar but at the rain gauge, and for 6 % the op-
posite was true (Table 3).

For 67 % of those events which were erosive at both scales,
rain gauge Re was larger than pseudo-radar Re and pRe was
1.28 (CI: 1.25–1.30). For 33 % of these events, rain gauge Re
was lower than pseudo-radar Re and pRe was 0.81 (CI: 0.77–

Figure 5. Comparison of event erosivity Re calculated from radar
data and Re from rain gauge data for 115 radar pixels that enclose
a rain gauge. Only events that were erosive at both scales (19 944
events) during the 16-year period are shown. The dashed line repre-
sents unity. Axes are log-scaled. Note that no spatial scaling factor
or method factor was applied because these factors also included the
effect of incomplete coverage of the pixel by an erosive rain cell.

0.85). Also in this case, where measurement errors could be
excluded because rain gauge Re and pseudo-radar Re were
calculated from the same data, the variation within 1 km2 was
again huge. For the single days with erosive events,Re varied
greatly between rain gauges. For an example see height of
the rectangle in Fig. 6. Although this was the largest event
in this data set, one rain gauge remained below the threshold
and hence recorded no erosive event. This large variation was
also reflected by the large coefficient of variation between
rain gauge Re for the same day (mean: 68 %).

4 Discussion

Our analysis showed pronounced effects of temporal scale,
spatial scale, position and measuring method. These effects
were all caused by the sensitivity of erosivity calculation to
intensity peaks and because thresholds were used for the def-
inition of erosivity. These strong effects call for using tempo-
rally and spatially highly resolved rain gauge measurements,
like those used in the development of the USLE and most
subsequent studies. Our study, however, also showed strong
gradients in erosivity that were also caused by the sensitivity
to intensity peaks and by the thresholds which earlier stud-
ies also showed (Fiener and Auerswald, 2009; Fischer et al.,
2016; Krajewski et al., 2003; Pedersen et al., 2010; Peleg et
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Figure 6. Event erosivity Re at 12 rain gauges located within a
1 km2 pixel vs. Re based on pseudo-radar data calculated from the
hyetographs of the 12 rain gauges (open grey circles). Filled black
circles show the average Re of all 12 rain gauges vs. the Re from
pseudo-radar rainfall. Note that the average Re can be consider-
ably larger than zero while the averaged rainfall of the pseudo-radar
remains below the thresholds of erosivity (black circles along the
y axis). Rectangular frame shows variation of Re for a single day.
Axes are square-root-scaled to improve resolution at low Re.

al., 2016). Erosivity can thus reliably be recorded at the po-
sition of a rain gauge, but this information cannot even be
extrapolated over a distance of only 500 m (half of our radar
pixel widths). This was illustrated by the fact that, within this
distance, Re could be zero or > 150 N h−1, which is more
than twice the annual erosivity in Germany (Auerswald,
2006; Sauerborn, 1994). It is also illustrated by the fact
that the largest Re that was recorded within only 2 months
was 1270 N h−1 when contiguous measurements were used,
while the largest Re that occurred during 16 years when
the same region was covered by 115 rain gauges was only
547 N h−1. Hence rain gauge measurements fail to record
many erosive events that occur in their close vicinity (even
< 500 m). Erosivity determined by a rain gauge cannot be
extrapolated to a small watershed, to farms or even to fields.
Discrepancies between model predictions and measurements
of erosion that can be found in many studies (Govers, 1991;
Liu et al., 1997; Risse et al., 1993; Rüttimann et al., 1995;
Zhang et al., 1996) probably originate in part from this strong
positional effect. Such strong discrepancies during individual
events even exist between replicates of bare plots (Nearing et
al., 1999) or between replicated vegetated plots and cannot be
explained by plot characteristics. They do not appear in sub-
sequent runoff and soil loss observations (Wendt et al., 1986).

Erosion prediction and model development are thus strongly
limited by the unexplained variability caused by short-range
erosivity gradients. Hence, there is no alternative to using
contiguous rain measurements. Radar technology provides,
for the first time, measurements that fulfil this need.

Contiguous measurements, on the other hand, suffer from
the fact that they cannot be carried out at the same temporal
and spatial scale as rain gauge measurements, and the method
of measurement differs. Here we provide scaling factors that
help to partly overcome this problem and that allow radar
measurements to be used for erosivity calculations. These
factors, however, do not solve the problem that contiguous
measurements integrate over a certain space and time and
thus that the information about the variation within these do-
mains is lost. In particular, the positional effect can only be
used to quantify uncertainty within a radar pixel, but it can-
not be used to predict erosivity at specific locations within
a pixel. This large uncertainty is probably also one of the
main reasons for the discrepancy between observed soil loss
and predicted soil loss based on radar rain data for individ-
ual fields, whereas this discrepancy disappeared as soon as
many fields were grouped, irrespective of how this group-
ing was done (Fischer et al., 2018a; Auerswald et al., 2018).
With future improvements in technology it may become pos-
sible to further improve temporal and spatial resolution of
contiguous rain data and, thus, to reduce the uncertainty of
event erosivities.

Temporal scaling factors had already been developed
(Auerswald et al., 2015; Agnese et al., 2006; Istok et al.,
1986; Williams and Sheridan, 1991; Weiss, 1964; Yin et al.,
2007) because they are also required for rain gauge measure-
ments of low temporal resolution (in data storage). Our tem-
poral scaling factors were of a similar order of magnitude to
those in other studies. However, our data showed that using
a scaling factor is not sufficient because the intensity thresh-
old also has to be adjusted in order to identify the correct
number of erosive events. The existence of an erosive event
and long-term sums of erosivity will otherwise be incorrect,
even with a temporal scaling factor. To our knowledge our
study provides, for the first time, a function that enables the
intensity threshold to be adjusted according to the temporal
resolution of the rain data. Adjustment of the total rain depth
threshold is not necessary because total rain depth should be
independent of the temporal resolution, as long as it is still
short enough to identify the rain breaks that separate individ-
ual events.

Despite providing intensity thresholds and scaling factors
for Re, Ry and R for different temporal resolutions, we advo-
cate using a high resolution in order to not lose information.
All scaling factors can only represent average behaviour and
cannot reflect the characteristic of an individual event. A high
resolution is easier to achieve in the time domain than in the
spatial domain. In particular, it is advantageous to have a tem-
poral resolution that is higher than 30 min because scaling
factors increased strongly for less resolved data. For shorter
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time increments, only compensation for the error that re-
sulted from an imperfect identification of the period of Imax30
was necessary. Longer time increments than 30 min addition-
ally attenuated Imax30 and thus blurred this information.

The spatial scale was more difficult to consider than the
temporal scale due to the large positional effect. In particular,
large parts of a pixel remained below the thresholds of an ero-
sive event even when measurement errors could be excluded,
like in the case of the pseudo-radar pixel that used rain gauge
measurements. On average, 17 % of the rain gauges within a
1 km2 pixel remained below the erosivity threshold while the
other rain gauges recorded an erosive event. This percent-
age increased strongly with increasing pixel size. In conse-
quence, the spatial-scale effect cannot be corrected for indi-
vidual events but only for the averages of many events.

The spatial scaling factor is conceptually the inverse of the
so-called areal reduction factors, which are used to reduce
rain intensity from rain gauge measurements when scaled to
catchment areas depending on the duration and return period
of the rain event (Allen and DeGaetano, 2005; De Michele et
al., 2001; Stewart, 1989). This conceptual difference is due
to the difference in the intended purpose of contiguous rain
data. While in catchment hydrology the average and the rela-
tive distribution of rain depth within a watershed is of interest
(Asquith and Famiglietti, 2000), for erosion analysis rain in-
tensities are important at point and field scale, where erosion
occurs.

The method effect combines all differences in measure-
ment and measuring errors (e.g. the wind effect in the case
of rain gauges). It is thus highly dependent on the specific
configuration of rain gauge measurements and radar mea-
surements, including all subsequent data manipulation steps.
These configurations are usually fairly standardized within
a country (e.g. rain gauge height and diameter are usually
defined) but differ from country to country. Our method ef-
fect may thus only be valid for Germany, whereas applica-
tion to other countries, even if they use similar rain gauge
and radar protocols (e.g. Goudenhoofdt and Delobbe, 2016;
Koistinen and Michelson, 2002), should be done with care.
The same is true for using satellite data or data of commercial
microwave links, which recently have been identified as addi-
tional source for retrieving precipitation (Chwala et al., 2012;
Overeem et al., 2013) and which will require the method ef-
fect to be adapted for this particular approach. The approach
is based on analysing the signal attenuation that depends on
rain intensity. These data are especially valuable in regions
with sparse coverage by conventional measurement devices,
e.g. in parts of the African continent, but may also improve
high-resolution precipitation estimates and forecasts in hy-
drometeorological applications (Chwala et al., 2016).

As an example, for the new German RADOLAN product
that recently became publicly available (spatial resolution:
1 km2; temporal resolution: 60 min) the Imax30 threshold has
to be lowered to 5.79 mm h−1, while the total precipitation
threshold remains at 12.7 mm. The temporal scaling factor

becomes t = 1.9, and the spatial scaling factor becomes s =
1.13, to which the method effect ofm= 0.35 has to be added.
In total, the correction factor is 2.81((1.13+ 0.35)× 1.9).
Hence the change of the Imax30 threshold and the combined
scaling factor are large, and ignoring both would consider-
ably underestimate erosivity. The large change of the Imax30
threshold and the large temporal scaling factor also show that
much information is lost when using data of 60 min resolu-
tion.

This loss of information can be either an advantage or
a disadvantage. It would be a disadvantage in hindcasting,
wherein usually the true pattern of erosivity is wanted. In
this case a better-resolved product like 5 min data should be
used. The Imax30 threshold would then be 11.9 mm h−1, and
the temporal scaling factor would only be t = 1.05, indicat-
ing a minor loss of information. The spatial scaling factor is
already rather low, and the method effect cannot be avoided.

On the other hand the loss of information would be an
advantage in forecasting, which aims at the likely regional
pattern of erosivity. The loss of information removes the in-
fluence of randomly occurring local events of extraordinarily
high magnitude that add noise to the regional pattern of ero-
sivity. The finding that the largest Re within only 2 months
was 1270 N h−1 while the expected long-term average R was
only about 70 N h−1 yr−1 (Sauerborn, 1994) shows that this
single event would add 64 N h−1 yr−1 to a 20-year record of
radar data. Even in a 100-year record this single event would
still be detectable. Using data of 60 min resolution thus re-
duces the need for smoothing the map statistically to remove
the influence of such local events.

5 Conclusions

Large gradients in event erosivity occur that can only be cap-
tured by contiguous rain data. Radar technology enables such
contiguous rain data to be recorded but not at the same tem-
poral and spatial scale as measurements from rain gauges.
Using data of lower temporal and spatial resolution than rain
gauges leads to a pronounced underestimation of erosivity.
Here we provide a set of correction functions that enable this
underestimation to be corrected. In particular, the intensity
threshold has to be modified, and a temporal scaling factor,
a spatial scaling factor and a factor accounting for measure-
ment peculiarities have to be considered. In combination with
contiguous radar rain data this could be a major step forward
in erosion modelling.

Data availability. The data of 31425 erosive rains measured at 115
meteorological stations and at 1 km2 rain radar pixels covering the
location of the respective rain gauge during 2001 to 2016 can be ob-
tained from https://doi.org/10.13140/RG.2.2.26158.36168 (Fischer
et al., 2018b).
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