

Supplement of

Multimodel assessments of human and climate impacts on mean annual streamflow in China

Xingcai Liu et al.

Correspondence to: Qiuhong Tang (tangqh@igsnrr.ac.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Model	Water use	Dam and Reservoirs	Source of irrigation water
			withdrawal
DBH	modeled irrigation	Use GRanD dataset, the number of dams and reservoirs varies	river, reservoirs
		according to the construction year for the VARSOC runs.	
H08	modeled irrigation	Use GRanD dataset, the number of dams and reservoirs varies	river, reservoirs, groundwater
	prescribed domestic and	according to the construction year for the VARSOC runs.	
	industrial water use		
LPJmL	modeled irrigation	Use GRanD dataset, the number of dams and reservoirs varies	river, reservoirs
	prescribed domestic, industrial	according to the construction year for the VARSOC runs.	
	and livestock	Evaporation from reservoir surface is calculated.	
MATSIRO	modeled irrigation	Use GRanD dataset, the number of dams and reservoirs varies	river, reservoirs, groundwater
	prescribed domestic and	according to the construction year for the VARSOC runs.	
	industrial water use		
PCR-GLOBWB	modeled irrigation, domestic,	Use GRanD dataset, the number of dams and reservoirs varies	river, reservoirs, groundwater
	industrial and livestock water use	according to the construction year for the VARSOC runs.	
		Evaporation from reservoir surface is calculated.	
WaterGAP2	modeled irrigation, domestic,	Use GRanD dataset, the number of dams and reservoirs varies	river, reservoirs, lakes,
	industrial and livestock water use	according to the construction year for the VARSOC runs.	groundwater
		Evaporation from reservoir surface is calculated.	

Table S1. Main characteristics of human impacts in the GHMs used in this study.

Number	Station Name	MAF	NSE	River name	Number	Station Name	MAF	NSE	River name
1	Guchengzi	151.26	-0.27	Songhua River	23	Xixian	117.87	0.31	Huai River
2	Fuyu	449.68	0.53	Songhua River	24	Fuyang	117.74	0.63	Huai River
3	Tonghe	1444.43	0.81	Songhua River	25	Lutaizi	639.00	0.80	Huai River
4	Kuerbin	26.94	0.004	Songhua River	26	Bengbu	800.63	0.81	Huai River
5	Chaoyang	18.00	-0.88	Liao River	27	Shishang	1968.28	0.93	Yangtze River
6	Chifeng	7.76	-0.25	Liao River	28	Changyang	431.02	0.75	Yangtze River
7	Tieling	84.36	<-1.0	Liao River	29	Pingshan	4546.38	0.77	Yangtze River
8	Liaozhong	101.43	0.50	Liao River	30	Sinan	910.98	0.79	Yangtze River
9	Changmapu	29.30	-0.37	Northwest Rivers	31	Cuntan	10747.92	0.68	Yangtze River
10	Yingluoxia	51.06	-0.26	Northwest Rivers	32	Datong	28460.19	0.78	Yangtze River
11	Zhamashenke	22.70	0.09	Northwest Rivers	33	Quzhou	207.66	0.80	Southeast Rivers
12	Sandaohezi	16.45	<-1.0	Hai River	34	Zhuji	40.24	0.58	Southeast Rivers
13	Panjiakou	60.87	0.01	Hai River	35	Zhuqi	1721.14	0.91	Southeast Rivers
14	Luanxian	96.09	0.71	Hai River	36	Yangkou	442.85	0.72	Southeast Rivers
15	Xiapu	4.58	<-1.0	Hai River	37	Daojieba	1746.97	0.12	Southwest Rivers
16	Huangbizhuang	32.14	-0.07	Hai River	38	Gulaohe	96.63	0.22	Southwest Rivers
17	Cetian	4.78	-0.01	Hai River	39	Manhao	310.84	0.82	Southwest Rivers
18	Lanzhou	976.80	0.53	Yellow River	40	Jiangbianjie	194.96	0.68	Pearl River
19	Shizuishan	867.25	0.45	Yellow River	41	Duanzhan	2005.11	0.88	Pearl River
20	Longmen	803.67	-0.47	Yellow River	42	Xiayan	449.63	0.82	Pearl River
21	Huayuankou	1103.51	0.09	Yellow River	43	Wuxuan	4130.25	0.81	Pearl River
22	Xianyang	107.26	0.63	Yellow River	44	Boluo	782.04	0.80	Pearl River

Table S2. The Nash-Sutcliffe coefficients (NSE) for the simulated monthly streamflow from VARSOC experiment and observed monthly streamflow $(m^3 s^{-1})$ at the 44 stations over the 1971-2000 period. The observed mean annual streamflow (MAF, $m^3 s^{-1}$) averaged over the period is also shown for each station.

tiite												
	<-30	<-20	<-10	<-5	<0	<5	<10	<20	<30	>=30		
ΔQ_c	2.56	5.24	16.32	13.47	16.42	15.76	10.55	6.84	3.55	9.29		
ΔQ_h	2.28	1.00	3.83	9.04	54.27	26.80	1.29	0.85	0.13	0.50		
ΔQ_a	3.13	7.13	17.11	13.40	16.29	15.69	9.86	5.87	3.83	7.69		

Table S3. The proportions of river segments of China categorized by MAF changes. "<-10" in the header means the river segment showing MAF changes in [-20%, -10%), and so on.

Forcing	Model	CN	SH	LR	NW	HA	YR	HU	YZ	SE	SW	PR
	H08	-1.21	-6.64	-0.85	19.89	-4.34	-2.29	1.71	-1.56	-4.67	2.35	1.96
	DBH	1.30	-4.29	-6.88	6.98	-13.29	-5.81	2.92	2.13	-1.48	5.77	3.10
DCMED 2	LPJmL	0.54	-3.06	-1.51	5.69	-9.79	-8.85	0.28	0.78	-3.22	2.68	3.81
PGMFD V.2	PCR-GLOBWB	-1.04	-7.51	-5.99	6.00	-7.80	-2.32	-5.50	-0.95	-2.95	3.13	0.79
	WaterGAP2	0.39	-3.16	-2.48	4.21	-11.09	-3.76	1.84	0.34	-4.30	3.85	1.81
	MATSIRO	-2.43	-10.04	-3.90	31.15	-6.60	-6.37	-0.51	-2.67	-4.94	1.77	-1.44
	H08	-0.42	-5.26	-8.20	6.79	-14.20	-12.15	9.84	0.22	5.10	-0.23	3.57
	DBH	-0.66	-4.80	-12.31	16.98	-23.13	-10.53	3.09	0.47	0.99	2.30	-0.17
CSWD3	LPJmL	-0.87	-2.67	-8.30	12.96	-13.56	-16.26	4.17	-0.21	2.52	-0.19	2.59
USWF5	PCR-GLOBWB	-2.14	-6.90	-8.17	11.08	-12.07	-7.35	-0.84	-1.43	1.37	0.60	-1.12
	WaterGAP2	-1.00	-3.34	-9.60	15.45	-21.38	-18.03	4.49	-0.46	1.49	0.28	0.31
	MATSIRO	1.09	0.73	-11.25	22.81	-33.18	-24.49	6.21	1.72	2.79	-1.13	2.37
	H08	-6.74	-7.50	-6.16	4.51	-18.85	-14.18	3.31	-6.50	-4.76	-4.34	-6.75
	DBH	-6.38	-8.75	-11.96	-3.84	-26.26	-18.47	-4.47	-5.05	-3.46	-2.85	-6.48
WEDEI	LPJmL	-4.12	-4.16	-7.66	8.27	-14.78	-16.88	0.61	-3.29	-4.59	-3.73	-4.84
WIDEI	PCR-GLOBWB	2.82	-1.94	-1.93	31.61	-7.33	-0.83	-0.05	3.35	1.28	4.87	2.65
	WaterGAP2	-4.69	-4.77	-8.08	9.55	-22.00	-23.05	0.62	-3.88	-5.04	-3.87	-5.27
	MATSIRO	10.43	43.02	9.82	178.78	-0.42	27.95	11.69	11.24	2.80	5.33	4.04
	Median	-0.93	-4.53	-7.27	10.32	-13.43	-9.69	1.78	-0.34	-2.22	1.19	1.30
All ensembles	25 th	-2.36	-6.83	-8.28	6.20	-20.75	-16.72	0.03	-2.40	-4.52	-0.90	-1.36
	75 th	0.51	-3.09	-2.84	19.16	-8.30	-4.27	3.95	0.70	1.46	3.01	2.64

Table S4. Ensemble members of streamflow changes (ΔQ_a , % of MAF) between 1971-1990 and 1991-2010.

Forcing	Model	CN	SH	LR	NW	HA	YR	HU	YZ	SE	SW	PR
	H08	-0.82	-6.55	-2.25	7.20	-7.06	-0.54	2.47	-0.99	-5.03	0.35	2.30
	DBH	2.31	-2.15	-2.55	11.29	-0.32	0.93	7.26	2.47	-0.96	3.76	3.05
DCMED 2	LPJmL	1.70	-1.99	0.33	4.41	-3.76	0.20	4.88	1.94	-2.87	0.12	4.43
PGMFD V.2	PCR-GLOBWB	0.33	-5.87	-3.44	1.09	-2.98	0.21	2.90	0.42	-2.24	1.34	2.23
	WaterGAP2	1.19	-2.73	-0.06	5.34	-3.93	-0.23	7.57	1.12	-3.86	2.04	2.47
	MATSIRO	-3.79	-13.87	-8.12	-5.06	-14.63	-20.25	-8.49	-3.69	-4.73	-2.05	-1.90
	H08	0.02	-4.41	-8.83	10.51	-15.67	-10.08	11.16	0.72	4.85	-1.53	3.92
	DBH	0.63	-1.54	-1.94	28.33	-7.97	-5.12	8.66	0.93	1.42	2.02	-0.11
CSWD2	LPJmL	0.39	-1.19	-4.20	16.21	-8.16	-8.63	9.36	0.75	2.83	-1.54	3.11
US WP5	PCR-GLOBWB	-0.72	-5.45	-5.20	10.00	-8.34	-5.57	6.40	-0.16	1.93	-0.05	0.21
	WaterGAP2	-0.08	-2.55	-6.78	27.65	-14.24	-15.34	11.99	0.39	1.94	-0.54	0.86
	MATSIRO	-0.77	-3.21	-16.35	12.44	-53.34	-40.28	5.67	0.19	3.03	-3.49	1.70
	H08	-6.12	-7.13	-6.60	5.11	-19.75	-11.21	4.52	-5.75	-5.03	-5.93	-6.47
	DBH	-4.87	-6.37	-6.11	2.70	-13.98	-12.34	1.91	-4.00	-2.90	-4.28	-6.02
WEDEI	LPJmL	-2.73	-2.91	-4.42	12.00	-10.50	-9.73	6.45	-1.97	-4.10	-4.83	-4.04
WFDEI	PCR-GLOBWB	4.71	-0.30	1.13	30.71	-2.89	1.44	7.22	4.99	1.97	4.93	4.05
	WaterGAP2	-3.77	-4.03	-5.46	17.37	-15.51	-18.55	8.14	-2.93	-4.44	-5.38	-4.47
	MATSIRO	-1.28	1.25	-6.82	96.98	-13.82	-20.52	4.85	-0.40	-0.52	-3.67	-3.94
	Median	-0.29	-3.06	-4.81	17.86	-9.42	-9.35	6.43	0.17	-1.60	0.55	1.28
All ensembles	25 th	-2.24	-5.77	-6.73	11.71	-14.53	-14.85	4.61	-1.89	-4.04	-1.17	-3.43
	75 th	0.49	-2.03	-2.32	33.21	-4.71	-0.51	7.99	0.76	1.94	2.82	2.90

Table S5. Ensemble members of streamflow changes induced by climate variability (ΔQ_c , % of MAF) between 1971-1990 and 1991-2010.

Forcing	Model	CN	SH	LR	NW	HA	YR	HU	YZ	SE	SW	PR
	H08	-0.42	-0.09	1.39	-2.93	2.72	-1.51	-0.76	-0.44	0.36	-0.06	-0.34
	DBH	-0.98	-2.13	-4.33	-6.68	-12.98	-6.49	-4.35	-0.20	-0.52	-0.08	0.06
DCMED v 2	LPJmL	-1.40	-1.07	-1.85	-2.53	-6.03	-8.76	-4.60	-1.11	-0.35	-0.27	-0.62
PGMFD V.2	PCR-GLOBWB	-1.32	-1.64	-2.55	-0.93	-4.83	-2.24	-8.39	-1.12	-0.71	-0.19	-1.44
	WaterGAP2	-0.86	-0.43	-2.42	-4.40	-7.15	-3.28	-5.73	-0.67	-0.44	-0.05	-0.66
	MATSIRO	1.09	3.83	4.22	-4.91	8.03	14.39	7.98	1.10	-0.21	0.01	0.45
	H08	-0.51	-0.85	0.63	-5.07	1.47	-1.88	-1.33	-0.44	0.25	-0.05	-0.35
	DBH	-1.12	-3.26	-10.37	-12.44	-15.16	-5.24	-5.57	-0.31	-0.43	-0.08	-0.06
CSWD2	LPJmL	-1.31	-1.48	-4.10	-4.66	-5.40	-7.31	-5.19	-0.87	-0.31	-0.25	-0.52
US WP5	PCR-GLOBWB	-1.14	-1.45	-2.97	-1.63	-3.72	-1.59	-7.24	-0.95	-0.56	-0.15	-1.33
	WaterGAP2	-0.93	-0.79	-2.82	-12.67	-7.13	-2.33	-7.50	-0.79	-0.45	-0.03	-0.54
	MATSIRO	1.59	3.94	5.10	-6.67	20.16	16.41	0.54	1.57	-0.25	0.17	0.67
	H08	-0.65	-0.37	0.44	-4.36	0.89	-2.76	-1.21	-0.58	0.26	-0.05	-0.28
	DBH	-1.45	-2.38	-5.85	-5.73	-12.28	-5.93	-6.38	-0.87	-0.56	-0.05	-0.46
WEDEI	LPJmL	-1.43	-1.25	-3.24	-6.81	-4.28	-6.81	-5.84	-1.13	-0.49	-0.30	-0.80
WFDEI	PCR-GLOBWB	-1.32	-1.63	-3.06	-3.35	-4.44	-1.98	-7.27	-1.07	-0.69	-0.16	-1.40
	WaterGAP2	-1.03	-0.73	-2.62	-12.11	-6.48	-4.21	-7.52	-0.86	-0.60	-0.02	-0.79
	MATSIRO	11.57	41.77	16.64	-5.89	13.41	49.06	6.84	11.98	3.32	7.34	7.98
	Median	-1.04	-0.96	-2.58	-7.96	-4.63	-2.60	-5.38	-0.74	-0.44	-0.07	-0.49
All ensembles	25 th	-1.40	-1.60	-3.20	-15.58	-6.97	-5.84	-7.03	-0.96	-0.55	-0.19	-0.76
	75 th	-0.57	-0.39	0.58	-5.90	1.33	-1.71	-1.24	-0.35	-0.22	-0.05	-0.11

Table S6. Ensemble members of streamflow changes induced by DHI change (ΔQ_h , % of MAF) between 1971-1990 and 1991-2010.

Period		1981-1990			1991-2000		2001-2010			
Region	ΔQ_h	ΔQ_h_{25} th	ΔQ_h_{75th}	ΔQ_h	ΔQ_h_{25} th	ΔQ_h_{75th}	ΔQ_h	ΔQ_h_{25} th	ΔQ_h_{75th}	
CN	-0.37	-0.58	0.05	-0.65	-1.39	0.89	-1.62	-1.94	-0.78	
SHJ	-1.78	-2.02	-0.34	-1.46	-2.01	-0.97	-2.15	-2.57	-1.47	
LR	-3.43	-4.38	-0.23	-2.30	-3.18	1.92	-5.21	-8.29	-3.67	
NW	-6.09	-8.15	-4.18	-8.99	-13.12	-4.58	-13.53	-25.40	-9.97	
HA	-2.81	-7.40	-0.98	-4.49	-6.58	2.09	-7.07	-10.65	1.89	
YR	-7.49	-13.76	-3.83	-4.10	-6.46	-1.83	-8.95	-10.95	-3.71	
HU	-1.97	-3.74	-0.03	-5.53	-7.41	-2.20	-7.01	-10.35	-0.54	
YZ	0.05	-0.19	0.64	-0.38	-0.93	1.39	-0.73	-1.18	0.37	
SE	-0.32	-0.42	-0.16	-0.37	-0.58	-0.18	-0.85	-1.01	-0.46	
SW	-0.03	-0.06	-0.01	-0.07	-0.19	-0.04	-0.08	-0.30	-0.06	
PR	-0.31	-0.54	-0.14	-0.75	-1.32	-0.22	-0.42	-0.78	-0.19	

Table S7. Ensemble medians, 25th and 75th percentiles of MAF changes (%) induced by DHI change (ΔQ_h) from 1971-1980 to 1981-1990, 1991-2000, and 2001-2010, respectively. All ΔQ_h values are percentages of the MAF from VARSOC simulations over the 1971-1980 period.

Table S8. Relative contributions of DHI from previous studies. ΔQ_a denotes the relative contribution of DHI and is computed as $100 \times \Delta Q_h/\Delta Q_a$ in the studies. Period 1 denotes the period without (or with little) human impact, Period 2 denotes the period with human impact. Period 2 is blank when no sub-periods were used in the study.

Major River	River	ΔQ_{a} (%)	Period 1	Period 2	Station	Latitude	Longitude	Catchment area (km²)	Reference	
Hai River	Qinlong River	-41.5	1957-1979	1980-2000	Taolinkou	40.13	119.05	5060		
	Bai River	-59.9	1954-1979	1980-2004	Zhangjiafen	40.62	116.78	8506	Bao et al., 2012	
	Zhang River	-73.9	1951-1972	1973-2004	Guantai	36.33	114.08	17800		
	Chao River	-68.6	1961-1966, 1973-1979	1980-2001		41.00	117.00	6716	Wang at al. 2000	
	Bai River	-70.4	1961-1966, 1973-1979	1980-2001		40.55	116.50	9072	wang et al., 2009	
Yellow River	Upper reaches	-37	1956-1989	1990-2000	Tangnaihai	35.50	100.15	121972	Zhao at al. 2000	
	Upper reaches	-46	1968-1986	1987-2000	Lanzhou	36.07	103.82	222551	Zhao et al., 2009	
	Upper reaches	-44	1960-1970	1991-2000	Baimasi	34.72	112.58	13915	Wang et al., 2010	
	Wuding River	-84.3	1961-1971	1972-1997	Baijiachuan	37.24	110.42	30261	Li et al., 2007	
	Wuding River	-23	1961-2005		Baijiachuan	37.24	110.42	30261	Yuan et al. 2018	
Huai River	Upper reaches	-45	1960-2010		Bengbu	32.95	117.27	270000	Ma et al., 2014	

Figure S1. Irrigated areas (Fader et al., 2010; Portmann et al., 2010) and reservoirs (Lehner et al., 2011) in China used in the ISIMIP2a VARSOC experiment. (a): mean irrigation area per grid cell (%) over the 1971-2010 period and locations of reservoir; (b): difference in mean irrigation area between the periods of 1971-1990 and 1991 and 2010; (c): annual irrigation area for China, northern basins, and southern basins; (d): annual storage capacity of reservoirs in China. The areas without irrigation are not shown on the map.

Figure S2. The seasonal cycle of streamflow from observations and GHMs. The seasonal observations are based on monthly streamflow and averaged for the hydrological stations in each basin (Figure 1). The simulations are averaged values over the grid cells identified by the location of stations. SIM indicates simulations and OBS indicates observations. The grey areas show the 25th and 75th percentiles of the multimodel simulations. Northern basins: Songhua River (SH), Liao River (LR), Northwest Rivers (NW), Hai River (HA), Yellow River (YR), Huai River (HU); Southern basins: Yangtze River (YZ), Southeast Rivers (SE), Southwest Rivers (SW), Pearl River (PR).

Figure S3. Simulated (black) and observed (orange) mean annual streamflow at the hydrological stations in each basin. The observations are the average values of the hydrological stations, while the simulations are averaged values over the grid cells identified by the location of stations. The grey areas show the 25th and 75th percentiles of the multimodel simulations.

Figure S4. MAF changes (m³ s⁻¹) over China between the sub-periods 1971-1990 and 1991-2010. (a) Total MAF changes (ΔQ_a), (b) MAF changes induced by climate variability (ΔQ_c) and (c) MAF changes induced by DHI change (ΔQ_h).

Figure S5. Total MAF change (ΔQ_a), MAF change induced by climate variability (ΔQ_c), and MAF change induced by DHI change (ΔQ_h) from the period 1971-1980 to (a) 1981-1990, (b) 1991-2000 and (c) 2001-2010, respectively. The bars show the medians and the error bars show the range of 25th and 75th of MAF changes.

Reference

Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., and Zhang, A.: Attribution for decreasing streamflow of the Haihe River basin, northern China: Climate variability or human activities?, J. Hydrol., 460-461, 117-129, 10.1016/j.jhydrol.2012.06.054, 2012.

Fader, M., Rost, S., Müller, C., Bondeau, A., and Gerten, D.: Virtual water content of temperate cereals and maize: Present and potential future patterns, J. Hydrol., 384, 218-231, 10.1016/j.jhydrol.2009.12.011, 2010.

Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Frontiers in Ecology and the Environment, 9, 494-502, 10.1890/100125, 2011.

Li, L., Zhang, L., Wang, H., Wang, J., Yang, J., Jiang, D., Li, J., and Qin, D.: Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China, Hydrol. Processes, 21, 3485-3491, doi:10.1002/hyp.6485, 2007.

Ma, F., Ye, A., Gong, W., Mao, Y., Miao, C., and Di, Z.: An estimate of human and natural contributions to flood changes of the Huai River, Global Planet. Change, 119, 39-50, 10.1016/j.gloplacha.2014.05.003, 2014.

Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling, Global Biogeochem. Cycles, 24, GB1011, 10.1029/2008GB003435, 2010.

Wang, G., Xia, J., and Chen, J.: Quantification of effects of climate variations and human activities on runoff by a monthly water balance model: A case study of the Chaobai River basin in northern China, Water Resour. Res., 45, doi:10.1029/2007WR006768, 2009. Wang, J., Hong, Y., Gourley, J., Adhikari, P., Li, L., and Su, F.: Quantitative assessment of climate change and human impacts on long-term hydrologic response: a case study in a subbasin of the Yellow River, China, Int. J. Climatol., 30, 2130-2137, doi:10.1002/joc.2023, 2010.

Yuan, X., Jiao, Y., Yang, D., and Lei, H.: Reconciling the Attribution of Changes in Streamflow Extremes From a Hydroclimate Perspective, Water Resour. Res., doi:10.1029/2018WR022714, 2018.

Zhao, F., Xu, Z., Zhang, L., and Zuo, D.: Streamflow response to climate variability and human activities in the upper catchment of the Yellow River Basin, Sci. China Ser. E: Technol. Sci., 52, 3249, 10.1007/s11431-009-0354-3, 2009.