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Abstract. Evapotranspiration (ET) is pivotal in the terrestrial
water cycle in subhumid and tropical regions. In the water cy-
cle, the contribution of plant transpiration can be distinctively
more significant than soil evaporation. The seasonal dynam-
ics of plant phenology, commonly represented as the vegeta-
tion attribute leaf area index (LAI), closely correlates with
actual ET (AET). Hence, addressing the reciprocal LAI–
AET interaction is essential for practitioners and researchers
to comprehensively quantify the hydrological processes in
water resources management, particularly in the perennially
vegetated regions of West Africa. However, due to a lack of
field measurements, evaluation of the LAI–AET interaction
still remains challenging. Hence, our study aims to improve
the understanding of the role of the LAI in AET estimation
by investigating characteristic regions of West Africa. We set
up ecohydrological models (using the Soil and Water Assess-
ment Tool for the tropics – SWAT-T) for two homogeneous
land cover types (forest and grassland) to guarantee the rep-
resentativeness of field measurements for the LAI and AET.
We apply different potential ET methods (the Hargreaves;
Penman–Monteith – PET-PM; and Priestley–Taylor meth-
ods) to evaluate the LAI–AET interaction in SWAT-T. Fur-
ther, the elementary effects method quantifies the parameter
sensitivity for 27 relevant LAI–AET parameters. The com-
prehensive parameter set is then optimized using the shuf-
fled complex evolution algorithm. Finally, we apply a bench-
marking test to assess the performance of SWAT-T with re-
spect to the simulation of AET and to determine the relevance
of detailed LAI modeling. The results show that SWAT-T
is capable of accurately predicting the LAI and AET at the

footprint scale. While all three PET methods facilitate ade-
quate modeling of the LAI and AET, the PET-PM technique
outperforms the other methods for AET, independent of the
land cover type. Moreover, the benchmarking highlights that,
if it only accounts for the LAI but disregards AET data, an
optimization process’s prediction of AET still yields an ad-
equate performance with SWAT-T for all PET methods and
land cover types. Our findings demonstrate that the signif-
icance of detailed LAI modeling for the AET estimation is
more pronounced in the forested than in the grassland region.

1 Introduction

Evapotranspiration (ET) is a key hydrological process of the
continental water cycle, particularly in the subhumid and
tropical regions of West Africa where the share of ET to
precipitation can be up to 70 %–80 % (Rodell et al., 2015).
The high share of ET in the water cycle inevitably necessi-
tates the reliable estimation of ET for water resources stud-
ies at all scales in subhumid and tropical regions. Concur-
rently, the accurate computation of ET remains challenging
for researchers and practitioners, as ET is dynamic in space
and time (Michel et al., 2016; Miralles et al., 2016). Its vari-
ability notably depends on land cover, soil properties, wa-
ter availability, vegetation state, and time of the year (Chu
et al., 2021). In addition, plant transpiration has a decisive
contribution to the total evapotranspiration (Gerten et al.,
2004; Schlesinger and Jasechko, 2014; Miralles et al., 2016;
Wei et al., 2017). It is directly linked to the canopy con-
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ductance, which strongly correlates with the leaf area index
(LAI) (Good et al., 2014; Wang et al., 2014). Thus, in peren-
nially vegetated regions with high transpiration rates, such as
subhumid West Africa, the LAI–ET interaction plays a piv-
otal role in the ET quantification (Schlesinger and Jasechko,
2014; Wei et al., 2017; Bright et al., 2022).

Although important, the availability of LAI and ET ground
measurements is scarce. In previous ET studies, authors have
used existing global monitoring networks, such as eddy-
covariance (EC) systems (e.g., AmeriFlux – Novick et al.,
2018; AMMA-CATCH – Galle et al., 2018; or FLUXNET –
Friend et al., 2007), to inform catchment-scale hydrological
models to comprehensively assess all processes of the hy-
drological cycle (Schneider et al., 2007; Hector et al., 2018;
do Nascimento Ferreira, 2021; Jepsen et al., 2021; López-
Ramírez et al., 2021). Still, the derived actual ET (AET) es-
timates from EC systems can not be extrapolated beyond the
location site without limitations. This is mainly attributed to
the small footprint, i.e., the source area of the AET fluxes.
Depending on soil and land cover properties underlying the
footprints, the source area spatially limits the representative-
ness of the AET measurements (Chu et al., 2021). For the
LAI, the limited availability of field observations is com-
monly addressed by exploiting satellite-based LAI data. An
example of favorable satellite-based LAI information is the
Global Land Surface Satellite (GLASS) data set (Liang et al.,
2021), in which the widely used Moderate Resolution Imag-
ing Spectroradiometer (MODIS) LAI data have been ad-
vanced with machine learning applications at the global scale
(Liang et al., 2014). The validation reports of GLASS LAI
data present accurate LAI time series results, particularly
in perennially vegetated regions (Liang et al., 2014) where
satellite-based vegetation data can be subject to noise and
cloud influences (Viovy et al., 1992; Strauch and Volk, 2013;
Atkinson et al., 2012; Alemayehu et al., 2017).

In the present study, the semi-distributed, physically based
ecohydrological Soil and Water Assessment Tool for the
tropics (SWAT-T) (Alemayehu et al., 2017) is applied. The
SWAT-T model is a modification of SWAT (Arnold et al.,
1998), which was introduced by Strauch and Volk (2013) and
further developed by Alemayehu et al. (2017) to account for
more realistic plant growth modeling of perennial vegetation
in tropical regions. The merits of SWAT-T for the improved
prediction of the LAI and AET have been highlighted in dif-
ferent tropical and subhumid regions. It has been applied at
the catchment scale in East Africa (Alemayehu et al., 2017),
Colombia (Hoyos et al., 2019), Brazil (do Nascimento Fer-
reira, 2021), and Australia (Zhang et al., 2020) a well as at
the micro-catchment scale in Mexico (López-Ramírez et al.,
2021). Moreover, the application of SWAT-T for climate im-
pact assessment has been presented in Peru at the catchment
scale (Fernandez-Palomino et al., 2021). Remotely sensed
AET has been chiefly employed to assess the model fit-
ness of simulated AET with SWAT-T (Alemayehu et al.,
2017; Zhang et al., 2020; Fernandez-Palomino et al., 2021;

do Nascimento Ferreira, 2021) as well as with SWAT (Ra-
jib et al., 2018; Qiao et al., 2022). The latest, open-source
version of SWAT, called SWAT+, has also been applied in
the tropics with remotely sensed AET and LAI data (Abitew
et al., 2023). For the African continent, remotely sensed AET
products can be limited due to uncertainties in their reliabil-
ity (Weerasinghe et al., 2020).

For LAI estimation, the SWAT-T studies mentioned above
relied on the application of remotely sensed LAI informa-
tion from MODIS, e.g., by Alemayehu et al. (2017). Mea-
sured data for the modeling of vegetation, e.g., measured
LAI (Park et al., 2017; Yang et al., 2018; Nantasaksiri et al.,
2021; Haas et al., 2022) or observed forest biomass produc-
tion (Khanal and Parajuli, 2014; Haas et al., 2022) has also
been used to assess the LAI modeling ability of SWAT. How-
ever, the number of parameters used in prior studies has dif-
fered, e.g., the total number of parameters applied ranges
from 3 (Yang et al., 2018) to 18 (Haas et al., 2022). For trop-
ical regions, Alemayehu et al. (2017) suggest the calibration
of 11 LAI parameters when SWAT-T is applied. The LAI and
AET are correlated and influence each other in SWAT/SWAT-
T (Arnold et al., 1998). For example, the water stress on
plants is dependent on AET and can determine the actual
plant growth in SWAT/SWAT-T (Neitsch et al., 2011). There-
fore, when modeling the LAI, the relevant AET parameters
must be considered.

To the best of our knowledge, the integration of measured
LAI and AET data in the evaluation of the reciprocal LAI–
AET interaction and the relevance of a coupled LAI–AET
parameter estimation with the SWAT/SWAT-T model has yet
to be considered. Previous studies on the influence of the LAI
on AET in SWAT/SWAT-T have either not covered all rele-
vant LAI–AET parameters, considered only heterogeneous
source areas of measured AET, or only used remotely sensed
AET and LAI data. Hence, we address these shortcomings
and focus on the comprehensive evaluation of the signifi-
cance of the LAI on AET in SWAT-T with measured LAI
and AET data. Further, we test the hypothesis of whether a
detailed plant growth model optimization (single LAI opti-
mization regarding observed or GLASS LAI) can still ade-
quately estimate AET with SWAT-T.

We evaluate the LAI–AET interaction for two typical,
perennially vegetated land cover types of West Africa us-
ing a SWAT-T model at the seamless footprint scale of the
EC system for each site. The sites are located in the sub-
humid Bétérou Catchment in Benin. First, we highlight the
relevance of a coupled LAI–AET parameter estimation for
predicting the LAI. Then, a global sensitivity analysis using
the elementary effects method (Morris, 1991) is applied to
quantify the parameter sensitivities and to enable a ranking
of the sensitivity levels. We optimize the LAI–AET parame-
ters with LAI data (observed and GLASS LAI), exclude AET
as a proxy in the model optimization, and eventually evalu-
ate the AET model response to the LAI optimization. For
this purpose, the performance test proposed by Seibert et al.
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(2018) is conducted. The test compares the best-optimized
model (simultaneous LAI and AET optimization as an upper
benchmark) with single LAI optimization approaches (ob-
served or GLASS LAI). To provide a lower limit of the gen-
eral LAI–AET performance of SWAT-T, a random sampling
approach of the LAI–AET parameters (lower benchmark) is
applied. The LAI–AET parameter optimization is conducted
using the shuffled complex evolution algorithm (SCE-UA)
(Duan et al., 1994).

2 Methods

Figure 1 gives an overview of the methods applied in this
study to evaluate the significance of the LAI for AET es-
timation in SWAT-T. First, the input data are processed, and
footprint-scale SWAT-T models for two characteristic, peren-
nially vegetated regions in West Africa are set up. Second,
the relevance of a coupled LAI–AET parameter estimation is
investigated using one-at-a-time parameter changes and eval-
uated with respect to observed LAI and AET data. Third, a
sensitivity analysis is conducted based on the elementary ef-
fects method concerning observed LAI. Finally, the role of
the LAI in AET estimation in SWAT-T is assessed using an
optimization approach (SCE-UA algorithm), and the model’s
performance with respect to predicting AET is tested with a
benchmarking test.

2.1 Model description and parameter selection

The SWAT-T model is an enhanced version of the SWAT
ecohydrological model (Arnold et al., 1998). In SWAT-T,
the plant growth module has been modified to account for
more realistic perennial plant phenology in tropical regions
(Alemayehu et al., 2017), which can improve AET predic-
tion (Zhang et al., 2020; Fernandez-Palomino et al., 2021;
do Nascimento Ferreira, 2021; López-Ramírez et al., 2021).
Apart from the plant growth module, SWAT-T and SWAT are
identical. The original SWAT model has been applied world-
wide in different river basins (Arnold and Fohrer, 2005; Tan
et al., 2020) as well as regionally in Benin (Akoko et al.,
2021). Specifically, most of the applications in Benin focused
on discharge assessment for the Ouémé River basin (Bossa
et al., 2014; Poméon et al., 2018) and its tributaries (Giertz
et al., 2006; Bossa et al., 2012; Duku et al., 2016, 2018;
Danvi et al., 2017; Togbévi et al., 2020). In previous stud-
ies in West Africa, remotely sensed AET was also used as a
main calibration objective to predict streamflow (Odusanya
et al., 2019, 2021). To the best of our knowledge, the SWAT-
T model has not been applied in Benin, although it has been
implemented in East Africa (Alemayehu et al., 2017).

The SWAT/SWAT-T model is generally spatially dis-
cretized into subbasins and subdivided into hydrological
response units (HRUs). Three options are available to
compute the potential ET (PET) in SWAT/SWAT-T: the

temperature-based Hargreaves (PET-HG) method (Harg-
reaves and Samani, 1985), the energy-based Priestley–Taylor
(PET-PT) method (Priestley and Taylor, 1972), and the
combined temperature- and energy-based Penman–Monteith
(PET-PM) method (Monteith, 1965). Table 1 summarizes the
equations for PET (E0) computation and highlights the inte-
gral part of the LAI in each approach.

In the equations in Table 1, λ is the latent heat of vaporiza-
tion;H0 is the extraterrestrial radiation; Tmx, Tmn, and Tav are
the maximal, minimal, and mean daily temperature, respec-
tively; αpet is a coefficient;1 is the slope of the saturation va-
por pressure–temperature curve; γ is the psychrometric con-
stant; Hnet is the net radiation; G is the heat flux density to
the ground; ρair is the air density; cp is the specific heat at
constant pressure; e0

z is the saturation vapor pressure of air
at height z; ez is the water vapor pressure of air at height z;
ra is the aerodynamic resistance; and rc is the plant canopy
resistance. In PET-PM, ra and rc are attributed to an alfalfa
crop reference for the computation of E0 (Neitsch et al.,
2011). After the calculation of E0, it is partitioned into po-
tential plant transpiration (Tplant) and soil evaporation (Esoil).
Tplant is computed depending on the values of the LAI for
the given day for all PET methods. For PET-HG and PET-
PT, a threshold of LAI= 3.0 determines if Tplant is equal to
E0, i.e., all potential evapotranspiration is coming only from
the plant transpiration without consideration of soil evapo-
ration. If LAI≤ 3.0, a share of E0 is potentially available
for Tplant and Esoil. For PET-PM, Tplant is computed using
the Penman–Monteith equation (Table 1), in which ra and
rc are determined using the modeled plant canopy and LAI.
Esoil for the PET-PM model is then Esoil = E0− Tplant. The
actual plant transpiration and soil evaporation are computed
depending on the water availability and different biophysical
parameters, such as the LAI or root depth, and soil proper-
ties, such as the field capacity. Actual plant transpiration and
soil evaporation are then summed to the actual ET (AET).

The plant growth computation in SWAT/SWAT-T follows
the approach of the Environmental Policy Impact Climate
(EPIC) model (Arnold et al., 1998), in which the LAI is a key
vegetation attribute for the plant phenology (Neitsch et al.,
2011). Generally, the plant growth in SWAT/SWAT-T can be
divided into an initial phase (start of the growing phase), a
growing phase, a period of maturity (growing is halted to a
constant LAI), a leaf senescence phase (natural decline in
the plant and a decreasing LAI), and a dormancy period (no
plant growth but a constant LAI). In the growing phase, the
optimal leaf development in SWAT/SWAT-T is computed as
follows:

frLAImx =
frPHU

frPHU+ exp(l1− l2 · frPHU)
, (1)

where frLAImx is the fraction of the maximum leaf area index
of a plant with respect to the fraction of the potential heat
units for the plant, frPHU is the fraction of the potential heat
units in the current day of the growth cycle, and l1 and l2 are
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Figure 1. Methods applied in the present study to assess the significance of the LAI for AET estimation. Three different PET methods
(Hargreaves, Priestley–Taylor, and Penman–Monteith) available in SWAT-T are applied for all three steps in the methodology.

Table 1. Approaches to compute potential evapotranspiration (E0) and potential transpiration (Tplant) provided in SWAT-T.

PET method Equation for E0 Equation for Tplant

PET-HG E0 =
0.0023·H0

λ ·
√
Tmx− Tmn · (Tav+ 17.8) Tplant =

{
LAI · E0

3.0 , if LAI≤ 3.0

E0, if LAI> 3.0

PET-PT E0 =
αpet·1
λ·(1+γ )

· (Hnet−G) Tplant =

{
LAI ·

E0
3.0 , if LAI≤ 3.0

E0, if LAI> 3.0

PET-PM E0 =
1·(Hnet−G)+ρair·cp ·(e

0
z−ez)/ra

λ·(1+γ ·(1+rc/ra))
, Tplant =

1·(Hnet−G)+ρair·cp ·(e
0
z−ez)/ra

λ·(1+γ ·(1+rc/ra))
,

with rc and ra from an alfalfa crop reference with rc and ra from an actual plant (canopy height and LAI)

shape coefficients. The plant growth continues until the max-
imum leaf area index is reached:

1LAIi = (frLAImx,i − frLAImx,i−1) ·LAImx

· (1− exp(5 · (LAIi−1−LAImx))). (2)

For perennial plants, the LAI for a given day i under opti-
mal conditions is computed as follows:

LAIi = LAIi−1+1LAIi . (3)

However, the optimal plant growth can be constrained in
SWAT/SWAT-T due to water, temperature, nitrogen, or phos-
phorous stress. The water stress (wstrs) is thereby directly
linked to the actual plant transpiration and the total wa-
ter plant uptake. The temperature stress (tstrs) is computed
based on the air temperature of the given day and the user-
defined parameters Tbase and Topt. Nitrogen and phosphorus

stress (nstrs and pstrs, respectively) values are computed to
account for insufficient nutrients (see Appendix for the addi-
tional equations). The actual plant growth is determined with
a plant growth factor γreg:

γreg = 1−max(wstrs, tstrs,nstrs,pstrs). (4)

The actual leaf area added on a day i is computed as follows:

1LAIact,i =1LAIi · γreg. (5)

The major difference between the plant growth modeling
in SWAT and SWAT-T comprises two features: the logarith-
mic decline in the LAI and the automatic start of the growing
phase based on a soil moisture index. In the first plant growth
modification of SWAT, Strauch and Volk (2013) introduced
a logarithmic decline in the LAI in the leaf senescence phase
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for a more realistic representation of the LAI decrease and to
avoid a rapid drop in the LAI:

LAI=
LAImax−LAImin

1+ exp(−t)
, (6)

where t is defined considering the fraction of the potential
heat units at which senescence become the dominant growth
phase (frPHUsen ), as follows:

t = 12 ·
(

1− frPHU

1− frPHUsen

− 0.5
)

if frPHU ≥ frPHUsen . (7)

As plant growth in the tropics is generally governed by the
water availability in the soils (Jolly and Running, 2004), Ale-
mayehu et al. (2017) further modified the SWAT version of
Strauch and Volk (2013) and implemented an automatic start
of the growing phase that is triggered by the soil moisture in-
dex. For this purpose, the soil moisture index SMI= P/E0
is introduced. The precipitation (P ) is aggregated for a user-
defined time window (here 5 d). An SMI threshold to start the
growing has to be defined (here SMI= 0.5). To avoid false
starts of the new growing cycle, the end of the dry season
(SOS1, here October) and the beginning of the rainy season
(SOS2, here January) also have to be specified by the user
(Alemayehu et al., 2017). In SWAT, the start of the grow-
ing phase is linked to the number of accumulated heat units.
In SWAT-T, the soil moisture index has replaced this depen-
dency on the heat units. The heat units are mainly used in
SWAT-T to define the plant growth development over the
year (see Eq. 1).

A total of 27 parameters have been selected to investigate
the LAI–AET interaction (Table 2). The selection of LAI pa-
rameters follows the suggestion of Alemayehu et al. (2017),
whereas the AET parameters are chosen based on a litera-
ture review. In the past, 27 SWAT parameters have been as-
sessed for sensitivity analysis with a particular focus on AET
(Ha et al., 2018; Odusanya et al., 2019; Bennour et al., 2022;
Koltsida and Kallioras, 2022). Parameters with a coinciding
low sensitivity reported in these studies, e.g., the hydraulic
conductivity in the channel (CH_K2) or groundwater base-
flow delay (GW_DELAY), are not considered in the present
LAI–AET parameter list to reduce the total parameter space.
For the present study, the soil layer thickness (SOL_D) is
given for four soil layers from field measurements (Judex
and Thamm, 2008). We adjust only the depth of the lowest
soil layer in order to not excessively shape the ground-truth
observations but to still facilitate an evaluation of the influ-
ence of the total soil thickness on the LAI–AET interaction
in SWAT-T.

2.2 Study site and footprint-scale models

The study sites of Bellefoungou and Naholou are located in
the western part of the Bétérou Catchment (Fig. 2). The cli-
mate is typical of sub-Saharan, subhumid Africa. The annual

precipitation ranges from 1100 to 1500 mm (Mamadou et al.,
2016; Bliefernicht et al., 2019). The precipitation pattern is
unimodal, with the rainy season between April and October
and the dry season from November to March. The annual
mean daily temperature is 25 °C (Galle et al., 2018). The
soils in the Bétérou Catchment consist of ferric soils with
loamy sand present in the upper soil horizons (Giertz and
Diekkrüger, 2003). Generally, the AET data follow the sea-
sonality in the LAI (Fig. 2). However, a decrease in AET in
the wet season can be observed in this region. AET depends
on radiation, wind speed, and humidity. The net radiation de-
creases during the wet season, automatically reducing fluxes
like sensible and latent heat (see Fig. A1). Additionally, the
atmospheric demand is reduced because of high air humidity,
which has been observed for the vapor pressure deficit (Ma-
madou et al., 2016), resulting in lower AET rates in the wet
season.

The forested Bellefoungou region (9.791° N, 1.718° E;
445 ma.s.l.) is covered with widespread woodland (clear for-
est) typical of sub-Saharan Africa (Ago et al., 2016). The
Naholou region (9.74° N, 1.60° E; 449 ma.s.l.) is covered
mainly by a characteristic mixture of crops and savannah
grassland and fallows (Ago et al., 2014). Due to the high
share of grassland, the Naholou region is defined as a grass-
land region in the following. The estimated flux footprint ex-
tent for the grassland region is 4000 m2, whereas this value
is seasonally varying for the forested region and can be up
to 60 000 m2 (Mamadou et al., 2014). AET accounts for high
shares of precipitation at both sites: the share of annual AET
to precipitation is 57 % and 72 % for Naholou and Bellefoun-
gou, respectively (Mamadou et al., 2016). The evaporative
fraction (share of plant transpiration to total AET) is excep-
tionally high in the wet season. The values for the evapo-
rative fraction are 70± 2.5 % at Naholou and 75± 0.7 % at
Bellefoungou (Mamadou et al., 2016). These high plant tran-
spiration rates to AET demonstrate the strong dependency of
plant growth on AET in these regions (Mamadou et al., 2016;
Hector et al., 2018). The field measurements of the LAI at
both sites were delineated from hemispherical photographs
and the processing methodology proposed by Weiss et al.
(2004). The in situ data are complemented with corrections
of an ensemble of satellite-based LAI products (CYCLOPE,
MODIS, and SEVIRI) (Mamadou et al., 2014).

One SWAT-T model is set up for the forested and the
grassland site in the Bétérou Catchment, respectively. Nei-
ther footprint calculations for the sites nor the necessary
data to compute those are available. Thus, we adhere to
the suggestion of Chu et al. (2021), who stated that radii
of< 250 m around flux towers assure flux representativeness.
The SWAT/SWAT-T models are watershed models. For the
model delineation with SWAT-T, we drew circles (of 250 m
radius) around each flux tower to guarantee the representa-
tiveness of the flux footprints. Based on the underlying dig-
ital elevation model (DEM), the resulting watershed extents
are 8500 and 2300 m2 for the forested and grassland sites,
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Table 2. List and description of parameters used to estimate the LAI and AET.

Parameter Description (unit)

Parameters associated with plant growth (LAI) in the plant database of SWAT

BIO_E Radiation use efficiency ((kgha−1) (MJm−2)−1)
BLAI Maximum potential LAI (m2 m−2)
FRGRW1 Fraction of PHU corresponding to the first point on the optimal leaf area development curve (–)
LAIMX1 Fraction of BLAI corresponding to the first point on the optimal leaf area development curve (–)
FRGRW2 Fraction of PHU corresponding to the second point on the optimal leaf area development curve (–)
LAIMX2 Fraction of BLAI corresponding to the second point on the optimal leaf area development curve (–)
DLAI Fraction of total PHU when leaf area begins to decline (–)
T_OPT Optimal temperature for plant growth (°C)
T_BASE Minimum temperature for plant growth (°C)
ALAI_MIN Minimum LAI for plant during dormant period (m2 m−2 )
PHU Total number of heat units needed to bring plant to maturity (–)
GSI Maximum stomatal conductance (ms−1)

Parameters associated with AET estimation

CAN_MX Maximum canopy storage (mm)
ESCO Soil evaporation compensation factor (–)
EPCO Plant uptake compensation factor (–)
HRU_SLP Average slope steepness (mm−1)
SLSUBBSN Average slope length (m)
CN2 Initial Soil Conservation Service (SCS) runoff curve number (–)
SOL_AWC Available water capacity of the soil layer (mm)
SOL_BD Moist bulk density (gcm−3)
SOL_CBN Organic carbon content (% soil weight)
SOL_K Saturated hydraulic conductivity (mmh−1)
SOL_RD Maximum rooting depth of soil profile (mm)
SOL_D∗ Soil layer depth (mm)
GW_REVAP Groundwater reevaporation coefficient (–)
RCHRG_DP Deep aquifer percolation fraction (–)
REVAPMN Threshold depth of water for reevaporation to occur (mm)

∗ The lowest soil layer depth.

respectively. Although the footprint extent in the forested re-
gion can be larger depending on the season (Mamadou et al.,
2016), we applied a constant extent following the sugges-
tion of Chu et al. (2021). To ensure the homogeneity of land
cover and soil properties, each SWAT-T model consists of a
single HRU. The LAI and AET are simulated at a daily time
step. The data sets used in this study are listed in Table 3.
The land cover type for each site (forest or grassland) repre-
sented in the model is provided in Ago et al. (2014, 2016).
We assigned the land use classes “FRSD” and “RNGE” from
the SWAT crop database to the forested and grassland region,
respectively. The observed AET data for both sites are avail-
able from 1 January 2008 to 31 December 2010 (Mamadou
et al., 2016). The observed LAI data are available from 1 July
2008 to 31 May 2010 for the forested region (Bellefoungou;
Ago et al., 2016) and from 5 August 2007 to 2 January 2010
for the grassland region (Naholou; Ago et al., 2014). The me-
teorological data provided by the AMMA-CATCH network
date from 2005 to 2020 (Galle et al., 2018). The GLASS LAI

data are provided from 2000 to 2021 (Liang et al., 2021). To
enable the best possible overlap of measured LAI and AET
data, the study periods from 1 January 2008 to 31 December
2010 and from 1 January 2007 to 31 December 2010 in the
forested and grassland regions are defined, respectively.

2.3 Evaluation of the coupled LAI–AET parameter
estimation

We postulate that the LAI and AET model parameters are de-
cisive for a comprehensive plant growth modeling in SWAT-
T, particularly if the accurate estimation of plant transpira-
tion is a modeling objective. We apply parameter changes
and compare the corresponding model responses to observed
AET and LAI to assess the relevance of a coupled LAI–AET
parameter estimation. Each parameter from Table 2 is ran-
domly sampled (1000 samples), and the model is run for
each sample. In each simulation, the other model param-
eters remain unaltered (one-at-a-time parameter changes).
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Figure 2. (a) Overview of the Bétérou Catchment and the locations of the eddy-covariance systems (Naholou and Bellefoungou); (b) the
seasonality in precipitation and temperature in Bellefoungou; (c) and the comparison of observed AET (in blue), mean monthly values of
the observed LAI (yellow), and mean monthly values of the GLASS LAI (in purple) in Bellefoungou. The solar radiation, wind speed, and
relative humidity for the sites are illustrated in the Appendix (see Fig. A1). References for the data used to display the map are also listed
in the Appendix (see Table A5). The superscripts in panel (c) denote the corresponding time periods: 1 from January 2008 to December
2010; 2 from July 2008 to May 2010; 3 from January 2007 to December 2015. Publisher’s remark: please note that the above figure contains
disputed territories.

Table 3. Overview of the data sets that are applied in this study.

Variable Resolution Database name or source

Digital elevation model Rastered DEM, 30 m× 30 m Copernicus GLO-30 (Copernicus, 2022)
Soil map Soil type clusters IMPETUS soil map (Judex and Thamm, 2008)
Observed AET Daily, pointwise Mamadou et al. (2016)
Observed LAI Daily, pointwise Ago et al. (2014) and Mamadou et al. (2016)
GLASS LAI Rastered, 250 m× 250 m GLASS LAI (Liang et al., 2021)
Precipitation Daily, pointwise AMMA-CATCH network (Galle et al., 2018)
Temperature Daily, pointwise AMMA-CATCH network (Galle et al., 2018)
Solar radiation Daily, pointwise AMMA-CATCH network (Galle et al., 2018)
Relative humidity Daily, pointwise AMMA-CATCH network (Galle et al., 2018)
Wind speed Daily, pointwise AMMA-CATCH network (Galle et al., 2018)

To avoid influences from poorly estimated parameter val-
ues (e.g., the default settings), the optimized model parame-
ters from the LAI–AET optimization (see Sect. 2.5) are pre-
scribed for the unaltered parameters. The model response
to a parameter change is evaluated in two ways: with re-
spect to observed AET and with respect to the observed
LAI. Finally, an evaluation of how the LAI parameters in-
fluence the AET responses and how AET parameters influ-

ence the LAI responses is presented with this approach. The
analysis of the LAI–AET parameter estimation is conducted
for three PET methods (Hargreaves, Penman–Monteith, and
Priestley–Taylor) for the forested study site. The results for
the grassland region are similar but not explicitly presented.
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2.4 Sensitivity analysis with the Morris method

A sensitivity analysis for all LAI–AET parameters is con-
ducted to address the parameter response complexity of the
coupled LAI–AET modeling with SWAT-T. Sensitivity anal-
ysis is an essential yet challenging step in the application of
hydrological models and the evaluation of reliable parameter
sets, particularly with respect to model equifinality. Different
approaches exist to quantify the model responses to parame-
ter changes. In this study, we take advantage of the elemen-
tary effects (or Morris) method (Morris, 1991), as its compu-
tational demand is inexpensive, the parameter sensitivity is
statistically quantified, and nonlinear model responses can be
determined (Morris, 1991; Campolongo et al., 2007). More-
over, parameters involved in parameter interactions and non-
influential parameters can be identified.

Generally, the Morris method screens through a total
sample size N , where one parameter, or input factor q =
[qi, . . .,qk], is changed while the others remain constant
(one-at-a-time method). The total sample sizeN is generated
based on r defined levels and q selected parameters such that
N = r(q + 1). Based on each sample, the elementary effects
di are calculated as follows:

di(q)=
f (qi, . . .,qi−1,qi +1,qi+1, . . .,qk)− f (q)

1

=
f (q +1ei)− f (q)

1
, (8)

where 1 represents the parameter step size, q+1ei denotes
the transformed parameter point, q = [qi, . . .,qk] is any se-
lected parameter of N , and ei consists of a vector of 0 values
with a single value of 1 in the ith element. The index i refers
to the current sample ofN . The local sensitivity of parameter
q is described with the value of di(q). For the global sensitiv-
ity, the statistical moments µi and σi , representing the mean
and standard deviation from the distribution of the total sam-
ple simulation, are used (Morris, 1991). We use the absolute
mean µ∗, as proposed by Campolongo et al. (2007), so as
to not disregard non-monotonic model responses because of
opposite signs. The statistical moments for each set j are as
follows:

µ∗i (q)=
1
r

r∑
i=1

∣∣∣dji (q)∣∣∣ , (9)

σi(q)=

√√√√ 1
r − 1

r∑
i=1

(
d
j
i (q)−µi

)2
. (10)

In this study, we quantify the model performance with the
Kling–Gupta efficiency (KGE) (see Appendix for the addi-
tional equations). Moreover, we apply Latin hypercube sam-
pling to guarantee a widespread input space. Using r = 500
and q = 27 parameters, the total sample size is N = 14 000.
We investigated all 27 parameters in Table 2 for the sensitiv-
ity analysis. To apply the elementary effects method, we im-

plemented the equations of Morris (1991) and Campolongo
et al. (2007) into a set of MATLAB scripts.

2.5 Coupled LAI–AET parameter optimization and
benchmarking

The LAI–AET parameters are first optimized with respect
to different objectives: (i) a multi-objective optimization
concerning LAI and AET (upper benchmark), (ii) an op-
timization only concerning observed LAI data (LAI-Obs),
and (iii) an optimization only concerning satellite-based
GLASS LAI data (LAI-GLASS). The model performance
is then tested based on the benchmark proposed by Seibert
et al. (2018), and the different objectives are compared. Seib-
ert et al. (2018) have suggested using upper and lower model
benchmarks to thoroughly evaluate the model performance
of a specific modeling framework. In Seibert et al. (2018), the
performance of the streamflow prediction is investigated. The
application of a physically based model is thereby compared
to an upper (optimized, conceptual model) and lower bench-
mark (ensemble of random samples) (Seibert et al., 2018).
To avoid an arbitrary good or bad model response from a sin-
gle parameter set, like the default model parameters, Seibert
et al. (2018) propose using random parameter samples for the
lower benchmark.

We apply the SCE-UA algorithm (Duan et al., 1994) to op-
timize the LAI–AET parameters. SCE-UA is a genetic algo-
rithm by which samples of the parameters are stochastically
generated first with respect to the lower and upper bounds of
the parameter values. The parameter values are then changed
to develop the samples to an optimum, i.e., to the optimal
value of an objective function. We use the KGE to compare
the simulated model output with the observed data. The al-
gorithm application divides the initial sample into several
subsamples (complexes) (Duan et al., 1994). In each com-
plex, varying combinations of parameter values are embed-
ded. Each complex is then used to produce offspring using
the downhill simplex procedure (Nelder and Mead, 1965).
The probability of a parameter value being used in the fol-
lowing complex is proportional to its model fitness, i.e., to
the objective function. The new offspring replace parameter
values of lower fitness. The main advantage of the SCE-UA
algorithm is the application of (i) mutation, where new pa-
rameter values in the defined parameter spaces can be sponta-
neously generated, and (ii) shuffling, where recombination of
the parameter values in new complexes is conducted (Duan
et al., 1994).

In this study, different objectives are defined for the LAI–
AET parameter optimization (Table 4). First, the LAI–AET
parameters are optimized in a multi-objective way with equal
weight concerning observed AET and LAI (upper bench-
mark). This way, the performance potential of LAI–AET
with respect to fitting both the AET and plant growth is quan-
tified. Further, we also assess if detailed plant growth op-
timization can predict AET using the single LAI optimiza-
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Table 4. Summary of benchmark elements, their optimization approach with the corresponding optimization objectives, and their evaluation.
For the lower benchmark, the median KGE of the AET performance of all 1000 random samples is used.

Benchmark element Optimization approach Objective(s) Evaluation for benchmark

Upper benchmark SCE-UA Observed LAI and AET AET
LAI-Obs SCE-UA Observed LAI AET
LAI-GLASS SCE-UA GLASS LAI AET
Lower benchmark Random sampling – AET

tion approaches (LAI-Obs and LAI-GLASS). We use the
SPOTPY toolbox (Houska et al., 2015) to apply the SCE-UA
algorithm.

All three optimization approaches are compared based on
the individual AET evaluation using the benchmarking pro-
posed by Seibert et al. (2018). The upper benchmark is de-
fined to be the best potential model performance (here upper
benchmark in Table 4). We generated 1000 uniformly dis-
tributed LAI–AET parameter samples for the lower bench-
mark, evaluated the simulated AET with observed AET,
and determined the overall median KGE performance as the
lower benchmark. With the upper and lower model limits,
the AET prediction performance of optimizing the parame-
ters only for the LAI can be benchmarked for the footprint-
scale models of the forested and grassland region as well as
for different PET methods (PET-HG, PET-PT, and PET-PM).
With 4 benchmark elements (Table 4), 2 land cover types,
and 3 PET methods, 24 setups are compared to each other
to assess the LAI–AET modeling performance of SWAT-
T. In total, 27 parameters are considered for the sensitivity
analysis. A total of 22 of the initially defined 27 parameters
are optimized to reduce the parameter space and address the
equifinality problem. Five parameters are not changed but
are, rather, derived, e.g., from other regional studies. The
groundwater parameters (GW_REVAP, RCHRG_DP, and
REVAPMN) are obtained from Duku et al. (2015), who in-
vestigated streamflow prediction with SWAT for the Bétérou
Catchment. The CN_2 numbers for FRSD and RNGE are
derived from Alemayehu et al. (2017). The HRU_SLP and
SLSUBBSN parameters are catchment-specific and individ-
ually derived when a SWAT/SWAT-T model is set up. Hence,
we kept these geospatial parameters constant for optimiza-
tion.

3 Results

3.1 The relevance of a coupled LAI–AET parameter
estimation

The influences of the parameter changes on both modeling
objectives (LAI and AET) are displayed in Fig. 3. The eval-
uation shows the distribution of the results from each param-
eter change for AET and LAI. All 27 parameters for the PET
methods used in this work impact the simulated LAI and

AET. Figure 3 shows examples of the parameters (EPCO,
SOL_AWC, PHU, ALAI_MIN, DLAI, and T_BASE) where
the changes in both the LAI and AET are the most significant
using the PET-PM model in the forested region. The results
for PET-HG and PET-PT are illustrated in the Appendix.

As shown in Fig. 3, the variations in the parameter changes
with respect to the intervals of the observed value are dis-
played. The AET and LAI data are clustered into seven and
five intervals, respectively. We used the same interval size
for the AET and LAI to improve readability. Each parameter
change is then classified according to the interval. Next, the
difference between observed and simulated data is calculated
(1Y = Obs−Sim). The distributions are computed based on
the difference within the interval. If, for example, the ob-
served values for the AET interval of 0.625 to 1.25 mm are
compared with the simulated values of the EPCO changes, an
overall AET difference of −2.2 to 1.2 mm can be observed.
The EPCO and SOL_AWC parameters are commonly asso-
ciated with AET modeling. Thus, large spreads in the AET
model response for the parameter changes can be observed,
e.g., the influence of EPCO is exceptionally high for values
of AET< 3 mm. However, the influence of both parameters
on the LAI simulation is also indicated. For EPCO, deci-
sive variations in the LAI response are observed for values
of LAI> 2 m2 m−2. As plant growth is close to the phase of
maturity, the significance of the plant water uptake in SWAT-
T (determined with EPCO) increases, and the importance
of EPCO for LAI modeling can be observed. Generally, the
EPCO parameter governs the actual transpiration, which, in
turn, influences the water stress of plants and, thus, affects
the actual plant growth. The impact of EPCO on the LAI is
significant, especially during the wet season when essential
AET rates occur. With high AET, the plant growth stress is
intensified in this period. Similarly, the available water ca-
pacity in the soil layers (SOL_AWC) influences the LAI re-
sponse more the further the plant is into the growing phase
(LAI> 2 m2 m−2). The EPCO and SOL_AWC parameters
can limit and influence plant growth in the wet season.

Concurrently, the shown LAI parameters (PHU,
ALAI_MIN, DLAI, and T_BASE) influence both the
AET and LAI. The variations in the simulated AET with
respect to LAI parameter changes are particularly significant
at the end of the wet season and during the dry season
(AET< 3 mm). The PHU parameter determines when the
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Figure 3. Distribution of variations in the AET or LAI for the one-at-a-time parameter changes (1000 samples) for the following parameters:
(a) EPCO, (b) SOL_AWC, (c) PHU, (d) ALAI_MIN, (e) DLAI, and (f) T_BASE. The distributions are clustered in uniform intervals
(size= 0.625) of the observed time series for the AET (mm) or LAI (m2 m−2). The x axis indicates the observed AET (mm) and LAI
(m2 m−2) values. The y axis represents the difference between observed and simulated values with 1Y = Obs−Sim regarding AET (mm)
or LAI (m2 m−2). A perfect fit is indicated with the dashed line for 1Y = 0. Positive and negative values show an underestimation and
overestimation of the simulated values, respectively. The distributions (violin plots) are created based on Karvelis (2024).

plant reaches maturity based on the heat unit assumption.
Similarly, the DLAI parameter defines when the LAI begins
to decline and, thus, the start of leaf senescence. If the
maturity phase is too early or short, the leaf senescence
phase starts too early. In these cases, with respect to PHU
and DLAI, the LAI–AET interaction is impaired, and
influences on AET can be observed. The ALAI_MIN
parameter defines the minimum LAI value for a plant type
during the dormant period. If ALAI_MIN is set to an overly
small value, the plant is underrepresented in the dry period,
which results in low plant transpiration rates. The parameter
changes for T_BASE result in the most extensive spread
of simulated LAI values for all stages of the plant growth
phase. With T_BASE, the temperature stress and the actual
plant growth are determined in SWAT-T. The influence of
the T_BASE parameter on AET is also present in the wet
and dry periods of the AET modeling. Notably, the largest
spreads of AET based on T_BASE can be observed for
values of AET< 3 mm.

The one-at-a-time parameter change evaluation and the
LAI–AET cross-comparison show that AET parameters,
such as EPCO or SOL_AWC, are significant for AET and
LAI modeling. Figure 3 also highlights that the LAI param-
eters, such as PHU, ALAI_MIN, DLAI, or T_BASE, can
influence the AET model response. The variations in the
LAI and AET resulting from changes in the remaining 21
LAI–AET parameters (see Table 2) are similar, although not
shown here. Hence, a coupled LAI–AET parameter estima-
tion is essential for the reliable computation of LAI and AET,
particularly for perennial land cover types in a subhumid re-
gion in West Africa.

3.2 LAI–AET parameter sensitivity analysis
concerning observed LAI

The sensitivities of the LAI–AET parameters are quantified
using the elementary effects method regarding the observed
LAI data. Figure 4 shows the statistical moments µ∗ and σ
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Figure 4. The statistical moments µ∗ and σ of the elementary ef-
fects for the evaluation of the LAI–AET parameter sensitivity with
respect to the observed LAI. We use the relation of σ/µ∗ to classify
regions of nonlinear, almost monotonous, monotonous, and linear
parameter behavior (Garcia Sanchez et al., 2014).

Figure 5. Clustering of the sensitivity analysis of all PET meth-
ods in the forest and grassland land cover types with respect to
the observed LAI. The parameters are sorted according to the mean
µ∗ values resulting from the forested region. The superscript 1 de-
notes that the parameter GSI is only accounted for when PET-PM
is used.

for each parameter. It can be observed that nearly all parame-
ters are located close to or slightly above the 1 : 1 line, which
defines a nonlinearity of the parameters (Garcia Sanchez
et al., 2014). Albeit with some exceptions, the parameters
in the forested region result in higher σ values, implying
that the parameter interactions are more nonlinear than in the
grassland region. Generally, proximity of the parameter sen-
sitivities for each land cover type method can be observed,
e.g., the diamond symbols for the forest are close. Thus, dif-
ferences between the PET methods and for the same land
cover type are insignificant, suggesting potential indepen-
dence of the LAI parameter sensitivity from the PET method.
Moreover, all three groundwater parameters result in values
µ∗= 0, thus denoting insensitivity to plant growth. Hence,
they are excluded from the in-depth parameter analysis be-
low.

Moreover, all PET methods are clustered to compare the
sensitivity of the LAI–AET parameters for different land

cover types. Figure 5 shows the distribution of µ∗ when all
PET methods are combined in one land cover group. The pa-
rameters are ranked according to the mean µ∗ values from
the simulations in the forested region. In Fig. 5, it can be
observed that the general parameter sensitivity patterns are
similar in the forested and grassland region, albeit with dif-
ferences in the magnitude ofµ∗ for the land covers. The most
sensitive parameters for both land use types are T_BASE,
PHU, DLAI, BLAI, and SOL_RD. Moreover, a high box
chart (high spread of µ∗ values) implies high parameter in-
teraction. The box plot heights for the forest and grassland
clusters are generally comparable for the same parameters. If
a parameter (e.g., T_BASE) in the forest region shows mean-
ingful interactions, responses are also indicated for the same
parameter in the grassland region alike. However, the BLAI
and SOL_RD parameters appear to have higher parameter in-
teractions in the forest than in the grassland region. Although
the ranking is shown in Fig. 5 with respect to the mean µ∗

values resulting from the forested region, the sensitivity hi-
erarchy of the forested and grassland clusters is generally in-
terchangeable.

From Fig. 5, a clear ranking pattern for PET methods and
land use types can be observed (see also Fig. A4). Variations
in the ranking position for each parameter are thereby minor,
albeit with some exceptions for ALAI_MIN, GSI, EPCO,
and ESCO. Earlier in the paper, in Fig. 3, the influence of
EPCO on LAI was qualitatively illustrated. Here, the param-
eter sensitivity of EPCO to the LAI is quantified with µ∗

and ranked with the other parameters in Fig. 5. The rank-
ing differs for EPCO, GSI, and ESCO when PET-PM is used
(Fig. A4). Its application implies that EPCO and ESCO are
less relevant to the LAI model output, whereas GSI is more
relevant. The stomatal conductance GSI is only accounted
for in SWAT-T when PET-PM is used. Concurrently, the
ALAI_MIN parameter is more highly ranked for grassland
than for forest. Lower LAI values in the dry period of the
rainy season increase the parameter ranking of ALAI_MIN.
Ultimately, the plant growth parameters are generally more
highly ranked than the AET parameters. Still, the rankings
of SOL_RD, SOL_BD, SOL_CBN, SOL_D, and EPCO indi-
cate an observable influence of AET parameters on the LAI.
The sensitivity analysis of the LAI–AET parameters high-
lights that a coupled LAI–AET parameter estimation is in-
evitable for a comprehensive assessment of perennial plant
growth of SWAT-T in subhumid regions for all three PET
methods.

3.3 Optimization and benchmark testing of the
LAI–AET modeling

The SCE-UA algorithm is applied to optimize the LAI–AET
parameter in a multi-objective way (upper benchmark) and
only concerning observed (LAI-Obs) or satellite-based (LAI-
GLASS) LAI data. The evaluation focuses on observed AET
in the following. The upper benchmark optimization results
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in very good modeling results for the three PET methods and
two land cover types. For all six setups, the model perfor-
mance (AET) of the upper benchmark results in values of
KGE≥ 0.75 (Table 5). The performance of the LAI opti-
mization to simulate AET results in values of KGE≥ 0.44
(LAI-Obs) and KGE≥ 0.49 (LAI-GLASS).

The median of the random sampling (lower benchmark)
determines values of KGE= 0.45 to 0.74 across all six se-
tups for AET. In the forested region, LAI-Obs and LAI-
GLASS yield better predictions of AET than the lower
benchmark, except for the PET-HG application and LAI-Obs
optimization. However, this difference is negligible. Hence, a
single optimization with LAI (observed or GLASS LAI) can
improve the AET estimation in forested regions. The lower
benchmark outperforms the LAI optimization (observed and
GLASS LAI) in the grassland setups, although only with mi-
nor KGE differences. Considering that KGE≥ 0.5 is often
accepted as a behavioral model performance (Rogelis et al.,
2016; Knoben et al., 2019), the resulting KGE values for
AET in the grassland setups are still satisfactory. Figure 6
shows the corresponding time series for AET. An overesti-
mation of AET (PET-HG method), particularly in the wet
period in the grassland region for the LAI optimization, can
be observed. An underestimation of AET in the wet period is
computed for the PET-PM method.

Generally, the best model performance is achieved by ap-
plying the PET-PM model, independent of the land cover
type. The good AET fit for the LAI optimization approaches
is explained by the LAI being a term used in calculating
the canopy resistance in the PET-PM equation and the dy-
namic plant growth cycle. The LAI optimization guarantees
a steady transpiration rate, even in the dry period, without the
plant dying, i.e., LAI dropping to zero. The lower benchmark
with no tailored LAI modeling outputs an underestimation
of AET in the dry season (Fig. 6), which can be attributed
to its low LAI values in this season (Fig. 7). The simulated
LAI and AET data for PET-PT are similar to the PET-HG
results (see Fig. A5). Concurrently, good model performance
for PET-PM is also achieved for the lower benchmark. Al-
though insufficient LAI modeling performance results for the
lower benchmarks in the grassland region, acceptable AET
performance is still achieved (Table 5). Ultimately, the results
show that SWAT-T can make accurate LAI and AET predic-
tions. Moreover, the benchmarking test shows that, even if no
AET data are available, the LAI parameter optimization with
observed or satellite-based LAI facilitates an acceptable AET
estimation in forest and grassland regions. However, the AET
performance resulting from LAI calibration is constrained by
the hydrometeorological data availability for the choice of
the PET method and whether the application of energy-based
PET methods, particularly PET-PM, is feasible.

4 Discussion and outlook

4.1 Evaluation of the LAI–AET parameters with
observed and GLASS LAI

This study evaluates LAI modeling with observed and
satellite-based LAI data. Previous studies with SWAT have
also employed field measurements for the LAI (Park et al.,
2017; Yang et al., 2018; Nantasaksiri et al., 2021) or forest
biomass production (Khanal and Parajuli, 2014; Haas et al.,
2022) to evaluate the LAI modeling ability of SWAT. How-
ever, the parameters used in these studies differ, e.g., the to-
tal number of parameters applied ranges from 3 (Yang et al.,
2018) to 18 (Haas et al., 2022). The suggested LAI parameter
list for SWAT-T in Alemayehu et al. (2017) consists of 11 pa-
rameters. We applied one-at-a-time parameter changes to as-
sess the interaction of LAI and AET parameters on both sim-
ulated LAI and AET data. We compared the resulting model
responses (LAI and AET) for each parameter change and
computed the influences of LAI parameters on AET mod-
eling and vice versa. Although the assessment of the one-at-
a-time changes was based on a qualitative analysis, a clear
pattern of the reciprocal influences became apparent. Hence,
we extended the LAI parameter list and identified 27 LAI–
AET parameters for the evaluation of the significance of the
LAI for AET estimation in SWAT-T.

We applied the elementary effects method to evaluate the
parameter sensitivity in order to understand the parameter
interactions in SWAT-T with observed LAI data. Previous
efforts to assess the sensitivity of LAI parameters have fo-
cused on a relative sensitivity index (Khanal and Parajuli,
2014; Nantasaksiri et al., 2021). In the present study, for
the first time, the sensitivity of the comprehensive set of
27 LAI–AET parameters is quantified with the elementary
effects method in SWAT-T. Previously, the Morris screening
method has been used for the sensitivity analysis of SWAT
model parameters only concerning discharge (Xiang et al.,
2022; Abbas et al., 2024). With the application of the Mor-
ris screening, a ranking of the sensitivity of the parameters is
determined in the present study. The most influential param-
eters with respect to the LAI are T_BASE, PHU, DLAI, and
BLAI, independent of the land cover type or the PET method.
Moreover, SOL_RD is the parameter with the highest influ-
ence on the other parameters. Its influence is significant be-
cause it defines the root depth within the soils, which in turn
determines the plant water uptake and, thus, the growing effi-
ciency. The impact of SOL_RD is significant in the forested
region, where the uptake of plants is high and roots grow
deep. The sensitivities reported in Khanal and Parajuli (2014)
are highest for the DLAI, BIO_E, BLAI, and SOL_RD pa-
rameters. Nantasaksiri et al. (2021) identified the BIO_E,
HVSTI (defined as the potential harvest index for the plant at
maturity given ideal growing conditions), BLAI, LAIMX2,
and DLAI parameters to be the most sensitive. The findings
in both studies are coherent with our results, albeit with the
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Table 5. Summary of final KGE values concerning observed AET and LAI for the benchmark elements. For the lower benchmark, the
median AET performance of all 1000 random samples is determined. For LAI modeling, the LAI-GLASS optimization is investigated with
the GLASS LAI. The lower benchmark LAI values are based on the parameterization of the median AET performance runs.

PET method Upper benchmark LAI-Obs LAI-GLASS Lower benchmark

Forest Grassland Forest Grassland Forest Grassland Forest Grassland

Final KGE values regarding AET performance

PET-HG 0.75 0.87 0.44 0.69 0.57 0.71 0.45 0.73
PET-PM 0.84 0.93 0.77 0.71 0.49 0.87 0.46 0.72
PET-PT 0.76 0.90 0.68 0.82 0.60 0.71 0.47 0.74

Final KGE values regarding LAI performance

PET-HG 0.84 0.87 0.94 0.91 0.96 0.88 −0.47 0.17
PET-PM 0.93 0.89 0.94 0.90 0.94 0.94 −0.04 0.07
PET-PT 0.93 0.89 0.95 0.90 0.96 0.90 −0.39 0.02

Figure 6. Time series of simulated and observed AET for the four benchmark elements with (a) the PET-HG method in the forested region,
(b) the PET-PM method in the forested region, (c) the PET-HG method in the grassland region, and (d) the PET-PM method in the grassland
region.

missing investigation of some of the most sensitive parame-
ters, e.g., T_BASE and PHU. Moreover, we apply a global
sensitivity measure, whereas Khanal and Parajuli (2014) and
Nantasaksiri et al. (2021) used a local measure (relative sen-
sitivity index). However, local measures are limited if the
model response is nonlinear (Saltelli et al., 2008), which is
the case for the LAI–AET parameters concerning observed
LAI (Fig. 4). Thus, we could detect and address the nonlin-
earity of the LAI–AET parameters with the elementary ef-
fects method in the present study.

The field measurements used in this study are derived
from hemispherical photographs and satellite-based correc-
tions. Such assorted LAI data can be subject to uncertain-
ties (Fang et al., 2019). To address the potential shortcom-
ings of LAI observations, we additionally evaluated the LAI
estimation regarding satellite-based GLASS LAI. Thus, for

both land cover types, the performance of the LAI predic-
tion is accurate, independent of the PET method. We applied
the GLASS LAI data, as they are reliable in different re-
gions worldwide (Liang et al., 2014) and robust to the noise
and uncertainties that satellite-based vegetation can be sus-
ceptible to in tropical regions (Viovy et al., 1992; Atkinson
et al., 2012). The dual consideration of both observed and
GLASS LAI data ensured the comprehensive LAI evaluation
in the present study.

4.2 Optimization and benchmarking of the AET
modeling with observed AET at the footprint scale

The model extent of the grassland region (2300 m2) repre-
sents the actual footprint size of 4000 m2 estimated by Ma-
madou et al. (2014) well. The footprint for the forested region
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Figure 7. Time series of simulated, observed, and remotely sensed AET for the four benchmark elements with (a) the PET-HG method in the
forested region, (b) the PET-PM method in the forested region, (c) the PET-HG method in the grassland region, and (d) the PET-PM method
in the grassland region.

is seasonally varying and can be up to 60 000 m2 (Mamadou
et al., 2014). Generally, the source area of AET in EC sys-
tems can fluctuate over the year (Kim et al., 2018) due to,
for example, the wind direction – the wind rose can influ-
ence the extent of the footprint (Chen et al., 2009; Chu et al.,
2021). As the model extents of SWAT-T are constant for the
modeling period and the necessary data were unavailable, we
approximated the model scale to represent the footprint for
the whole season according to Chu et al. (2021). The main
objective of the present study is the thorough evaluation of
the vertical fluxes (AET) based on the LAI–AET interaction
in SWAT-T. In SWAT/SWAT-T, the vertical fluxes (AET) are
computed at the HRU level. Hector et al. (2018) investigated
the same regions using a physically based model for the crit-
ical zone (ParFlow-CLM) and also concluded that vegetation
is a significant factor in the AET estimation, which is coher-
ent with our findings.

In the present study, we also investigated whether detailed
LAI modeling disregarding AET can predict reliable AET
estimates in SWAT-T. We showed that LAI optimization also
facilitates an adequate behavioral modeling of AET with ac-
ceptable KGE values for both land cover types. However,
evaluating the model performance when only the values of
one efficiency metric (e.g., KGE) are considered can be mis-
leading, as the explanatory power of the model is missing
(Schaefli and Gupta, 2007; Knoben et al., 2019). Informa-
tion on whether a modeling approach is applicable or should
be rejected and the assessment of the strengths and deficien-
cies of the modeling approach need to be covered using the
pure values of one efficiency metric (e.g., KGE) (Knoben
et al., 2019). To address these shortcomings of an exclu-
sive KGE value evaluation, we applied the benchmarking test
proposed by Seibert et al. (2018). The comparison of mod-

eling approaches, such as the single LAI optimization with
upper and lower benchmark levels, facilitated the assessment
of whether detailed LAI modeling (single LAI optimization)
can improve the LAI prediction in SWAT-T. The benchmark-
ing showed that the significance of thorough LAI modeling is
more pronounced in the forested than in the grassland region.

4.3 Impacts of the model structure on the AET
estimation

At a daily time step, the temporal dynamics of simulated
AET fit adequately to the observed AET pattern in the dry
and wet season for all three PET methods. Thus, the appli-
cation of PET-PM outperforms PET-HG and PET-PT. Gen-
erally, the PET-PM application is more physically complex
than PET-HG and PET-PT but requires more input data.
The computation of PET-HG and PET-PT relies on em-
pirically delineated coefficients, e.g., H0 and αpet, respec-
tively. In PET-PM, terms for different properties of the land–
atmosphere interaction are implemented, such as vapor pres-
sure or the canopy resistance (rc) and aerodynamic resis-
tance (ra). In PET-PT, however, the aerodynamic term αpet
is modeled with a constant coefficient of 1.28 (Neitsch et al.,
2011). Moreover, the partitioning of PET into potential plant
transpiration and soil evaporation is based on a threshold in
PET-HG and PET-PT. While PET-PM estimates the poten-
tial transpiration using the Penman–Monteith equation, in
which rc and ra are dependent on the LAI modeling, the
partitioning of PET implemented in PET-PT and PET-HG is
based on the threshold LAI> 3.0. Hence, the significance
of detailed LAI modeling in these methods has less impact
on plant transpiration. For the forested region, the LAI mod-
eling (single LAI optimization disregarding AET) can still

Hydrol. Earth Syst. Sci., 28, 5511–5539, 2024 https://doi.org/10.5194/hess-28-5511-2024



F. Merk et al.: The significance of the LAI for ET estimation in SWAT-T 5525

predict the AET adequately. The influence of the LAI esti-
mation is less substantial in the grassland region, where the
lower benchmark (random sampling) outperforms the single
LAI optimization (observed and GLASS LAI). However, the
physical representation of the LAI–AET relationship is lim-
ited, as low KGE values are computed. Overall, the more
straightforward approaches PET-HG and PET-PT can still
yield adequate AET outputs (Archibald and Walter, 2014),
although PET-PM offers a more physically sound depiction
of the LAI–AET interaction.

In previous studies, similarly accurate AET performance
for the PET-PM application has been observed for a forested
region (do Nascimento Ferreira, 2021) and for a grassland
region (Qiao et al., 2022) regarding a comparison with AET
from EC systems. An improvement in the AET estimation
with SWAT-T using EC systems was been demonstrated for
PET-HG, PET-PT, and PET-PM at the HRU scale in López-
Ramírez et al. (2021), where the annual budgets for AET
were found to fit best for PET-HG. However, no coupled
LAI–AET parameterization has been considered. We were
able to address the relevance of the coupled LAI–AET pa-
rameterization and, thereby, also demonstrate the best overall
performance for PET-PM.

4.4 Outlook

The elementary effects were computed based on the period
for which measured LAI data are available. SWAT-T divides
plant growth into four phases (start of growth, maturity, leaf
senescence, and dormancy). A time-varying sensitivity anal-
ysis of the LAI–AET parameters with respect to the plant
growth phases should be done in future work. Applications
should explore approaches such as dynamic identifiability
analysis (Wagener et al., 2003) or wavelet-based methods
(Chiogna et al., 2024). These time-varying approaches can
further improve our understanding of the LAI–AET parame-
ter interaction.

We showed that the LAI–AET modeling of SWAT-T for
approximated footprints is applicable for perennially vege-
tated regions in West Africa. In future work, coupled LAI–
AET modeling should be transferred from the footprint to
the catchment scale. The water balance of the ecosystems
of West Africa is mainly characterized by a high share of
AET. Hence, this study focuses on analyzing the LAI–AET
interaction and, thus, on the dominant vertical fluxes in these
regions. Given the significance of AET in West Africa, the
LAI–AET relationship can also be essential for estimating
the horizontal fluxes that are substantial for streamflow com-
putation at the catchment scale. Applying satellite-based LAI
data, e.g., GLASS LAI, can also support plant growth and
AET modeling at larger scales. Moreover, we focused our
analysis on characteristic regions of West Africa. Future
work should analyze the LAI–AET interaction for other land
cover types, e.g., regions with higher LAI values like the

Congo forests or other climatic zones, such as energy-limited
regions.

The present study focuses on the LAI as a vegetation at-
tribute. In SWAT/SWAT-T, the canopy height is also mod-
eled. The canopy height can impact the PET estimation,
e.g., in the application of PET-PM, where the canopy re-
sistance (rc) is a function of the canopy height. Moreover,
EC systems can also offer other relevant attributes of the
vegetation–AET interaction, such as derivations of the aero-
dynamic conductance, surface conductance, water vapor,
heat fluxes, or the evaporative fraction (Mamadou et al.,
2016). These attributes improve the physical understanding
of the vegetation–AET interaction and can also be valuable
to inform hydrological modeling (Hector et al., 2018). We
focused on the application of the LAI because (i) it is a key
vegetation attribute in SWAT-T and (ii) global products of
LAI are available. As the seasonal dynamics of both forest
and grassland vegetation (LAI) are modeled accurately, we
postulate that the approaches of this study can be transferred
to other plant and crop types.

Considering a coupled LAI–AET parameterization, the
quantification of biomass or crop yield for other plant species
can also be addressed. Yang and Zhang (2016) investigated
the biomass as a proxy for primary productivity with SWAT
for different flux sites of the AmeriFlux network. They iden-
tified BIO_E, BLAI, T_OPT, T_BASE, and BIO_LEAF as
the most significant parameters for biomass. Apart from the
BIO_LEAF parameter, the choice of parameters is similar to
our study. Hence, LAI modeling can also be used as a proxy
for biomass estimation. However, in-depth analysis with ob-
served biomass data is inevitable if the modeling objective is
the evaluation of biomass and net primary productivity.

5 Conclusion

The broad implication of this research is the presentation of
a comprehensive LAI–AET parameter evaluation to model
both the LAI and AET using an ecohydrological model. We
highlighted the relevance of a coupled LAI–AET parameter
estimation in SWAT-T. Although the impact of LAI parame-
ters on the AET prediction can be low, substantial influence
can be observed on the AET dynamics. The impact of the
LAI parameters on AET is exceptionally high at the end of
the wet season and the beginning of the dry season, when the
plant growth phase shifts from plant maturity to leaf senes-
cence. Moreover, the affect of water stress on plant growth
resulting from the AET estimation can be decisive and should
be considered for comprehensive LAI modeling. We con-
clude that the relevance of a coupled LAI–AET parameter
estimation indicates that a stepwise modeling approach (e.g.,
first LAI and then AET) requires a careful review of the sim-
ulated LAI after the AET parameters are estimated. An anal-
ysis using the elementary effects method demonstrates that
most LAI parameters behave nonlinearly if compared with
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observed LAI data. The most sensitive parameters for LAI
modeling are those associated with LAI parameters. How-
ever, a Morris screening also indicates a meaningful contri-
bution from the soil parameters. The ranking further illus-
trates the independence of the LAI parameters with respect
to the land cover type (forest and grassland).

The multi-objective optimization with the SCE-UA algo-
rithm results in accurate estimations of both the LAI and
AET for all PET-methods and land cover types. SWAT-T
has also been proven to be applicable at the footprint scale
in West Africa. Although the simpler PET-HG and PET-
PT methods facilitate satisfactory modeling results, apply-
ing the PET-PM method outperforms these methods for the
LAI and AET estimation in the forested and grassland re-
gions. Moreover, our work demonstrates that an adequate es-
timation of AET can be obtained if the LAI–AET parameters
are only optimized with respect to LAI data (and disregard-
ing AET data) for forest and grassland regions. Compared
with the lower benchmark level, the benchmark test illus-
trates an enhancement of the AET prediction for the PET
methods (particularly PET-PT and PET-PM). This is particu-
larly noteworthy for data-scarce regions where no field mea-
surements of AET are available. Even if no observed LAI
data for a forested region are available, practitioners and re-
searchers can optimize the LAI–AET parameters using re-
motely sensed LAI data and still achieve reliable AET es-
timations. In the grassland region, the resulting AET pre-
diction from the LAI optimization is also adequate. How-
ever, the lower benchmark indicates better performance for
the grassland site. The good result of the lower benchmark
is obtained from the median KGE performance of a large
number of parameter samples (1000 runs). Single parame-
ter changes, the mean, or the default model parameter values
of the SWAT/SWAT-T crop database do not necessarily fa-
cilitate satisfactory AET prediction. Overall, the LAI–AET
parameter optimization for grassland yields sufficient AET
performance. Nevertheless, its role in the AET estimation is
less critical than for forested regions.

Finally, we stress the importance of opting for a coupled
parameter estimation to understand the LAI–AET interaction
and to improve the land–atmosphere simulation in hydro-
logical modeling. The performance comparison of modeled
AET confirms that a detailed plant growth analysis is essen-
tial. The highlighted relevance of the LAI–AET interaction
is significant for a thorough quantification of hydrological
processes and, hence, necessary for the comprehensive as-
sessment of water resources management.
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Appendix A

Figure A1. Seasonality in (a) daily total solar radiation, (b) wind speed, and (c) relative humidity for the Bellefoungou (forest) and Naholou
(grass) study sites. The seasonality is derived from measurements of each eddy-covariance system.

Figure A2. Distribution of variations in the AET or LAI for the one-at-a-time parameter changes for PET-HG for the following parameters:
(a) EPCO, (b) SOL_AWC, (c) PHU, (d) ALAI_MIN, (e) DLAI, and (f) T_BASE. The distributions are clustered in uniform intervals
(size= 0.625) of the observed time series for the AET (mm) or LAI (m2 m−2). The x axis indicates the observed AET (mm) and LAI
(m2 m−2) values. The y axis represents the difference between observed and simulated values with 1Y = Obs−Sim regarding the AET
(mm) or LAI (m2 m−2). A perfect fit is indicated with the dashed line for1Y = 0. Positive and negative values show an underestimation and
overestimation of the simulated values, respectively. The distributions (violin plots) are created based on Karvelis (2024).
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Figure A3. Distribution of variations in the AET or LAI for the one-at-a-time parameter changes for PET-PT for the following parameters:
(a) EPCO, (b) SOL_AWC, (c) PHU, (d) ALAI_MIN, (e) DLAI, and (f) T_BASE. The distributions are clustered in uniform intervals
(size= 0.625) of the observed time series for the AET (mm) or LAI (m2 m−2). The x axis indicates the observed AET (mm) and LAI
(m2 m−2) values. The y axis represents the difference between observed and simulated values with 1Y = Obs−Sim regarding the AET
(mm) or LAI (m2 m−2). A perfect fit is indicated with the dashed line for1Y = 0. Positive and negative values show an underestimation and
overestimation of the simulated values, respectively. The distributions (violin plots) are created based on Karvelis (2024).
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Figure A4. Ranking of the LAI–AET parameter sensitivity for the three PET methods and two land cover types with respect to the observed
LAI. The superscript 1 denotes that parameter GSI is only accounted for when PET-PM is used.

Figure A5. Time series of simulated and observed AET and LAI for the four benchmark elements computed with the PET-PT method with
the following: (a) AET in the forested region, (b) AET in the grassland region, (c) LAI in the forested region, and (d) LAI in the grassland
region.
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Figure A6. Seasonality in the simulated and observed AET time series. The top row (a–c) shows the AET data for the forested region for
different PET methods, with applications of (a) PET-HG, (b) PET-PM, and (c) PET-PT. The bottom row (d–f) shows the grassland region,
with applications of (d) PET-HG, (e) PET-PM, and (f) PET-PT.

Figure A7. Seasonality in the simulated and observed LAI time series. The seasonality in LAI-Obs and GLASS LAI is displayed. The
top row (a–c) shows the LAI data for the forested region for different PET-methods, with applications of (a) PET-HG, (b) PET-PM, and
(c) PET-PT. The bottom row (d–f) shows the grassland region, with applications of (d) PET-HG, (e) PET-PM, and (f) PET-PT.
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Water stress (wstrs) is calculated as follows:

wstrs= 1−
Et,act

Et
= 1−

wactualup

Et
, (A1)

where Et,act is the actual transpiration, Et is the potential
plant transpiration, and wactualup is the total water uptake.
wactualup is computed based on the amount of water in the
soil layer and the water content at the wilting point (for de-
tails, refer to Neitsch et al., 2011).

Temperature stress (tstrs) is calculated as follows:

tstrs=
1, if Tav ≤ Tbase

1− exp
(
−0.1054·(Topt−Tav)

2

(Tav−Tbase)2

)
, if Tbase < Tav ≤ Topt

1− exp
(
−0.1054·(Topt−Tav)

2

(2·Topt−Tav−Tbase)2

)
, if Topt < Tav ≤ 2 · Topt− Tbase

1, if Tav > 2 · Topt− Tbase,

(A2)

where Tav is the mean air temperature for the day, Tbase is
the base temperature of the plant for growth, and Topt is the
optimal temperature of the plant for growth.

Nitrogen stress (nstrs) is calculated as follows:

nstrs= 1−
φn

φn+ exp(3.535− 0.02597 ·φn)
, (A3)

where φn is a scaling factor for nitrogen stress computed with
the actual and optimal mass of nitrogen stored in the plant
material (bioN and bioN,opt, respectively):

φn = 200 ·
(

bioN

bioN,opt
− 0.5

)
. (A4)

Phosphorus stress (pstrs) is calculated as follows:

pstrs= 1−
φp

φn+ exp(3.535− 0.02597 ·φp)
, (A5)

where φp is a scaling factor for phosphorous stress computed
with the actual and optimal mass of phosphorus stored in the
plant material (bioP and bioP,opt, respectively):

φp = 200 ·
(

bioP

bioP,opt
− 0.5

)
. (A6)

The Kling–Gupta efficiency (KGE) is calculated as fol-
lows:

KGE= 1−

√
(r − 1)2+

(
σsim

σobs
− 1

)2

+

(
µsim

µobs
− 1

)2

, (A7)

where r is the linear correlation between observations and
simulations; σsim and σobs are the standard deviation of the
simulations and observations, respectively; and µsim and
µobs are the mean value for the simulations and observation,
respectively.
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Table A1. List of final parameters for the multi-objective (LAI and AET), observed LAI, and GLASS LAI optimization for the forested
region. The units of the parameters are excluded for readability; they are given in Table 2.

Parameter LAI and AET Observed LAI GLASS LAI Lower benchmark

HG PM PT HG PM PT HG PM PT HG PM PT

BIO_E 26.2 19.5 29.3 20.7 22.2 21.1 18.4 10.3 19.2 36.5 23.3 38.2
BLAI 3.7 4.2 5.5 4.4 4.6 4.8 4.1 5.1 4.6 6.6 2.5 5.8
FRGRW1 0.25 0.14 0.1 0.19 0.12 0.2 0.17 0.1 0.15 0.06 0.26 0.19
LAIMX1 0.26 0.18 0.13 0.22 0.13 0.16 0.21 0.09 0.19 0.08 0.17 0.21
FRGRW2 0.51 0.7 0.81 0.69 0.71 0.73 0.69 0.67 0.73 0.9 0.77 0.74
LAIMX2 0.5 0.72 0.84 0.74 0.72 0.64 0.61 0.61 0.6 0.54 0.64 0.61
DLAI 0.68 0.67 0.7 0.54 0.56 0.55 0.56 0.44 0.6 0.71 0.75 0.52
T_OPT 22.7 29.7 30.2 26.4 29.9 29.6 29.5 31.3 25.3 29.4 27.7 29.4
T_BASE 14 14.6 13 15 15.5 15.2 15.2 15.3 14.1 9.1 17 10.6
ALAI_MIN 0.9 0.76 0.88 0.83 0.8 0.8 0.73 0.61 0.77 0.68 0.48 0.84
GSI 0.006 0.006 0.001 0.004 0.005 0.007 0.004 0.002 0.004 0.003 0.003 0.007
PHU 3696 3962 4427 4140 3940 4074 3872 4361 4109 3176 4007 3165
SOL_Da 3381 2914 3148 2729 3195 2980 2727 3295 2680 2754 2696 3415
ESCO 0.52 0.41 0.13 0.55 0.54 0.56 0.48 0.92 0.37 0.14 0.29 0.94
EPCO 0.92 0.32 0.92 0.39 0.39 0.71 0.57 0.79 0.48 0.75 0.23 0.4
CAN_MX 4.3 4.9 0.3 6.4 3.7 3.9 5.7 3.8 5.7 4.9 6.1 7
HRU_SLP 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022
SLSUBBSN 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463
CN_2 38 38 38 38 38 38 38 38 38 38 38 38
SOL_AWCb 1.82 1.11 1.14 1.35 1.2 1.07 1.27 1.8 1.06 −0.23 0.07 −0.5
SOL_BDb 0.04 1.08 −0.38 0.51 1.12 0.74 0.12 0.58 0.33 1.04 1.79 0.36
SOL_CBNb 1.85 0.39 0.64 0.58 0.8 1.24 1.07 0.56 0.39 1.48 1.17 1.14
SOL_Kb 1.43 0.95 1.66 0.91 0.82 0.74 1.25 −0.35 0.48 1.7 0.94 0
SOL_RD 1958 1239 1503 1040 1143 1512 1194 1648 1111 578 1575 1894
GW_REVAP 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
RCHRG_DP 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
REVAPMN 500 500 500 500 500 500 500 500 500 500 500 500

a Lowest soil layer depth. b Relative parameter changes: paranew = paraoriginal + paraoriginal · parachange.
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Table A2. List of final parameters for the multi-objective (LAI and AET), observed LAI, and LAI-GLASS optimization for the grassland
region. The units of the parameters are excluded for readability; they are given in Table 2.

Parameter LAI and AET Observed LAI GLASS LAI Lower benchmark

HG PM PT HG PM PT HG PM PT HG PM PT

BIO_E 28 18.7 25.4 20.2 23 22.1 19.2 23.5 16.5 23.1 37.6 21.7
BLAI 4.5 4.5 4.4 4.5 4.4 4.7 4.5 5.3 6 4.8 4.9 6.9
FRGRW1 0.29 0.27 0.29 0.3 0.29 0.28 0.24 0.29 0.3 0.07 0.16 0.23
LAIMX1 0.08 0.07 0.06 0.06 0.05 0.05 0.15 0.14 0.14 0.2 0.11 0.15
FRGRW2 0.69 0.67 0.68 0.6 0.61 0.65 0.52 0.56 0.51 0.56 0.59 0.72
LAIMX2 0.72 0.74 0.78 0.74 0.75 0.76 0.75 0.88 0.66 0.61 0.64 0.57
DLAI 0.83 0.83 0.79 0.77 0.8 0.76 0.8 0.59 0.71 0.81 0.88 0.72
T_OPT 30.4 27.8 30.3 29.8 30.5 30.5 20.6 28.6 31.5 28.4 24.5 28.4
T_BASE 12.8 12.9 12.9 13 13 13 11.6 14.4 14.4 11.9 11.1 16.6
ALAI_MIN 0.62 0.6 0.63 0.6 0.61 0.6 0.7 0.65 0.68 0.51 0.26 0.8
GSI 0.005 0.004 0.004 0.005 0.006 0.006 0.008 0.004 0.008 0.001 0.009 0.001
PHU 4090 3970 4010 4087 4035 4059 4104 3843 3535 5638 5665 4571
SOL_Da 3002 2541 3375 2883 2911 2967 3866 2390 3575 3392 2270 2835
ESCO 0.89 0.54 0.8 0.49 0.5 0.59 0.49 0.51 0.1 0.28 0.53 0.11
EPCO 0.43 0.27 0.73 0.37 0.52 0.43 0.58 0.15 0.6 0.2 0.87 0.18
CAN_MX 4.3 4.9 0.3 6.4 3.7 3.9 5.7 3.8 5.7 4.9 6.1 7
HRU_SLP 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032
SLSUBBSN 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463
CN_2 81 81 81 81 81 81 81 81 81 81 81 81
SOL_AWCb

−0.21 −0.4 0.05 0.71 0.43 0.63 −0.17 1.72 0.14 0.1 0.74 1.5
SOL_BDb 1.08 0.93 0.98 1.03 0.98 0.93 1.6 1.95 0.48 1 0.5 1.72
SOL_CBNb 1.47 1.02 1.59 0.87 1.6 1.07 1.25 1.24 −0.6 0.88 0.28 0.74
SOL_Kb 0.46 0.61 0.44 0.61 0.7 0.65 0.59 −0.36 1.38 0.13 0.06 −0.06
SOL_RD 1958 1239 1503 1040 1143 1512 1194 1648 1111 578 1575 1894
GW_REVAP 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
RCHRG_DP 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
REVAPMN 500 500 500 500 500 500 500 500 500 500 500 500

a Lowest soil layer depth. b Relative parameter changes: paranew = paraoriginal + paraoriginal · parachange.
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Table A3. Water balance components for the final runs for the forested region. All quantities listed are in millimeters. The components of
the lower benchmark are shown, although no calibration was applied.

Model setup Precipitation PET AET Water yield Aquifer recharge

Surface runoff Lateral flow GW∗ flow

PET-HG, upper benchmark 1479.6 1891.1 1098 12.1 16.5 56.2 307.6
PET-HG, LAI-Obs 1479.6 1891.1 1049 7.8 25.6 75.7 373.3
PET-HG, LAI-GLASS 1479.6 1891.1 1060 6.5 14.3 73.5 365.4
PET-HG, lower benchmark 1479.6 1891.1 595.9 18.7 27.2 527.2 836.3
PET-PM, upper benchmark 1479.6 1646.3 969 26.9 82.6 77.4 389
PET-PM, LAI-Obs 1479.6 1646.3 968.9 60.2 90.8 68.1 344
PET-PM, LAI-GLASS 1479.6 1646.3 769.3 78.8 16.3 267.5 593.9
PET-PM, lower benchmark 1479.6 1646.3 626.1 18.6 20.23 511.6 811.9
PET-PT, upper benchmark 1479.6 1392.5 969 20.6 8.2 139.3 444.4
PET-PT, LAI-Obs 1479.6 1392.5 911.4 22.6 36.3 193.3 477
PET-PT, LAI-GLASS 1479.6 1392.5 858.6 11.4 29.1 296.4 556.2
PET-PT, lower benchmark 1479.6 1392.5 572.8 99.7 13.8 533.5 787.2

∗ GW is short for groundwater.

Table A4. Water balance components for the final runs for the grassland region. All quantities listed are in millimeters. The components of
the lower benchmark are shown, although no calibration was applied.

Model setup Precipitation PET AET Water yield Aquifer recharge

Surface runoff Lateral flow GW∗ flow

PET-HG, upper benchmark 1424 1809.1 729.7 375.5 12.7 57.4 303.6
PET-HG, LAI-Obs 1424 1809.1 869.8 269.5 19.3 48.4 261.7
PET-HG, LAI-GLASS 1424 1809.1 920 294.6 19.5 34.7 186.4
PET-HG, lower benchmark 1424 1809.1 888.6 291.2 11.1 42.7 230.3
PET-PM, upper benchmark 1424 1623 718.5 331.3 12.8 68.8 358.8
PET-PM, LAI-Obs 1424 1623 899.7 244.8 19.4 47.6 253.5
PET-PM, LAI-GLASS 1424 1623 789 300.8 12 57.8 313.4
PET-PM, lower benchmark 1424 1623 824.5 288 15 55 294.5
PET-PT, upper benchmark 1424 1475.6 751.1 382.1 17.8 50.3 269.5
PET-PT, LAI-Obs 1424 1475.6 786.3 309.8 19.8 56.1 302.3
PET-PT, LAI-GLASS 1424 1475.6 883.4 331.8 25.5 33.2 179
PET-PT, lower benchmark 1424 1475.6 874.6 294.1 13.5 43.2 239.1

∗ GW is short for groundwater.
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Table A5. Overview of the data used for the study site map.

Data Database name or source

Topography Copernicus GLO-30
(Copernicus, 2022)

Land use map Copernicus Global Land Service
(Buchhorn et al., 2020)

Water bodies ArcGIS Pro 2.7.3 (Esri)
Countries and cities ArcGIS Pro 2.7.3 (Esri)
Study site locations Mamadou et al. (2016)
Catchment extents Derived with ArcGIS Pro 2.7.3 (Esri)

Code availability. The code for the Morris method and anal-
ysis is available upon request. The code for the violin plots
was obtained from Karvelis (2024) (https://github.com/frank-pk/
DataViz/releases/tag/v3.2.3). The SPOTPY toolbox is available
from Houska et al. (2015).

Data availability. Tables 2 and A5 list information about the data
analyzed here.
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