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Abstract. The prediction of rainfall rate characteristics at small space-time scales is currently an important topic, particularly within the context 10 

of the planning and design of satellite network systems. A new comprehensive interpolation approach is presented in this paper to deal with 11 

such an issue. There are three novelties in the proposed approach: 1) the proposed interpolation approach is not directly applied to measured 12 

rain precipitation (either radar or raingauge-derived data) but focuses on the coefficients of the fitted statistical distributions and/or computed 13 

rain characteristics at each location; 2) the parameter databases are provided and the contour maps of coefficients spanning Western Europe 14 

have been created. It conveniently and efficiently provides the rain parameter for any location within the studied map; 3) more speculatively, 15 

the    space-time interpolation approach can extrapolate to rain parameters at space-time resolutions shorter than those in the NIMROD 16 

databases.  17 

1. Introduction 18 

The spatial and temporal variation of point rainfall rates is important for the detailed planning and performance prediction for 19 

satellite and terrestrial networks (a group of links) (Yang, 2016). It is increasingly evident that models and/or approaches are 20 

needed in order to predict rainfall rate variation at smaller space-time scales than currently available from wide area coverage 21 

measured rainfall rate databases. 22 

Extensive studies of rain have been carried out in the last few decades. After several generations many interesting rain models 23 

have been published. A model of particular interest was developed by Bell (Bell, 1987). His work showed that rainfall intensities 24 

in a field exhibit lognormal distribution and this was confirmed by Crane (Crane, 1996) and Jeannin et al (Jeannin et al., 2008). 25 

The traditional rain models (e.g. stochastic models, Markov chain models) can be used to aid the planning of satellite networks. 26 

However, there are some limitations inherent in such models and the two major ones are: 27 

1) Data availability. The models are only applicable to areas/locations where rainfall precipitation with the necessary 28 

integration volume has been observed and the accuracy of the models in areas where no data is available is difficult to verify. 29 

2) Integration volume. The application of the traditional models is limited by the integration length. The modelling of rain and 30 

simulated rainfall fields can only be limited to the space-time resolution derived from rain radar/gauge measurements. 31 

Rainfall fields simulation at finer space-time scales is often possible but cannot be verified. 32 

Based on this information, it is clear that the application range of stochastic models is limited by the above problems. 33 

Improvements, thus, are needed to compensate, enhance and extend the performance of stochastic models. In particular, an 34 

increase in the use of high frequency over short communication links has led to an increase in the need to predict rainfall rates at 35 

finer resolutions. Current stochastic models cannot satisfy this demand. As a result, interpolation techniques have attracted a lot 36 

of attention in recent decades. For example, Drozdov and Sephelevskii (Drozdov and Shepelevskii, 1946) developed a spatial 37 

interpolation technique to analyze the spatial variations of a process over an area. Then later, a modified interpolation technique 38 
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called Kriging was developed based on the theory of regionalized variables to estimate area averages considered as realizations 39 

of a stochastic process introduced by Matheron (Matheron, 1971) Since then significant progress has been made and two-40 

dimensional (  ) space rainfall rate interpolation models have been developed, e.g.(Deidda,1999 and Menabde et al., 1997). The 41 

Random Midpoint Displacement algorithm (RMD) developed by Voss (Voss, 1985) in 1985 is one of the most popular 42 

interpolation algorithms. The basic idea of the technique is to introduce new rain rate samples with the same underlying 43 

distribution as existing measurements at new locations or times. The one-dimensional (  ) time interpolation is also of interest 44 

as network planners and designers of physical layer fade mitigation techniques (Gremont et al., 1999) require knowledge of rain 45 

variation over much shorter time scales (of the order of seconds or less). Some excellent models have been published like 46 

(Pathirana et al., 2003 and Veneziano et al., 1996). One of such models proposed by Kevin Paulson (Paulson, 2004) is a 47 

stochastic numerical model that can interpolate the point rain rate for short time durations down to     .  48 

The downscaling model, based on the space-time averaging theory, is another model that has also attracted significant attention. 49 

According to (Deidda et al., 1999), there are two fundamental requirements for precipitation downscaling models, which are: 1) 50 

understanding of the statistical properties and scaling laws of rainfall fields, and 2) validation of downscaling models that are 51 

able to preserve statistical characteristics observed in real precipitation. Typically, based on the information given in (Rebora et 52 

al., 2006), downscaling algorithms can generally be grouped into three main families with some simplification: 1) point process 53 

based on the random positioning of a given number of rain bands and rain cells (Cowpertwait et al., 2006); 2) autoregressive 54 

processes passed through a static nonlinear transformation (Guillot and Lebel, 1999), and; 3) fractal cascades (Kiely and 55 

Ivanova, 1999). In particular, the theory of fractals, which was first introduced by Mandelbrot in 1967 (Mandelbrot, 1967) has 56 

attracted great attention. This theory was not applied to rainfall study until the mid-1980s (Lovejoy and Mandelbrot, 1985). Rain 57 

has been shown to hold fractal properties over a range of scales. The intermittence and discontinuous nature of rain is reproduced 58 

by the fractal based models, which are strongly favoured for rainfall modelling. Many studies have been carried out to interpolate 59 

the radar/raingauge measurement data to finer scales using the fractal theory, such as (Svensson, 1996). Multifractal models, 60 

which may be simulated using random cascades, can easily capture any moment of the observed signal; especially higher order 61 

moments have attracted a lot of attention. Because of their link with multifractal theory, multiplicative cascade models first 62 

proposed by Yaglom (Yaglom, Jul 1966), appeal to rainfall simuláations. The rainfall series have been shown to exhibit scaling 63 

invariance properties over a large range of space (Olsson, 1996) and time (Olsson et al., 1993) steps. Some multifractal models 64 

use discrete cascade algorithms to produce data at finer scales from original sparse observations, for example (Olsson, 1998). A 65 

classic work is given by Menabde (Menabde, 1997) who used a discrete random cascade to generate a rain field with the desired 66 

statistical structure and then applied a power law filter, thereby removing some of the blockiness resulting in a more realistic 67 

looking rain field. In addition, synthesis of rain field at high resolution is also important to the rain study especially devised for 68 

applications related to EM wave propagation. Many contributions have been done in this area, such as (Jeannin, 2012 and Luini, 69 

2011) 70 

The prediction at finer space-time resolution however, has long been a challenging issue in rainfall field modeling. Results from 71 

   interpolation studies are quite poor (Yang, 2016 and Deidda, 2000) as it is very difficult to consider both space and time 72 

variability and irregularity of rainfall in an appropriate way. The basic idea of published models is to try to find the underlying 73 

principle of how the space-time transformation can be achieved. A representative model was developed by Deidda (Deidda, 74 

2000) based on the assumption that Taylor’s hypothesis (Taylor, 1938) can be applied. The space-time rainfall field is assumed 75 

to be a three-dimensional (   space and    time) homogeneous and isotropic process. An advection velocity parameter is 76 

introduced to connect the space scale and time scale. With the help of a velocity parameter, the statistical properties of rain at 77 

finer scales can be deduced from larger ones. Similar studies can be found in (Venugopal et al, 1999, Deidda, 2006 and 78 
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Venugopal et al., 1999) in which rain has been studied in a range of space-time scales to define the transformation parameter. In 79 

particular, Kundu and Bell (Kundu and Bell, 2006) developed a model that can provide the correlation function of rain in    80 

space-time domain but in a very complicated form.  81 

The absence of high resolution rainfall data at desired space and time scales is the main knowledge gap. Deidda in (Deidda, 82 

2000) pointed out that most of the existing rainfall studies at finer scales are purely focused on either space modeling (Hubert et 83 

al., 1993) or time modeling (Paulson, 2004). However, both of these approaches have limitations. For example, the statistical 84 

behavior of rain in time has implicit consideration of the spatial distribution and extension of the rain field itself; and the study in 85 

space is normally based on fixed time duration whilst the evolution in time of spatial patterns is ignored. Accurate rainfall field 86 

simulation requires knowledge of rainfall rate variability in both space and time domains. There is not enough research in the 87 

area of space-time interpolation apart from a few works, such as (Deidda, 2006). Thus, an appropriate space-time interpolation 88 

model that can preserve the underlying statistical properties at finer scales is needed. The absence of knowledge of rain 89 

characteristics at high space and time resolution is another important gap and is the second objective of this study. Kundu in 90 

(Kundu and Bell, 2006) showed that the characteristics of rain depend on the space and time scales over which rain data is 91 

averaged. However, all the existing interpolation and/or multifractal models directly focus on rain precipitation and no work has 92 

been found that studied the characteristics of rain at scales better than the one provided by rain radars. The study in this paper, 93 

therefore, will look into this issue to investigate the variability of rain characteristics at arbitrary space-time integration length. 94 

To further the development of rain-induced radio-wave attenuation models, and to provide more accurate performance prediction 95 

of satellite links over wide areas, there is an increasing need for a good understanding of the space-time characteristics of rainfall 96 

rate at finer scales. As extension of our previous work (Yang, 2011), this paper presents a simple but accurate space-time 97 

interpolation approach that can interpolate the key studied properties of rain in both space and time domain simultaneously. We 98 

present a series of European maps superimposed with each parameter at different space-time resolution which is novel. In 99 

particular, a simple but accurate approach for interpolating the rain characteristics has been proposed. It can predict the 100 

coefficient values of the statistical model in both space and time with reasonable accuracy.  101 

The rest of this paper is organized as follows: Section 2 describes the data used in this study. Section 3 reviews the statistical 102 

model proposed in previous work and describes the proposed approach how to interpolate the measurements into 3-dimensional 103 

space-time domain. The detailed results, including the 2D contour map of rain characteristics across Western Europe, as well as 104 

the 3D space-time predictions at each location, are presented in Section 4. Section 5 validates the results achieved from the 105 

proposed interpolation approach. Conclusions are drawn in Section 6. 106 

2. Data Description 107 

Five complete years of NIMROD rain radar data (from 2005 to 2009) have been analyzed for the development of a generic 108 

interpolation approach. The NIMROD radar system produces a series of composite rain field map by every        . The 109 

measured rain rate samples are distributed on a      squared Cartesian grid covering Western Europe. Each NIMROD map 110 

contains           data cells, but only the data available points have been analysed, see the outline is Fig. 1(a). The study area 111 

ranges from          to          in latitude and          to          in longitude. In addition, NIMROD system also holds 112 

the database for the British Isles. This database has better resolution of rain rate measurement, which is      in space and 113 

       in time. The example radar map is given in Fig. 1(b). The performance of any model or approach needs to be validated 114 

through comparing with observational data from apparatus (e.g. raingauge or rain radar). UK data, which has better resolution 115 

than EU NIMROD data, can be utilized to implement the validation. 116 

 117 
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       118 

                                                                   (a)                                                              (b) 119 

Figure 1: (a) composite radar scan image: radar image for Western Europe (the outline is the studied area), and (b) radar image 120 

for the British Isles. 121 

3. Methodology 122 

3.1. Stochastic Model 123 

The empirical equations that can accurately provide the estimates of the studied characteristics of rain have been discussed in 0. 124 

The proposed model for the four key rain characteristics is described briefly here for completeness.  125 

It is well accepted that rainfall rate   in mm/h at one location is modeled as a lognormal process with mixed probability density 126 

function (pdf). According to (Filip and Vilar, 1990), the general formula for a straight line fit is given by: 127 

     
  ( )

 
 

 

 
                                                                                                                                                                                (1) 128 

where *   + is the set of lognormal parameters that are used to study the statistics of rainfall rate at a location of interest. 129 

Research reported in (Yang, 2016) has produced a single general empirical equation that fits both the space correlation and the 130 

time correlation functions. The common function is given by: 131 

 ( )  
 

                                                                                                                                                                                          (2) 132 

where   can either be   which represents the distance in    or   which is the time lag in     . 133 

An empirical equation has been proposed in (Yang, 2011) that can give an excellent estimate of the probability of rain 134 

occurrence (  ) throughout the whole range of integration length. The mathematical equation is described by: 135 

  ( )          (   )                                                                                                                                                              (3) 136 

where  ,   and   are experimental constants which can be determined from study and   denotes either spatial integration length   137 

or temporal integration length   . 138 

3.2. Data Integration 139 

Following previous work (Yang, Oct 2011), the rainfall rate data can be up-scaled from short integration length to longer 140 

one using: 141 

  (     )  
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)                                                                                                                              (4) 142 

 143 

where     (     ) is the rain rate at position (   ) derived from a spatial integration region of linear size    and temporal 144 

integration time   .     is known as the scale parameter.  More generally, the spatial and temporal regions could have 145 

different scale parameters e.g.: 146 
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The radar-derived rain rate data can be upscaled to coarser resolution based on above equations. It is important to highlight that 148 

each grid point will be used only once for each integration and no overlapping regions are considered. The integrated data will be 149 

tiled up without changing the size of original rain map but new dataset with larger integration scale will be achieved. Note that 150 

the larger the integration length the smaller number of data samples will be. Particularly, it requires   and   must be integer to 151 

enable this procedure. Therefore, it is notable that the integration length of the new data is the integral times of original radar 152 

data, and it will be     and   , here        and          .  153 

3.3. Approach for the Implementation of 3D Interpolation 154 

According to our previous work (Yang, 2011), we found that the rain characteristics regularly changing with increasing 155 

integration length both in space and time domains. This interesting finding indicates that the studied rain characteristics at other 156 

spatial or temporal integration lengths can be reasonably predicted using such regularity. More speculatively, it enables the 3D 157 

interpolation to be achievable if there are enough measurements with different space-time resolution combinations. 158 

Fig.2 shows the grid of available rain data points from the NIMROD radar measurements. The dots represent the available space-159 

time integration length combination where the rain characteristics can be computed based on available NIMROD data. The lines 160 

represent the range of integration length where rain characteristics can be calculated from equation (1) to (3). It is notable that the 161 

proposed statistical model in our previous work can only produce estimation of rain characteristics along the line but not the 162 

blank area. Taking advantage of the regular distribution of the measurements, the key rain characteristics at other spatial-163 

temporal integration lengths can be predicted using any existing interpolation technique. 164 

 165 

Figure 2: Grid of available rain data points from the NIMROD radar measurements. The dots represent the available space-time 166 

integration length combination where the rain characteristics can be computed based on available NIMROD data.  167 

4. Experimental Results 168 

4.1. Contour Map of Rain Characteristics 169 

The proposed statistical model can provide estimates of key rain characteristics (including the first order statistics of rain, the 170 

spatial and temporal correlation of rain rate, as well as the probability of rain/no rain) in two dimensions. Considerable 171 

computation is required to extract these summarizing statistics from the NIMROD databases. Based on the proposed model, 172 

however, the rain characteristics at any data available locations within the Western Europe can be achieved. The work in this 173 

paper has produced a multi-resolution database of parameters and contour maps that cover the whole of Western Europe. With 174 

the help of this database, the user can easily obtain the characteristics of rain (or the distribution coefficients) at any location 175 

within the studied area. 176 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-343
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 2 August 2018
c© Author(s) 2018. CC BY 4.0 License.



 

6 

 

 

  177 

   (a)                                                                                                   (b) 178 

Figure 3: Contour maps of rain distribution coefficients with spatial integration length of      and temporal integration length 179 

      : (a) a plot of   values and (b) a plot of   values. 180 

Example contour maps of the log-Normal rain rate distribution parameters *   + are presented in Fig. 3. Here, the longitude and 181 

latitude values are achieved by using the approach given in Appendix A. Fig. 3(a) is the map of    values cross the Western 182 

Europe and Fig. 3(b) is   values. The background is the map of the Western European coastline, and the calculated parameter at 183 

each individual location (here the spatial integration length is      and the temporal integration length is        ) is 184 

superimposed on the map. It shows that the contour map can provide the parameter value at any location within the range from 185 

         to          in longitude and between          to          in latitude. The calculated values are stored in a database 186 

from which *   + can be easily obtained by simply inputting the longitude and latitude information for any desired location. This 187 

is very convenient as almost no computation time is needed. Similar results of other rain characteristics have also been produced 188 

and stored in the database, but not presented in this paper. In addition, the rain characteristics at other integration length 189 

combinations between *            + and *              + have been computed and stored in the database. Given this 190 

database, the prediction of the rain characteristics at some finer space-time resolutions can be estimated by interpolation. 191 

4.2. Prediction of Rain Characteristics in Space-Time 192 

The existing NIMROD radar maps have been integrated to some integration length combinations from *            + to 193 

*              +. The key characteristics of rain were then analysed to see how they vary with integration length. Table 1 194 

gives an example of the probability of rain (  ) with a range of integration length combinations, at Portsmouth (UK).  195 

 196 

Table 1: Probability of rain occurrence for increasing spatial-temporal integration lengths ranging from      to       and 197 

        to          at Portsmouth. 198 
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It shows that the    value changes with increasing spatial-temporal integration length. Similar results can be found for other 199 

studied parameters. These data allow the prediction of parameters at other space-time resolutions. The top-left hand corner of the 200 

table is the computed value with the shortest available spatial-temporal integration length (*            +) derived from EU 201 

NIMROD radar, and the right-hand bottom corner is the coarsest one (*              +) after integration. From Table 1, one 202 

can see that the characteristics of rain change systematically with increasing integration length. Given this finding the predictions 203 

at finer resolution can be estimated by interpolation.  204 

In this study, the cubic spline interpolation algorithm has been chosen to implement this task. The cubic spline is a function that 205 

is constructed by piecing together cubic polynomial on different intervals (Keys, 1981). It has the form 206 

 ( )  {

  ( )                      

  ( )                      

                                           
    ( )                       

                                                                                                                                      (6) 207 

where    is a third degree polynomial defined by: 208 

  ( )    (    )
    (    )

    (    )                                                                                                                   (7)209 
  210 

Cubic spline is often used for 1D interpolation. The data in each row and column of the database (see the example in Table 1) 211 

can be treated as samples in one dimension. It enables the use of cubic spline interpolation to estimate parameter values at other 212 

scales, based on the measured parameters. The first step is to extract the multi-scale parameters for a desired location from the 213 

database. Cubic spline interpolation is then used to interpolate to a different spatial or temporal integration sizes. In this study, 214 

the “bicubic” interpolation algorithm in MATLAB was used. Mathematically, the bicubic interpolation, which is an extension of 215 

1D cubic interpolation, is used to interpolate data points on a two dimensional regular grid. It can be accomplished using cubic 216 

spline algorithm (we provide part of the software program in Appendix B to show the approach of 3D space-time interpolation).  217 

The software proposed in this work uses the produced parameters’ database. It contains the fitted rain parameters for a range of 218 

integration lengths between *            + and *              + for the whole of the studied area (Western Europe). The 219 

software extracts the rain characteristics with all available integration lengths at the location of interest. Taking the extracted data 220 

as input values, the interpolation algorithm then processes the data and gives the prediction at other space-time resolutions. Note 221 

that this is true only for the locations for which radar measurements data is available (the black area in Fig. 1). 222 

 223 

Figure 4: An example of    space-time interpolation of    at Portsmouth. 224 

Fig. 4 presents the example of predicted probability of rain occurrence at other spatial-temporal integration lengths, along with 225 

the measured data in Table 1, for Portsmouth. It is clear that the outcome of the    interpolation is a surface constructed from 226 

many    curves both in space and time domains. The dots are the measured values at a range of spatial-temporal integration 227 

lengths that are multiples of the data resolution, whilst the surface is produced by the interpolation algorithms to be consistent 228 
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with these data. The multi-scale data are regularly spaced, which reduces the complexity of the interpolation algorithm. 229 

Interestingly, the results show that    values increase systematically with increasing spatial-temporal integration length. In 230 

addition, by interpolation the values at resolutions smaller than *            + can also be predicted. The exterpolation can be 231 

constrained by the assumption that     
 
as either     or    . This enables the predictions to be plotted smoothly to form 232 

a    surface. The resolution of the studied key characteristics of rain offers significant improvements over previous methods 233 

(e.g. Bell, 1987) and it is these that are important for rainfall field simulation studies in future. The salient point of the proposed 234 

interpolation approach is that the best estimate can be obtained with high accuracy for the space and time resolutions up to     235 

and   , respectively. Predictions finer than this threshold are unacceptable as negative data is produced. This is impossible due to 236 

the    should not less than 0. Other interpolation technique might give better results but this is not covered in this paper. The 237 

validity of the interpolated parameters needs to be tested, and this is limited by the availability of data at small spatial and 238 

temporal integration volumes. One test that can be performed is to use *            + EU NIMROD data to predict the 239 

distribution and correlation functions of *           + UK NIMROD data. 240 

5. Validation 241 

The absence of measured data at the smaller space-time scales causes great difficulties in validating the proposed method. 242 

However, the *           + UK NIMROD radar measurements can be used to address this issue to some extent. In this paper, 243 

the key rain characteristics at Portsmouth have been estimated at scales of *           +  and these were compared with 244 

interpolations from the EU NIMROD data.  245 

 246 

Figure 5: A comparison exceedance distribution of rainfall rate estimated by interpolation from      data to      data and 247 

estimated directly for      data.  248 

Fig. 5-6 present comparisons of rainfall rate characteristics estimated by extrapolation from      EU NIMROD to      data 249 

and estimated directly from      UK NIMROD data. The predicted *   + values are *           + and the computed values 250 

are *           +. The predicted probability of rain occurrence (  ) and measured one are       and      , respectively. 251 

Although the *      + values of both are marginally different (    ,     ,      differences for       , respectively), the 252 

associated     ,       and        exceeded rain rates are similar, this can be seen in Fig. 5. In particular, the proposed model 253 

gives excellent approximation for the first-order rainfall rate statistics, especially for the rain rate lower than         for which 254 

the accuracy is higher than    . The probability of heavy rain event is extremely low so that there is no sufficient data is 255 

available. This results in the higher bias for the range where           . Fig. 6(a) shows that the spatial correlation using the 256 

predicted values is in agreement with the computed values. There is a small difference between the temporal correlation 257 

functions of rain rate using predicted data and measured data at short time lags up to roughly         , see Fig. 6(b). However, 258 

the result is still acceptable as the trend is similar, especially for large time lags. This shows that the approach proposed in this 259 
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paper has potential and requires considerable less computational effort than the direct estimation of these distributions from the 260 

data. However, the rain characteristics at scales finer than *           + cannot be validated due to lack of radar/raingauge 261 

data. 262 

 263 

   (a)                                                                                                   (b) 264 

Figure 6: A comparison of correlation function of rainfall rate estimated by interpolation from      data to      data and 265 

estimated directly for      data: a) spatial correlation function; b) temporal correlation function.  266 

 267 

   (a)                                                                                                   (b) 268 

Figure 7: Contour map of       exceeded rain rates: a) predicted by interpolation from       EU NIMROD to     ; b) 269 

measured from      UK NIMROD. 270 

 271 

Fig. 7(a) shows the map of       exceeded rain rates across the Western Europe predicted by interpolation from the      EU 272 

NIMROD to     . The results are plausible for most areas. However, it shows that radars accuracy is affected in the Grand 273 

Massive alpine area of France.  Fig. 7(b) presents the map of 0.01% exceeded rain rates across the British Isles given by the 274 

     UK NIROMD. Note that the rain rate with 0.01% exceedance in both figures tends to reduce towards the edge of the radar 275 

region and this is almost certainly an artefact. It could be due to how the contour function deals with NaN (caused by data 276 

unavailable); or something to do with the data at the edge of the radar network. The contour map of       exceeded rain rate of 277 

the average year given by ITU-R P 837-6 (ITU, 2013) is presented in Fig. 8. These two figures (Fig. 7 and Fig. 8), illustrate that 278 

the results of the statistics in Fig. 7 are very similar. This indicates that the proposed model can give a reasonable estimation of 279 

rain parameters that can be used to produce rain rates with       exceedance. However, the rain rate statistics given by ITU-R P 280 

837-6 seems quite larger compared with the results from EU NIMROD data interpolate from      to      and estimated 281 

directly for      data. This suggests that the ITU. Rec tends to over-estimates rain.  Indeed, the overestimation of ITU-R P.837-282 

6 is likely also due to the overestimation of the rain amounts over oceans as obtained from the ERA-40 data produced by the 283 

ECMWF (i.e. the input maps on which the ITU-R rain rate models relies on). This is why the ITU. Rec recommends users to use 284 

their own data in order to produce better results. 285 
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 286 

Figure 8: Contour map of 0.01% exceeded rain rates of the average year given by ITU-R P 837-6. 287 

The differences between EU contour map, UK contour map and ITU contour map have been studied to show how accurate the 288 

proposed approach is. Fig. 9 presents the contour map of the difference of rain rates with 0.01% exceedance based on the EU 289 

data minus UK data. It shows that the proposed approach tends to overestimate the rain rates over land (see the example in 290 

middle area of Fig. 7(b), but under-estimates over the ocean/sea areas (see the left-bottom area of Fig. 7(b)). However, the 291 

difference is acceptable as it is in the range          for most areas. For some areas, the difference can up to         or 292 

higher, but this is rare. 293 

 294 

Figure 9: Contour map of 0.01% exceeded rain rates difference between the prediction from proposed approach and the 295 

measurements from      UK NIMROD. 296 

 297 

Figure 10: Contour map of 0.01% exceeded rain rates difference between the prediction from proposed approach and ITU-R P 298 

837-6. 299 

Fig. 10 presents the difference between the prediction from the proposed approach and ITU-R P 837-6 (EU predicted rain rates 300 

minus ITU predicted rain rates). The contour map shows that the ITU-R P 837-6 tends to over-estimate rain rate compare to the 301 

proposed approach for most areas. The difference can up to 40      for some regions. This indicates that the proposed 302 
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approach gives more plausible estimates than ITU-R P 837-6, although it is restricted to Western Europe. However, it is 303 

necessary to highlight that for the Grand Massive alpine area of France, the proposed approach gives larger rain rates exceedance 304 

than ITU-R P 837-6. This indicates that it is hard to give accurate rainfall rate measurements or prediction over mountain area 305 

due to the difficulties associated with obtaining accurate rain radar readings (Johansson and Chen, 2003).  306 

Fig. 9 and Fig. 10 present the visual comparison of 0.01% exceeded rain rates difference between the prediction from proposed 307 

approach and the measurements from      UK NIMROD and ITU-R P 837-6. However, the error function can give more 308 

information to the model performance validation. According to (Paulson et al., 2015 and ITU, 2013), the error function can be 309 

defined as: 310 

      |  (
         

          
)|                                                                                                                                                                 (8) 311 

where           and            are the measured and predicted rainfall rate with 0.01% exceedance, respectively. The error at 312 

each individual location therefore can be calculated by Eq. (8).  313 

Fig. 11 shows the error contour maps at        exceeded rain rate over the UK for both the proposed approach and ITU-Rec 314 

model. Theoretically, the smaller the error value, the more accurate the model prediction will be. Fig. 11(a) shows that the error 315 

of the proposed approach is between      and     . It indicates that the approach proposed in this paper can produce reasonable 316 

prediction. However, the error from ITU-R model can be up to nearly  , see Fig. 11(b). Such high error value suggests that it is 317 

better to use the local rain radar measurements for the model development if the data is available. 318 

The mean error       is calculated by: 319 

      
 

 
∑       

 
                                                                                                                                                                        (9) 320 

where        is the error for individual location and   is the location index. The       for ITU-R model is     . It is roughly 7 321 

times that the proposed approach for which the       is as low as 0.09. 322 
 323 

 324 

   (a)                                                                                                  (b) 325 

Figure 11: Contour map of error at       exceeded rain rate: (a) error distribution of proposed model, and (b) error distribution 326 

of ITU-R P 837-6. 327 

  0.0761 0.0632 0.0945 0.0368 0.0526 0.0875 

  0.0485 0.0418 0.0323 0.0477 0.0392 0.0417 

 329 

In particular, the Root-Mean-Squared Error (RMSE) has been applied to measure the goodness of fit between measured 330 

lognormal parameter *   + obtained from radar-derived statistics and predicted values. The RMSE is defined as 331 

328 Table 2: RMSE of lognormal rain distribution parameters *   + in both space and time domains at four locations. 

 Portsmouth Paris Rennes Reims Brussels Zurich 
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                                                                                                                                                                             (10) 332 

where,    and   

 336 

6. Conclusion 337 

A simple but efficient interpolation/extrapolation approach has been presented. Instead of the radar-/raingauge-derived rainfall 338 

rate data, the analyzed rain characteristics and fitted coefficients are used to predict rain at many space-time resolutions. 339 

Databases with estimated parameter values, and maps for Europe, have been created to allow users to access the key rain 340 

characteristics at any location within the study area. This provides great assistance to users as the rain characteristics can be 341 

easily obtained without long computation. In particular, an approach to interpolate the fitted coefficients and/or rain 342 

characteristics in space-time domain with arbitrary integration length has been proposed. Although parameters can be estimated 343 

at any combination of spatial and temporal integration lengths by interpolation or/and extrapolation, the results have only been 344 

tested down to      spatial. The predictions have been validated through comparing with the measurements from UK NIMROD 345 

data. The results show that there is a reasonable agreement between the predicted and computed values. However, the predictions 346 

with resolution finer than *           + cannot be validated due to lack of radar/raingauge data.  347 

Finally, the contour map of       exceeded rain rates cross Western Europe and the British Isles have been generated and 348 

compared using the data interpolated from      to      and estimated directly from      data. The results are also compared 349 

with ITU-R P 837-6 estimations.  350 
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 356 

Appendix A: Calibration of NIMROD data 357 

The calibration of NIMROD data is significant for this study. By choosing some samples (normally the more samples that are 358 

chosen the more accurate the result will be, here the author use    samples), two algebraic equations are used, one is for latitude 359 

and the other one is for the longitude. These two numerical equations could allocate the roughly latitude and longitude values for 360 

different locations of Western Europe. 361 

For the development of the relative algebraic equations, the general procedures are summarised as following steps: 362 

1. Choosing some radar images from NIMROD data set 363 

The NIMROD radar-derived rain maps are helpful and critical for the calibration therefore some maps should be selected at the 364 

initial stage. The maps need to meet the following requirements.  365 

i) There is not too much rain in the selected map, the less the better. Under this circumstance, it could be easier to find some 366 

small rainy areas or even single rain point (ideal situation) from the map. In this way the error can be greatly reduced. 367 

ii) The separation of different rainy areas in the same map should be large enough; otherwise, it is easy to make a mistake when 368 

trying to find out the corresponding coordinate (row and column) in the grid.  369 

333  are predicted and measured values, respectively, and   represents the number of samples. Table 2 gives the 

334 calculated RMSE of lognormal rain distribution parameters *   + at six locations cover different climates within the studied 

335 area. The small RMSE (less than 0.1) suggests that the proposed algorithm yields accurate predictions, especially for  .  
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2. Allocating the selected samples 370 

This piece of work used a map of the Europe (not the NIMROD radar map) that has accurate latitude and longitude information. 371 

As to the scale, ideally, is the finer the better. Based on this an accurate result can be achieved. In this study, the finest precision 372 

of the European map used to provide the latitude and longitude information is        . Through comparing the radar images 373 

and the used map, the locations of the selected samples can be physically allocated on the map. In addition, both the latitude and 374 

longitude values of the location of interest can be read and recorded as it is visible on the map. 375 

The achieved latitude and longitude values of all selected locations can be transformed into degrees by using the following 376 

mathematical equation: 377 

             
 

  
 

 

    
                                                                                                                                                          (A1) 378 

3. Fitting the line 379 

It is difficult to get the real latitude and longitude value for the location of interest since error is unavoidable. However, by 380 

making use of the achieved data from the selected samples, a reasonable line to offset and reduce the error can be proposed. 381 

The final equations are given as follows:   382 

 (         )                                                                                                                                                                 (A2) 383 

 (        )                                                                                                                                                                   (A3) 384 
 385 
Here   denotes either row or column number of the NIMROD data grid with spatial integration length of     , and   is the 386 

corresponding coordinate value in either latitude or longitude. The fitted lines are shown in Fig. A. 387 

  388 

(a)                                                                                       (b) 389 

Figure A: (a) tendency of latitude changing with distance, (b) tendency of longitude changing with distance. 390 

Viewed from the software generated figure (see Fig. A), it is clear that the fitted lines are straight. Fig. A(a) shows that the slope 391 

for the latitude is negative. The reason is that the origin of the data matrix for rain field image is starts from the top left to bottom 392 

right. It means that the smaller the row number (the value of  ), the higher the latitude value. In other words, the latitude value 393 

decreases with the increasing row number. Fig. A(b) shows that the slope for the longitude is positive. Noticeably, the larger the 394 

column number (the value of  ), the higher the longitude value. Here, it is important to highlight that the longitude values can be 395 

either positive or negative. The reason is that the Prime Meridian goes across the studied map. 396 

 397 

Appendix B: Code for extrapolating the measured data 398 
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