1 2

Supplementary Material

A non-stationary model for reconstruction of historical annual runoff on tropical catchments under increasing urbanization (Yaoundé, Cameroon)

6

Camille Jourdan^{1,2}, Valérie Borrell-Estupina³, David Sebag⁴, Jean-Jacques Braun^{5,6}, Jean-Pierre Bedimo
Bedimo^{6,†}, François Colin², Armand Crabit², Alain Fezeu⁷, Cécile Llovel⁸, Jules Rémy Ndam Ngoupayou⁹,
Benjamin Ngounou Ngatcha¹⁰, Sandra Van-Exter¹¹, Eric Servat¹, Roger Moussa²

- 10
- ¹OSU OREME, Univ Montpellier, Montpellier, France
- 12 ² LISAH, Univ Montpellier, INRA, IRD, SupAgro, Montpellier, France
- ³ HSM, Univ Montpellier, CNRS, IRD, Montpellier, France
- ⁴ Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, Rouen, France
- 15 ⁵ GET, CNRS, IRD, University of Toulouse, Toulouse, France
- 16 ⁶ Institut de Recherches Géologiques et Minières, Centre de Recherches Hydrologiques, Yaoundé, Cameroon
- ¹⁷ ⁷ French National Research Institute for Development (IRD), Yaoundé, Cameroon
- 18 ⁸ WSP France, Toulouse, France
- ⁹ Laboratoire de Géologie de l'ingénieur et d'Altérologie, Département des Sciences de la Terre et de l'Univers,
- 20 Faculté des Sciences, Université de Yaoundé I, BP 812, Yaoundé, Cameroun
- 21 ¹⁰ Department of Earth Sciences, Faculty of Sciences, University of Ngaoundéré, Ngaoundere, Cameroon
- 22 ¹¹ GM, Univ Montpellier, CNRS, Université des Antilles, Montpellier, France
- 23 ⁺ deacesed
- 24
- 25
- 26 *Correspondence:* Camille Jourdan (<u>camille.jourdan@umontpellier.fr</u>)
- 27
- 28
- ___
- 29

30 1 Introduction

The Supplementary Material gives additional information on data and model application, and is organized as follow: climate, land-use, review of annual runoff studies, monthly runoff and land-use relationships, sensitivity analysis of the model, and review of studies analyzing the impact of land-use changes on runoff in tropical and/or urban context.

35

36 2 Climate

Figure S1 presents the monthly precipitation, temperature and potential evaporation *PET* for the Yaoundé region. Precipitation and temperature were recorded at Mvan Airport (P_1 . Fig. 3a) for the period 1951-2006 (Nguemou 2008). *PET* was estimated by Ikounga (1978) with two methods (Bac Colorado and bac Class "A") leading to the uncertainty range presented in grey.

41

42 3 Land-use

43

3.1 Pictures of the different land-uses

Figure S2 shows satellite images of heterogeneous conditions of urbanization. Figure S3 presents pictures of
various conditions of land-use over the Mefou catchment: cropland (Figs. S3a, b), very urbanized areas (Figs. S3c,
d), and some natural portions (Figs. S3e, f).

47

48 **3.2** Yaoundé urban area extension 1930-2017

Different products were analyzed in order to visualize the evolution of Yaoundé urban extension over the Mefou catchment from 1956 to 2019 (Fig. 3b). Moffo (2017) analyzed historical serial of aerial photography of 1956, and we analyzed satellite images (Google Earth ®) of 1984, 1988, 2000, 2010 and 2019 and additional information from CUY (2008). Figure S4 shows the urban area extension obtained from aerial photography or satellite images: extension between 1960 and 1990, densification of urbanized area between 1990 and 2000, important extension of the city from 2000 to 2010, very important extension and densification of the urban area from 2010 to 2018.

56

57 **3.3 Land-use changes 1930-2017**

Tables S1 and S2 give the references and products used to quantify land-use changes and the proportion of urban area *U* on donors and targets catchments. Franqueville (1979) describes the city of Yaoundé in 1950.

The various products show a decrease of about 140 km² of forest cover over the Mefou catchment since 1980
(see forest cover losses since 2000, Figs. S5 and S6). Hansen et al. (2013) proposed a global high resolution (30
m x 30 m) product on whole Africa, showing on the Mefou catchment at Nsimalen (421 km²) losses in forest cover

of 95 km² from 2000 to 2017 (Fig. S5). These results are similar to those obtained by Ebodé (2017) over the whole
Mefou catchment at the outlet (802 km²). Figure S6 shows the losses per year between 2000 and 2017 which are
particularly important after 2013 (estimated to more than 50 km²).

In the opposite, the urban area has grown from about 40 to about 160 km² over the same period (Figs. S7 and S8). Figure S7 shows the urban area extension between 1980 (38 km²) and 2001 (159 km²) of the Urban Community of Yaoundé (CUY, 2008). Figure S8 shows the urbanized area obtained from the maps of Midekisa et al. (2017) over Africa. The two studied periods 2000 and 2015, shows the huge development of urbanized areas (from 75 km² to 158 km²) and a decrease of high biomass surface (dense forest).

All these references and global products were used to calculate the percentage of urbanized areas *U* over each target catchments. Table S3 presents for 1930, 1950, 1980, 2000, and 2017 the values of *U*. The land-use component for the 8 targets for the 5 periods is then evaluated from *U* values.

74

75 4 Review of annual runoff studies over the Nyong and Mefou basin

Table S4 summarizes the main studies and information on the annual water balance over the Nyong subcatchments from small (< 1 km²) to large scales (> 10,000 km²) since 1960. Figure S9 presents the location of hydrometric stations on the Nyong Basin (presented in Table S4 or from the dedicated short-term instrumentation). The majority of sub-catchments have natural land cover. The short-term instrumentation dedicated to the present study aims to complete this dataset with catchments characterized by different land-use conditions, mainly urbanized zones.

82

83 5 Monthly runoff and land-use relationship

84 Data from donor catchments (historical studies and short-term dedicated measurements) presented in the paper at the annual scale were also analyzed at the monthly scale (Fig. S10). We observe for D_{l2} and D_{l6} high 85 86 differences in monthly runoff for these two catchments presenting similar values of urbanized area proportion U87 and similar precipitation values. For October, differences of runoff are important with 170 mm for D_{L2} against 93 88 mm for D_{l6} (Table S5). Differences in topography and soil conditions could explain part of runoff differences: D_{l2} 89 is located in the upstream part of the Mefou basin with a slope index $S_I = 13.6$ % higher than the slope of D_{I6} 90 $(S_I = 6.7 \%)$ and an estimated proportion of hydromorphic soil HS = 0 % much more lower than $D_{I6}(HS = 24.0 \%)$. 91 Figure S10 shows a clear impact of land-use condition (illustrated by C_{LC}) over monthly runoff for the donor 92 dataset: high values of C_{LC} (corresponding to high proportion of urbanization) correspond to high values of 93 monthly runoff.

6 Sensitivity analysis of the model

When adjusting the linear regression $\rho = aI + b$, we make first a sensitivity analysis on land-use component weight ω_{LC} of the hydrological index *I* for different values of $\omega_{LC} = 3$, 5, 7 and 10 (with $\omega_S = \omega_T = 1$). Table S6 shows the adjusted parameters (*a* and *b*), the values of ρ for I = 1 and I = 0.5, and the determination coefficient r^2 . We observe that for $\omega_{LC} = 5$, 7 and 10, the impact on regression parameters is very low. Second, we studied the impact of different number of donor catchments on the model parameters. The set of donors retained always integrates donors with heterogeneous values of *I* (at least one catchment with I < 0.3 and at least one catchment with I > 0.7). Table S7 shows the range of the parameters *a* and *b* for a number of donors varying from 6 to 10 and the values of the performance criteria defined in Sect. 2.2. Results show a low sensitivity, especially when the number of donors exceeds 8.

7 Review of studies analysing land-use changes impact on annual runoff in tropical and/or urban context

In order to compare our results with other studies of land-uses changes impact at the annual scale in tropical and urban context, we did a review over the subject. Table S8 present studies of LULC changes impact in tropical and African context and Table S9 present study of urbanization impact on annual runoff or water balance components. Many studies quantified the impact of land-uses changes by modelling (Beck et al., 2013; Yira et al., 2013) due to poorly-gauged context in tropical region. Most of studies in tropical region analyzed the impact of cropland conversion or forest retreats/regeneration over annual runoff (Beck et al., 2013, Gessess et al., 2014) but few studies analyzed the urbanization impact on annual runoff and most of theme treats with temperate of Mediterranean climates.

Figure S1. Mean monthly precipitation, temperature and PET for Yaoundé.

Figure S2. Satellite images of various land-use conditions over the Mefou catchment. a) Very urbanized portion of the catchment characterized by the highest values of $C_{LC}(C_{LC} = 1)$ (Mfoundi Upstream). b) Very urbanized area with some natural portions (lowlands) (Mfoundi downstream, $C_{LC} = 0.8$); c) Intermediary condition of urbanization (Angaa portion, $C_{LC} = 0.4$); d) Very few urbanized portion (Mopfou upstream, $C_{LC} = 0$).

<image>

c.

Figure S3. a) Cropland zone of the catchment (on target T_3); b) Cropland and forest (T_1); c) Very urbanized (T_5); d) Canalized river on the Mfoundi upstream (T_5); e and f) Downstream of the Mefou basin (T_4). The notation T_i refers to target catchments in Fig. 4b.

Figure S4. Urban area extension in 1956 (aerial photography from Moffo, 2017), 1988, 2000, and 2018 (Satellite images @GoogleEarth).

Figure S5. Forest area losses from 2001 to 2017 over the Mefou catchment using the methodology proposed by Hansen et al. (2013).

Figure S6. Forest area losses from 2001 to 2017 over the Mefou catchment using the methodology proposed by Hansen et al., (2013).

b. 2001

0 Figure S7. Evolution of Yaoundé urban extension from 1980 to 2001 (CUY, 2008).

Figure S8. Evolution of the urbanized area, high and low biomass surfaces over Mefou catchment maps from Midekisa et al. (2017).

Figure S9. Location of hydrometric stations (active or not) over the Nyong basin.

Figure S10. Mean monthly runoff for donor catchments (historical and from the short-term dedicated measurement) used to calibrate the model. Red line : CLC = 1; Orange line : CLC = 0.6Green line : CLC = 0

Tables

Grassland cover	(km²); Imp : Im	pervious (km ²).			
Reference studies	Years	Location	Subject	Method	Main Results
Ebodé (2017)	1978, 1995 and 2005	Mefou (305 km ²)	Forest, urban and cropland changes	Analysis of Landsat Images	Urb : 45 km ² (1978 to 152 km ² (2015) Crop : 10 km ² (1978) to 28 km ² (2015) For : - 30 km ² from 1978 to 1995 and -130 km ² from 1978 to 2015
Moffo (2011)	1956 and 2010	Mfoundi upstream (40 km²)	Impervious changes	Aerial images and shapefile of build-up areas	Imp : from 2 km ² in 1956 to 12 km ² in 2010
CUY (2008)	1980 and 2000	Urban community of Yaoundé (CUY, 290 km²)	Extension of the urban area	r	Urb : 38 km^2 in 1980 to 159 km ² in 2001
LMI DYCOFAC	2018	Mefou (802 km ²)	Forest, urban and cropland changes	ı	Urb : 145 km ² ; Crop : 176 km ² ; 480 km ² of dense and degradative vegetation

Table S1. References of studies on the Mefou catchment used for land-use analysis: For: Forest cover (km²); Crop : Cropland cover (km²); Urb : Urbanized area (km²); Gras :

	30 km²	01		00	ream
Main Results	Urb: 45 km ² (1978) to 152 km ² (2015) Crop : 10 km ² (1978) to 28 km ² (2015) For : - 30 km ² from 1978 to 1995 and -1: from 1978 to 2015	Urb : 113 km ² ; For = 168 km ² ; Crop = 1 km ² ; Gras = 38 km ²	Urb : 75 km ² (2000) to 158 km ² (2015)	Losses 95 km² of Forest cover since 200	Ex: Impervious of 45 % in 2015 for upst Mfoundi
Method	Analysis of Landsat Images	Analysis of Sentinel 2-A images	Analysis of Landsat Images	Analysis of Landsat images	Shapefile from crowdsourced information
Subject	Forest, urban and cropland changes	Forest, urban and cropland	Urban low and high biomass changes	Losses in forest cover	Build up area (impervious)
Resolution	300m x300m	30m x 30m	30m x 30m	30m x 30m	T
Analyzed area	Mefou (421 km ²)	Mefou (421 km²)	Mefou (421 km²)	Mefou (421 km²)	Yaoundé city (Urban area, 290 km²)
Years	1992 – 2015	2016	2000 and 2015	2000-2017	2015
Global product	ESA-CCI LC	ESA-CCI LC for Africa	Midekisa et al. (2017)	Hansen et al. (2013)	OSM (2015)

Table S2. Global product (world or African scale) analyzed over the Mefou catchment to complete past studies (Table S1): For: Forest cover (km²); Crop: Cropland

Referen	ices used	Franqueville (1979)	Franqueville (1979) and Moffo (2011)	CUY (2008) and Ebodé et al. (2017)	Midekisa et al. (2017)	Midekisa et al. (2017)
Catchment Name	Station Name	1930	1950	1980	2000	2017
T_{l}	MOPFOU	< 1	<1	< 1	<1	<1
T_2	MEFOU UPST.	\sim	~ 1	2 - 5	13	46
T_3	CANA- NKOM	\sim 1	< 1	~	~	6
T_4	MEF. DWNST.	~1	< 1 <	~ 1	~1	<1
T_5	MFOUNDI UPST.	$\frac{1}{2}$	2 - 5	20 - 30	78	06
T_6	BIYEME	\sim 1	\sim 1	5 - 20	43	87
T_7	MFOUNDI DWNST.	\sim 1	1	5 - 20	26	63
T_8	ANGAA	< 1	< 1	2 - 5	×	40

Table S3. Proportion of urbanized area U (%) for each target catchment for 1930, 1950, 1980, 2000, and 2017.

Name	Area	Period	Р	R	AET	0	Land-use
1 tunic	[km ²]	1 01104	[mm]	[mm]	[mm]	Ρ	Lana ast
ETOA	235	1965-66	1,420	350	1,070	0.25	Natural
NSIMI/BVE	< 1	1994-98	1,650	380	1,270	0.25	Natural
ODZA	6	2011-12	1,840	1640	200	0.88	Very urbanized
AYOS	5,300	26 yrs ¹	1,580	343	1,270	0.22	Natural
AKONILINGA	8,350	23 yrs 1	1,545	352	1,192	0.23	Natural
MBALMAYO	13,555	26 yrs 1	1,765	315	1,450	0.18	Natural
OLOMA	15,510	12 yrs1	1,563	374	1,189	0.24	Natural
KAYA	19,985	10 yrs1	1,565	389	1,176	0.25	Natural
ESEKA	21,600	26 yrs ¹	1,581	402	1,179	0.25	Natural
DEHANE	26,400	25 yrs 1	1,732	528	1,205	0.30	Natural
MFOUNDI UPST.	40	1969-71	1,785	655	1,129	0.37	Intermediate
S 1	2	1974-78	1,609	433	1,176	0.27	Natural
S2	2	1974-78	1,536	600	937	0.39	Natural
S3	24	1974-78	1,633	400	1,240	0.24	Natural
MBALMAYO	13,555	2005-07	1,765	315	1,450	0.18	Natural
MFOUNDI UPST.	40	2006-07	1,740	1340	400	0.77	Urbanized
ETOA	235	1968-69	1,790	392	1,398	0.22	Natural
MOPFOU	70	1968-69	1,810	456	1,354	0.25	Natural
MESSAM	206	1998-02	1,780	550	1,230	0.31	Natural
PONT SO'O	3,070	1998-02	1,750	450	1,330	0.26	Natural
	NameETOANSIMI/BVEODZAAYOSAKONILINGAMBALMAYOOLOMAKAYAESEKADEHANEMFOUNDI UPST.S1S2S3MBALMAYOMFOUNDI UPST.ETOAMOPFOUMESSAMPONT SO'O	Area Ikm²] ETOA 235 NSIMI/BVE < 1	Name Area [km²] Period ETOA 235 1965-66 NSIMI/BVE <1	Name Area [km²] Period [mm] P ETOA 235 1965-66 1,420 NSIMI/BVE <1	Name Area [km²] Period [mm] P R ETOA 235 1965-66 1,420 350 NSIMI/BVE <1	Name Area [km²] Period [mm] P R AET ETOA 235 1965-66 1,420 350 1,070 NSIMI/BVE <1	NameArea [km²]PeriodPRAET fmm] ρ ETOA2351965-661,4203501,0700.25NSIMI/BVE<1

Table S4. Annual water balance components for instrumented catchments over the Nyong basin.

¹ Number of available years before 1979.

Table S5.	Monthly runoff for D_{I2} and D_{I6} .

Monthly Runoff (mm)	D_{I2}	D_{I6}
September	64	61
October	170	93
November	91	75

ØLC	а	b	<i>I</i> =1 <i>a</i> + <i>b</i>	I=0.5	r ²
3	0.827	0.096	0.923	0.51	0.83
5	0.766	0.130	0.896	0.51	0.95
7	0.708	0.158	0.866	0.51	0.97
10	0.656	0.186	0.842	0.51	0.98

Table S6. Results of sensitivity analysis for weight of land-use component in the hydrological index

N Donors	а	b	RMSE1	RMSE ₂	<i>RMSE</i> ₁₊₂	<i>r</i> ² 1	r^{2}_{2}	r ² 1+2	\overline{E}_1	\overline{E}_2	\overline{E}_{1+2}
6	0.67 ± 0.05	0.13 ± 0.02	76 ± 4	123 ± 2	102 ± 3	0.76± 0.03	0.60± 0.03	0.66± 0.03	0.12	0.19	0.16
8	0.70 ± 0.02	0.12 ± 0.01	73 ± 2	124 ± 3	101 ± 3	0.78 ± 0.01	0.60	0.66	0.12	0.19	0.15
9	0.69± 0.02	0.13 ± 0.01	73 ± 1	124 ± 2	101 ± 2	0.78	0.60	0.66	0.12	0.19	0.15
10 (all)	0.70	0.13	73	124	101	0.78	0.60	0.66	0.12	0.19	0.15

Table S7. Sensitivity analysis of number of donors *N* on the model parameters *a* and *b*. Indices *1* and 2 refer respectively to the calibration and the validation period, 1 + 2 refers to the whole period. The criteria functions are given in Sect. 2.2.

		ws have uuch as runoff such a sing, in	ou e	
	Hydrology Impact	In the Sudanian areas, stream flov been reduced, sometimes as m twice the rainfall reduction rate. In the Sahelian regions, coefficients have increased to degree that discharges are increa. spite of the reduced rainfall.	LULC and runoff at large scale (strongly) related	ho between $0.12 - 0.15$
	Land-use changes	10 % of the Nigerian Sahel was covered by cropland in 1950s and close to 80 % in 2010	Forest regeneration	no change
	Main land-use	Bush convert in cropland	Pasture, cropland and Forest	Woodlands and Savannah
f in tropical context.	Precipitation P/ Annual Runoff R/ Annual runoff coeff. p/	High varieties of annual water balance components	P = 1720 to 3422 mm	P = 1140-1215 mm R = 140-185 mm $\rho = 0.12-0.15$
ses impacts on annual runof	Location/ Study Size	West Africa / Sudanian and Sahelian region	Puerto-Rico/ 12 catchments between of 24 - 177 km ²	Benin/ 16.5km²
s of land-use chang	Data / Model used	SPOT image + Gauge data – Review	Landsate data/HBV- LIGHT	Gauged data
Table S8. Studie	Reference	Descroix et al. (2009)	Beck et al. (2013)	Giertz et al. (2006)

Hydrology Impact	Up to 5% of increase in R due to conversion between 1990 and 2014	Increase of R from 14.3 % to 36.6 % depending of scenarios. R increases from 125-285 mm to 172-305 mm.
Land-use changes	Decrease of savannah at an annual rate of 2 % since 1990 (convert in cropland and in lesser extent in urban area)	Decrease of grassland and shrub land convert in cropland and urban area in a lesser extent
Main land-use	1990 Tree and Savannah (87 %); Cropland (12 %); Urban (0.1 %) 2013 Tree and Savannah (59 %); Cropland (38 %); Urban (3.6 %)	1973 Cropland (55 %) Grassland (22 %) Shrubland (14.4 %) Urban (3.7 %) 2007 Cropland (75 %) Grassland (5.5 %) Shrubland (8.5 %) Urban (5.0 %)
Precipitation P/ Annual Runoff R/	2013 : P = 966 mm R = 145 mm $\rho = 0.15$	2017 P = about 900 mm R = $172-304$ mm p = $0.20-0.33$
Location/ Study Size	Burkina Faso / Dano catch. 195 km²	Ethiopia / Modjo catch.1478 km²
Data / Model used	SRTM90m, LANDSAT, gauged data/ WaSim	Gauged data, LANDSAT / SWAT
Reference	Yira et al. (2016)	Gessess et al. (2015)

Table S8. Continuation of the previous Table.

		4	٩			
Reference	Data / Model used	Location/ Study Size	Precipitation P Annual Runoff R Annual runoff coeff. p	Main land-use	Land-use changes	Hydrology Impact
Jennings and Jarnagin (2002)		Accotink Creek, Virginia, USA/ 61 km²	ı	1	Urban area increased from 13 % to 21 %	Increase of 50 to 100% on streamflow response to rainfall
Sillanpää and Koivusalo (2015)	Gauged data	Finland, Saunalahdenranta catc./ 13.2 ha	P = 650 - 700 mm	Urban area	Urban area increased from 1.5 to 37 %	Increase of 45% on storm runoff
Braud et al. (2013)	Gauged data	France, Yzeron/ 150 km²	P = 750 mm	Agriculture (1970) to Urban (2008)	artificialized soil : 1970 = 22% 2008 = 36%	Significate increase of quick flow and significate decrease of inter and base flow.
Beighley et al., (2003)	Gauged data / HEC-HMS	Atascadera Creek , California, USA/ 50 km²	Average for 1940-2000 : P = 610 mm R = 100 mm $\rho = 16.5 \%$	Shrubs (51% in 2003) to Urban	Urban area changed : 1929 = 8 % 1998 = 38 % 2050 = 52 % (estimation)	$R_1929 = 70 mm$ $R_1998 = 150 mm$ $R_2050 = 220 mm$
White and Greer (2006)	Gauged data	San Diego county, California, USA/ Los Penasquitos Creek, 158 km ²	P = 250 mm	Urban area = 37% Agriculture = 5% Vegetation = 55%	Urban area changed 1965 = 9 % 2000 = 37 %	Increase of 4% per year of R between 1973 and 2000
Dietz and Clausen (2008)	Gauged data	Waterford, USA/ Jordan Cove, 2 ha	1	1	Impervious fom 1% (1994) to 32% (2006)	R increased from 1 mm to 500 mm
Barron et al. (2013)	Gauged data /MODHMS	Swan Coast Plain, Australia / Southern River catch. (150 km²)	$P = 786 \text{ mm}$ $R = 80 \text{ mm}$ $\rho = 11\%$	ı	High urbanization	 ρ increased from 0.01 to more than 0.40 AET reduced from 63-68 % to less than 2 9% of rainfall

Table S9. Studies of urbanization impacts on annual runoff in tropical context.

References

- Barron, O.V., Barr, A.D., Donn, M.J. Effect of urbanisation on the water balance of a catchment with shallow groundwater. Journal of Hydrology, Hydrology of peri-urban catchments: processes and modelling 485, 162–176. https://doi.org/10.1016/j.jhydrol.2012.04.027. 2013.
- Beck, H.E., Bruijnzeel, L.A., van Dijk, A.I.J.M., McVicar, T.R., Scatena, F.N., Schellekens, J. The impact of forest regeneration on streamflow in 12 mesoscale humid tropical catchments. Hydrol. Earth Syst. Sci. 17, 2613–2635. https://doi.org/10.5194/hess-17-2613-2013. 2013.
- Beighley, R.E., Melack, J.M., Dunne, T. Impacts of California's Climatic Regimes and Coastal Land Use Change on Streamflow Characteristics1. JAWRA Journal of the American Water Resources Association 39, 1419–1433. https://doi.org/10.1111/j.1752-1688.2003.tb04428.x. 2003.
- Braud, I., Breil, P., Thollet, F., Lagouy, M., Branger, F., Jacqueminet, C., Kermadi, S., Michel, K. Evidence of the impact of urbanization on the hydrological regime of a medium-sized periurban catchment in France. Journal of Hydrology 485, 5–23. https://doi.org/10.1016/j.jhydrol.2012.04.049. 2013.
- CUY.: Schéma directeur d'Aménagement Urbain : Yaoundé 2020. Communauté Urbaine de Yaoundé, International AUGEA, 120p. 2008.
- Descroix, L., Mahé, G., Lebel, T., Favreau, G., Galle, S., Gautier, E., Olivry, J.-C., Albergel, J., Amogu, O., Cappelaere, B., Dessouassi, R., Diedhiou, A., Le Breton, E., Mamadou, I., Sighomnou, D. Spatiotemporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: A synthesis. Journal of Hydrology, Surface processes and water cycle in West Africa, studied from the AMMA-CATCH observing system 375, 90–102. https://doi.org/10.1016/j.jhydrol.2008.12.012. 2009
- Ebodé, V.B.: Etude de la variabilité hydroclimatique dans un bassin versant forestier en voie d'urbanisation accélérée : Le cas de la Mefou. Mém., Master. Univ. Yaoundé I. 156p. 2017.
- Ferreira, C.S.S., Walsh, R.P.D., Nunes, J.P.C., Steenhuis, T.S., Nunes, M., de Lima, J.L.M.P., Coelho, C.O.A., Ferreira, A.J.D. Impact of urban development on streamflow regime of a Portuguese peri-urban Mediterranean catchment. J Soils Sediments 16, 2580–2593. https://doi.org/10.1007/s11368-016-1386-5. 2016
- Franqueville, A.: Croissance démographique et immigration à Yaoundé. Les Cahiers d'Outre-Mer 32, 321–354. https://doi.org/10.3406/caoum.1979.2914. 1979.
- Gessesse, B., Bewket, W., Bräuning, A. Model-Based Characterization and Monitoring of Runoff and Soil Erosion in Response to Land Use/land Cover Changes in the Modjo Watershed, Ethiopia: Runoff and Soil Erosion in Response to Land Use/Land Cover Flux. Land Degradation & Development 26, 711–724. https://doi.org/10.1002/ldr.2276. 2015.
- Giertz, S., Diekkrüger, B., Steup, G. Physically-based modelling of hydrological processes in a tropical headwater catchment (West Africa) – process representation and multi-criteria validation. Hydrology and Earth System Sciences 10, 829–847. https://doi.org/10.5194/hess-10-829-2006
- Ikounga, M., 1978. Analyse fine du mécanisme de la formation du ruissellement sur sols ferrallitiques sous forêt (région de Yaoundé-Cameroun). ORSTOM, Paris. 2006.
- Jennings, D.B., Taylor Jarnagin, S. Changes in anthropogenic impervious surfaces, precipitation and daily streamflow discharge: a historical perspective in a mid-atlantic subwatershed. Landscape Ecol 17, 471–489. https://doi.org/10.1023/A:1021211114125. 2002.
- Lefèvre, R.: Etude hydrologique de la Mefou supérieure. ORSTOM, Yaoundé, 38p. 1966.
- Maréchal, J.-C., Braun, J.-J., Riotte, J., Bedimo, J.-P.B., Boeglin, J.-L.: Hydrological processes of a rainforest headwater swamp from natural chemical tracing in Nsimi watershed, Cameroon. Hydrological Processes 25, 2246–2260. https://doi.org/10.1002/hyp.7989. 2011.
- Midekisa, A., Holl, F., Savory, D.J., Andrade-Pacheco, R., Gething, P.W., Bennett, A., Sturrock, H.J.W.: Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PLoS One 12. https://doi.org/10.1371/journal.pone.0184926. 2017.

- Moffo, Z.M.: Contribution des systèmes d'information géographique pour la cartographie des zones à risques d'inondation à Yaoundé : Application au bassin versant du Mfoundi., Mém. Master. 71p. 2017.
- Ndam, J.R., Apouamoun, R., Youega, J.R.S, P.M., Ngnike, Boeglin, J.L, Bedimo, J.P. Transferts d'eau et de matières dans un écosystème forestier urbanisé en Afrique : le bassin versant de la Mefou au Sud Cameroun. Actes des JSIRAUF. Hanoi. 2007.
- Nguemou, T.D.: Hydrologie et transports solides dans un écosystème forestier urbanisé: Exemple du bassin versant du Mfoundi au centre sud du Cameroun. Mém. DEA. Fac des sci. Yaoundé I. 83p. 2008.
- Ngoumdoum, D.F.: Hydrologie et qualité des eaux de surface du bassin versant élémentaire d'Odza (Yaoundé, Cameroun). Mém. Master, Univ. Yaoundé I. Fac. Sci. DST. 70p. 2013.
- Sillanpää, N., Koivusalo, H. Impacts of urban development on runoff event characteristics and unit hydrographs across warm and cold seasons in high latitudes. Journal of Hydrology 521, 328–340. https://doi.org/10.1016/j.jhydrol.2014.12.008. 2015.
- White, M.D., Greer, K.A. The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Peñasquitos Creek, California. Landscape and Urban Planning 74, 125–138. https://doi.org/10.1016/j.landurbplan.2004.11.015. 2006.
- Yira, Y., Diekkrüger, B., Steup, G., Bossa, A.Y. Modeling land use change impacts on water resources in a tropical West African catchment (Dano, Burkina Faso). Journal of Hydrology 537, 187–199. https://doi.org/10.1016/j.jhydrol.2016.03.052. 2016.
- SNEC : Barrage de Mopfou amont : Etude hydrologique de la Méfou supérieure campagne 1968-1969. EDF-Igeco, Paris, 64p. 1969.
- Srang, K.: Hydrologie d'un bassin de zone urbaine : le Bassin versant de Yaoundé. ORSTOM, Yaoundé, 53p. 1972.