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Key points: 

 The time-varying GEV model and copula models are developed for marginal and 

multivariate frequency analysis, respectively. 

 A design life level-based risk analysis is implemented for hydraulic engineering 

practice. 

 A systematic risk analysis incorporating nonstationarity is emphasized in 

comparison with stationary models. 
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Abstract: Due to global climate change and urbanization, more attention has been paid 

to decipher the nonstationary multivariate risk analysis from the perspective of 

probability distribution establishment. Because of the climate change, the exceedance 

probability belonging to a certain extreme rainfall event would not be time invariant 

any more, which impedes the widely-used return period method for the usual 

hydrological and hydraulic engineering practice, hence calling for a time dependent  

method. In this study, a multivariate nonstationary risk analysis of annual extreme 

rainfall events, extracted from daily precipitation data observed at six meteorological 

stations in Haihe River basin, China, was done in three phases: (1) Several statistical 

tests, such as Ljung-Box test, and univariate and multivariate Mann-Kendall and Pettist 

tests were applied to both the marginal distributions and the dependence structures to 

decipher different forms of nonstationarity; (2) Time-dependent Archimedean and 

elliptical copulas combined with the Generalized Extreme Value (GEV) distribution 

were adopted to model the distribution structure from marginal and dependence angles; 

(3) A design life level-based (DLL-based) risk analysis associated with Kendall’s joint 

return period (𝐽𝑅𝑃𝑘𝑒𝑛)and AND’s joint return period (𝐽𝑅𝑃𝑎𝑛𝑑) methods was done to 

compare stationary and nonstationary models. Results showed DLL-based risk analysis 

through the 𝐽𝑅𝑃𝑘𝑒𝑛  method exhibited more sensitivity to the nonstationarity of 

marginal and bivariate distribution models than that through the 𝐽𝑅𝑃𝑎𝑛𝑑 method.  

Key words: multivariate risk analysis; time-varying copula; design life level; 

nonstationarity; Kendall’s joint return period
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1. Introduction 1 

Due to climate change and increasing urbanization, heavy rains-induced floods 2 

have occurred more frequently all over the world in recent decades, which is becoming 3 

a major deterrent to the sustainable development of social economy (Mishra and Singh, 4 

2009; Donat et al., 2016; Ali and Mishra, 2018). Various kinds of social activities, such 5 

as infrastructure constructions, agricultural irrigation and ecological maintenance 6 

would be influenced by hydrometeorological extreme events. A systematic risk analysis 7 

of these extreme events would provide sufficient strategies for decision makers.  8 

A multitude of studies have addressed the effect of climate change and 9 

urbanization on hydrological design to alleviate associated risks. Traditional 10 

hydrological frequency analysis or risk analysis is based on the stationary assumption, 11 

which recommends that environmental impact indexes, such as climatic factors and 12 

land use rate, have a constant mechanism or pattern that affects hydrological variables 13 

all the time (Madsen et al., 2017; Milly et al., 2015). The feasibility of hydrological 14 

frequency and risk analysis based on stationary assumptions is being challenged 15 

because of the multiple effects of climate change, urbanization, and heat island effects. 16 

Accordingly, water authorities should amend the present planning, design and 17 

management strategies to develop nonstationary distribution models based on the 18 

signals of climate change. Therefore, it is urgent to develop an efficient and systematic 19 

risk analysis approach from time dependent side to serve for hydraulic design of 20 

hydrological infrastructures to cope with the effect of climate change. 21 
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In recent years, nonstationary hydrological frequency analysis has received a great 22 

deal of attention because of increasing attention to climate change (Chen and Sun, 2017; 23 

Call et al., 2017; Ghanbari et al. 2019). The time-varying moment approach is widely 24 

used to involve time variant probabilistic parameters for mimicking the changing 25 

behavior of extreme hydrometeorological variables. Nonstationarity modeling of 26 

probability distribution has been conducted for univariate cases in recent years (Zhang 27 

et al., 2015; Ganguli and Coulibaly, 2017; Agilan and Umamahesh, 2018).  28 

Du et al. (2015) modelled nonstationary low-flow series in Weihe River basin, 29 

China, based on the Generalized Additive Models in Location, Scale and Shape 30 

(GAMLSS) framework. Results showed that inappropriately estimated statistical 31 

parameters would lead to the overstatement of risk corresponding to a low-flow event. 32 

Gu et al. (2016) incorporated time, climate indices, precipitation, and temperature into 33 

the GAMLSS model to detect nonstationarity in flood frequency. For the univariate 34 

case, nonstationary risk analysis, based on the time-varying moment approach, can be 35 

decomposed into four steps: (1) Descriptive and exploratory monitoring of hydrological 36 

sequences and monitoring of outliers; (2) implementation of the stationarity hypothesis 37 

to verify the nonstationarity of hydrological series; (3) development of a hydrological 38 

frequency analysis model and estimation of model parameters using different covariates; 39 

and (4) risk assessment based on the selected frequency model.  40 

The above studies were conducted under nonstationary conditions for univariate 41 

cases, while it is known that natural hydrometeorological extreme events are 42 
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multivariate, characterized by multi-attribute properties which can be statistically 43 

correlated. For instance, floods are characterized by volume, peak, and duration, while 44 

extreme rainfall events have the attributes of duration, intensity, total amount. As a 45 

result, univariate nonstationary risk analysis cannot fully encompass the dependence 46 

structure between hydrological attributes. It is therefore desirable to develop a 47 

multivariate model to simulate the probabilistic behavior of two or more properties. 48 

Copulas, a useful tool for modelling the structure of dependence between hydrological 49 

variables regardless of the types of marginal distributions, have been widely used for 50 

multivariate frequency analysis of rainfall extreme events (Zhang and Singh, 2007; Kao 51 

and Govindaraju, 2008; Rauf and Zeephongsekul, 2014; Vandenberghe et al., 2010); 52 

droughts (De Michele et al., 2013; Serinaldi et al., 2009; Shiau, 2006; Song and Singh, 53 

2010; Wong et al., 2010); floods (Grimaldi and Serinaldi, 2006; Zhang and Singh, 2006). 54 

However, these studies assumed a time invariant dependence pattern, ignoring the 55 

influence of climate change and hence did not consider the impact of nonstationarity 56 

on the dependence structure.  57 

Recently, studies on multivariate distribution fitting have addressed the superiority 58 

of dynamic copula-based method to model the nonstationary dependence structure, 59 

which are generally caused by complex environment and rapid urbanization (Milly et 60 

al., 2015). Former studies have detected nonstationarity in dependence structures (Liu 61 

et al. 2017; Assia et al., 2014; Yilmaz and Perera, 2014). Chebana et al. (2013) argued 62 

that it was necessary to determine a multivariate distribution model quantifying the 63 
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time-varying dependence structure of various kinds of hydrological variables. Bender 64 

et al. (2014) used a bivariate nonstationary multivariate model with a 50-year moving 65 

time window to investigate the time-dependent behavior in bivariate case. Their results 66 

showed that the joint probability varied significantly over time for different non-67 

stationary models. Jiang et al. (2015) also did a multivariate risk analysis using the 68 

time-varying copula method incorporating time and reservoir index as covariates for 69 

low-flow series extracted from two neighboring observed stations.  70 

Traditional solutions of hydrological extreme events involve return period-based 71 

methods, which are usually calculated as the inverse of annual exceedance probability 72 

for a given magnitude under stationary conditions in a univariate case. In a multivariate 73 

case, the univariate return period can be extended to joint return periods of hydrological 74 

variables. There are three kinds of joint return period methods to quantify the 75 

exceedance probability of a multivariate extreme event: the OR method that at least one 76 

extreme attribute is larger than the specified threshold; the AND method that all the 77 

attributes are larger than the specified threshold; and the Kendall method that the 78 

univariate value derived from the Kendall distribution function according to a specified 79 

value (Jiang et al., 2015; Salvadori and Michele, 2010; Salvadori et al., 2013). While 80 

non-stationary distribution models provide flexibility to analyze the variability of a 81 

hydrological variable, they are also incongruent with many of the traditional metrics 82 

used in water resources planning. For example, the development of drainage standards 83 

are vulnerable to the standard of extreme rainfall return period, which means drainage 84 
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facilities have been designed to withstand the extreme rainfall event of a specified 85 

return period. The multivariate hydrologic and hydraulic design can be influenced by 86 

the existence of nonstationarity in both the marginal and joint distributions. The 87 

exceedance probability of a given extreme event would be different from year to year, 88 

leading to a nonconstant and non-unique value of the conventional return period. Thus, 89 

the notion of static return period of an extreme rainfall event (e.g., 100-year extreme 90 

rainfall event, 200-year extreme rainfall event) is no longer reliable for hydraulic design 91 

under nonstationary conditions (Salas and Obeysekera, 2014; Yan et al., 2017). As a 92 

result, Rootzén and Katz (2013) first mentioned the concept of design life level (DLL) 93 

to quantify the risk of a given extreme rainfall magnitude over the hydrological 94 

structure’s life time (Note that following the idea of Rootzén and Katz (2013) we regard 95 

the term hydrological risk as the possibility of a certain extreme event occurring and 96 

not as a quantification of expected losses). It is a logical extension to handle the 97 

nonstationarity of the concept of ‘‘risk of failure’’ (Jakob, 2013), which is more 98 

frequently used to quantify the risk of hydrologic extremes under stationarity. Read and 99 

Vogel (2015) extended the DLL method to average annual reliability (AAR) method to 100 

estimate the hydrologic design value considering nonstationarity. In general, these risk-101 

based methods can provide similar results of hydraulic design for hydrological 102 

infrastucture (Yan et al., 2017). However, the cases of multivariate hydrologic designs, 103 

especially under nonstationary conditions using the time-varying copula, and design 104 

life level-based risk methods have great potentiality in future studies. 105 
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Therefore, the objective of this study is to do risk analysis of multivariate extreme 106 

rainfall events involving the following steps. First, a series of statistical tests, such as 107 

Ljung-Box test, and univariate and multivariate Mann-Kendall and Pettist tests are used 108 

for both the marginal distributions and the dependence structures to determine different 109 

forms of nonstationarity (sudden jump, periodicity, and trend). Second, a nonstationary 110 

multivariate probability distribution is developed using a time-varying GEV and 111 

copula-based model, which can encompass the nonstationarities probably existed in 112 

marginal and joint distributions. Finally, design life level-based risk analysis is 113 

extended to multivariate cases through Kendall’s joint return period and AND’s joint 114 

return period methods. In this paper, we investigated two kinds of extreme rainfall 115 

attributes: (1) annual extreme rainfall volume (Ps: Annual total precipitation of the 116 

daily precipitation more than the 95th percentile threshold) and intensity (Im: Annual 117 

maximum daily precipitation), through the nonstationary multivariate risk analysis 118 

method. The remainder of this paper is organized as follows. The next section presents 119 

the methodology adopted in this study. Section 3 discusses the results of proposed 120 

model applied to Haihe River basin, China. Section 4 presents the final conclusion 121 

through the proposed model. 122 

2. Methodology 123 

Copulas are tools to build multivariate distribution models of dependence 124 

structures between random variables regardless of their marginal distribution types. 125 

Detailed information about copulas can be found in Nelson (2007). The present copula-126 
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based methods to solve the multivariate risk analysis mostly adopt static parameters for 127 

whether the marginal distribution or joint distribution. The changing climate has led to 128 

nonstationarity of individual hydrological series or the dependence between 129 

hydrological variables. To realize this situation, a time-varying copula-based model can 130 

describe the time dependent characteristics for dependence structure of hydrological 131 

variables, as inspired by Patton (2006) from the financial field. 132 

Let (𝑥, 𝑦 ) represent a hydrological pair. The joint probability distribution of 133 

multivariables through time-varying copula model can then be presented as: 134 

    𝐹𝑋,𝑌(𝑥, 𝑦) = 𝐶[𝐹𝑋(𝑥|𝜃𝑋
𝑡 ), 𝐹𝑌(y|𝜃𝑌

𝑡)|𝜃𝐶
𝑡] = 𝐶(𝑢, 𝑣|𝜃𝐶

𝑡)                               (1) 135 

where 𝐶(∙) denotes the copula function; 𝐹𝑋,𝑌(∙) denotes the joint function; 𝐹𝑋(∙) 136 

and 𝐹𝑌(∙) represent the marginal functions of hydrological variable (Ps and Im in this 137 

study); 𝜃𝑋
𝑡  and 𝜃𝑌

𝑡  represent the time-varying marginal distribution parameters; 𝜃𝐶
𝑡  is 138 

the dynamic copula parameter which is a linear function of time; and 𝑢 and 𝑣 are the 139 

marginal probabilities in the time-varying copula in the hypercube unit. 140 

 In the framework of multivariate risk analysis (Figure 1), the property of 141 

nonstationarity can be determined not only by one or two marginal variables but also 142 

in the dependence structure or vice versa. It is however possible that the nonstationary 143 

behavior may exist in both the marginal and joint distribution function. To determine 144 

the nonstationarity (mutation, cyclicity and trend) in the synthetized extreme rainfall 145 

attribute series, statistical tests, such as Ljung-Box test, and univariate and multivariate 146 

Mann-Kendall and Pettist tests are used for both the marginals and the dependence 147 
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structure. Details of these tests can be found in the references due to (Serinaldi and 148 

Kilsby, 2016; Chebana et al., 2013; Rizzo and Székely, 2010). 149 

As shown in Figure 1, the time-varying copula-based risk analysis model can be 150 

decomposed into three main phases: (1) detection of nonstationarity in the marginal 151 

variables and dependence structure through a series of nonparametric tests; (2) 152 

estimation of the time-varying parameter for the marginal and joint probabilty 153 

distributions; and (3) joint return period and risk analysis by design life level-based risk 154 

methodology from the perspectives of Kendall’s and AND’s return period methods 155 

(detailed information can be found in Section 2.3).  156 

 157 

Insert Figure 1 here. 158 

 159 

2.1. Time-varying marginal distribution 160 

In this part, the Generalized Extreme Value (GEV) distribution was used to 161 

establish time-varying marginal distribution model for the extreme rainfall attributes 162 

because it is a good aggregation of the Gumbel, Fréchet, and Weibull distributions and 163 

is especially suitable for extreme data sets (Cheng and AghaKouchak, 2014). Let F(x) 164 

be the cumulative probability distribution function (CDF) of the quantity of interest, Ps 165 

or Im, in this study. The GEV distribution consists of three control parameters, the 166 

location, the scale, and the shape, which describe mean value of the sample series, 167 

amplitude near the location, and the tail of the distribution, respectively. The cumulative 168 
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distribution of GEV model under stationary conditions can be expressed as follows: 169 

𝐹(𝑥) =

{
 
 

 
 
exp {− [1 + 𝜅 (

𝑥 − 𝜇

𝜎
)]
+

−
1
𝜅
}                       if 𝜅 ≠ 0

exp {−𝑒𝑥𝑝 (−
𝑥 − 𝜇

𝜎
)
+
}                             if 𝜅 → 0

                             (2) 170 

where 𝑧+=max{y,0} and  171 

𝑥𝜖[(𝜇 − 𝜎)/𝜅, +∞) when 𝜅 > 0, 172 

𝑥𝜖(−∞, (𝜇 − 𝜎)/𝜅] when 𝜅 < 0, and 173 

𝑥𝜖(−∞,+∞) when 𝜅 = 0. 174 

where 𝜇 denotes the location parameter, 𝜎 is the scale parameter and 𝜅 is the shape 175 

parameter. In this study, two kinds of nonstationary GEV models (GEVns-1 and 176 

GEVns-2) are developed with the shape parameter being constant. It should be 177 

emphasized that modelling the time variance in shape parameter needs long-term 178 

observations, which are often not available in practice (Cheng et al., 2014). GEVns-1 179 

model considers the time-varying characteristic of the location parameter only, while 180 

GEVns-2 model incorporates the time varying features of both location and scale 181 

parameter. These two nonstationary models regard significant trends as a linear function 182 

of time (in years): 183 

 𝜇(𝑡) = 𝜇𝑜 + 𝜇1𝑡                             (3)  184 

            185 

𝜎(𝑡) = exp (𝜎𝑜 + 𝜎1𝑡)                          (4) 186 

where the scale parameter is always positive throughout, it is usually calculated on the 187 

basis of a log link function. 188 

In this study, the Bayesian method through the Markov chain Monte Carlo 189 
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(MCMC) approach (Cheng et al., 2014) was used to estimate the nonstationary GEV 190 

model. Simultaneously, the Deviance Information Criterion (DIC) and Bayes factors 191 

(BF) for different stationary and nonstationary models were calculated to select the best 192 

fitted marginal model. The minimum DIC value yielded the best performance, while 193 

BF smaller than 1 indicated the best fitting. 194 

2.2. Time-varying Copula 195 

To model the dependence structure between annual total precipitation (Ps) and 196 

annual daily maximum precipitation (Im) under nonstationary conditions, a time-197 

varying copula was developed. In multivariate hydrological frequency analysis, two 198 

kinds of copulas, named elliptical and Archimedean copulas are widely used in 199 

hydrological applications. In this study, time-varying elliptical copulas, Student t (St) 200 

copula, as well as the widely-used time-varying Archimedean copulas, time-varying 201 

Clayton, Gumbel and Frank copula, were selected as candidate models to simulate the 202 

time-varying dependence between two extreme rainfall attributes. The Gaussian copula 203 

was not used in this study because of its deficiency in describing dependencies of 204 

extremes (Renard and Lang, 2007).  205 

The copula parameter 𝜃𝐶
𝑡  can be assumed as a linear function of the time (“year” 206 

in this study) and can be defined as follows:  207 

𝜃𝐶
𝑡 = {

exp (𝛽
𝑜
+ 𝛽

1
𝑡)                           𝜃𝑐 > 0

𝛽
𝑜
+ 𝛽

1
𝑡                                        𝜃𝑐 ∈ 𝑅

                                                          (5) 208 

where 𝜃𝑐 > 0 denotes the Student t (St), Clayton and Gumbel copula, while 𝜃𝑐 ∈ 𝑅 209 

represents the Frank copula.  210 
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The maximum pseudo-likelihood (MPL) method was adopted to estimate the time-211 

varying copula parameter (Genest et al., 1995). The Corrected Akaike Information 212 

Criterion (AICc; Hurvich and Tsai, 1989) was employed to make a goodness-of-fit, 213 

which is a modified version of AIC for small samples. Obviously, the presence of 214 

nonstationarity in the copula parameter was determined by comparison of the AICc 215 

value.  216 

2.3. Joint return period and risk analysis based on KEN’s and AND’s methods 217 

For hydrological management, engineering administrators focus more on the 218 

return period and risk of failure during the design life of hydraulic structures (Condon 219 

et al., 2015). Inspired by design life level (DLL) method to present the risk proposed 220 

by Rootzén and Katzs (2013), we would like to expand the DLL-based risk to the 221 

multivariate case.  222 

Let F(X) be the cumulative probability distribution function (CDF) of the quantity 223 

of interest, in this study, maximum daily precipitation in a year (Im). Conventionally, 224 

the T-year return level for certain daily precipitation 𝑥𝑇  is equal to the (1-1/T)-th 225 

quantile of the marginal distribution of Im (The probability distribution is the same for 226 

all years in a stationary situation.). Equivalently, on average, one out of T years has at 227 

least one daily rainfall that exceeds 𝑥𝑇, so that 𝑇(1 − 𝐹(𝑥𝑇)) = 1(Serinaldi and Kilsby, 228 

2015), and the probability of annual maximum daily rainfall exceeds 𝑥𝑇 is 1/T.  229 

Then, the hydrological risk R (i.e. risk of failure) of a certain hydraulic structure 230 

for a design life of n years can be expressed as the probability that at least one rainfall 231 
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extreme exceeds the design level 𝑥𝑇  in a period of n years. Under stationary conditions, 232 

the probability of annual maximum daily rainfall exceeding 𝑥𝑇 in every year is the 233 

same as 1/T. In a univariate context, hydrological stationary risk can be defined as 234 

(Fernandez and Salas, 1999; Serinaldi and Kilsby, 2015): 235 

𝑅𝑠 = 1 − 𝐹(𝑥𝑇)
𝑛 = 1 − (1 − 1/𝑇)𝑛                                     (6) 236 

Considering time-varying exceedance probabilities, the probability of annual 237 

maximum daily rainfall exceeding 𝑥𝑇 in each year is different. So here we use 𝐹𝑡(𝑥𝑇) 238 

to represent the probability of daily rainfall exceeding design level 𝑥𝑇 in the t-th year. 239 

So the design life level-based nonstationary risk for the univariate case is: 240 

𝑅𝑛𝑠 = 1 −∏𝐹𝑡(𝑥𝑇)

𝑛

𝑡=1

                                                                                                             (7) 241 

From the perspective of bivariate case, the joint return period (JRP) of extreme 242 

rainfall events can be calculated through three methods in a stationary situation 243 

(Salvadori et al., 2011). They are AND method corresponding to the probability of 244 

𝑃(𝑋 ≥ 𝑥 ∩ 𝑌 ≥ 𝑦), OR method corresponding to 𝑃(𝑋 ≥ 𝑥 ∪ 𝑌 ≥ 𝑦), and Kendall 245 

return period method (KEN). Details of the Kendall return period can be found in 246 

Salvadori and De Michele (2004). Since the AND method is widely used and the 247 

Kendall method is of great potentiality, we expanded the AND method and the Kendall 248 

return period method to the nonstationary case here. Let 𝐽𝑅𝑃𝑠−𝑎𝑛𝑑 and 𝐽𝑅𝑃𝑠−𝑘𝑒𝑛 249 

represent the three types of return period in the stationary case; they can be calculated 250 

as follows: 251 
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𝐽𝑅𝑃𝑠−𝑎𝑛𝑑 =
1

𝑃((𝑋 ≥ 𝑥 ∩ 𝑌 ≥ 𝑦))
=

1

1 − 𝐹𝑋(𝑥) − 𝐹𝑌(𝑦) + 𝐶[𝐹𝑋(𝑥), 𝐹𝑌(𝑦)]
            (8) 252 

𝐽𝑅𝑃𝑠−𝑘𝑒𝑛 =
1

𝑃{𝐶[𝐹𝑋(𝑥), 𝐹𝑌(𝑦)] ≥ 𝑝𝑘𝑒𝑛}
=

1

1 − 𝐾𝑐(𝑝𝑘𝑒𝑛)
                                              (9) 253 

where 𝐾𝑐(∙) is the Kendall distribution function which can be defined as: 254 

𝐾𝑐(𝑝𝑘𝑒𝑛) = 𝑃{𝐶[𝐹𝑋(𝑥), 𝐹𝑌(𝑦)] ≤ 𝑝𝑘𝑒𝑛}                                                                           (10) 255 

Here, 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦) are the marginal cumulative probability distribution functions 256 

(CDF) for Ps and Im, respectively, while 𝐶[𝐹𝑋(𝑥), 𝐹𝑌(𝑦)]  is the bivariate copula 257 

function connecting these two extreme attributes. 𝑝𝑘𝑒𝑛 is just the critical probability 258 

level corresponding to 𝐾𝑐(𝑝𝑘𝑒𝑛).  259 

Similar to the JRPs of extreme rainfall events under stationary case, the JPRs of 260 

AND and KEN in nonstationary situations can be achieved by: 261 

𝐽𝑅𝑃𝑛𝑠−𝑎𝑛𝑑 =
1

1 − 𝐹𝑋(𝑥|𝜃𝑋
𝑡) − 𝐹𝑌(𝑦|𝜃𝑌

𝑡) + 𝐶[𝐹𝑋(𝑥), 𝐹𝑌(𝑦)|𝜃𝐶
𝑡]
                                 (11) 262 

𝐽𝑅𝑃𝑛𝑠−𝑘𝑒𝑛 =
1

1 − 𝐾𝑐
𝑡(𝑝𝑘𝑒𝑛)

                                                                                                 (12) 263 

where 𝜃𝑋
𝑡 , 𝜃𝑌

𝑡  and 𝜃𝐶
𝑡  represent the time variant parameters of the marginal and 264 

copula distributions; and 𝐾𝑐
𝑡(𝑝𝑘𝑒𝑛) is the time-varying Kendall distribution function 265 

corresponding to the time-varying copula. 266 

Multivariate extreme value analysis should be focused on the most likely extreme 267 

event with the largest copula density. The most likely event at the 𝑇0-year level can be 268 

calculated as (Graler et al., 2013): 269 

(𝑢𝑚, 𝑣𝑚) = argmax
𝑇0

𝑐(𝑢, 𝑣)                                                                                                (13) 270 

The most likely design combinations (𝑥𝑚, 𝑦𝑚) can be computed according to the 271 

inverse of marginal cumulative distribution function:  272 
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𝑥𝑚 = 𝐹𝑋
−1(𝑢𝑚) and 𝑦𝑚 = 𝐹𝑌

−1(𝑣𝑚)                                                                              (14) 273 

where u, v are the marginal distribution functions of X and Y. Let two pairs of extreme 274 

rainfall attributes (𝑥𝑚1
, 𝑦𝑚1

)𝑇0𝑎𝑛𝑑  and (𝑥𝑚2
, 𝑦𝑚2

)𝑇0𝑘𝑒𝑛  be the most likely design 275 

combinations of Ps and Im at the 𝑇0-year level for 𝐽𝑅𝑃𝑠−𝑎𝑛𝑑 and 𝐽𝑅𝑃𝑠−𝑘𝑒𝑛. Similar 276 

to the nonstationary risk calculation in the univariate case, the hydrological 277 

nonstationary DLL-based risk in the bivariate case can be calculated from two 278 

circumstances: 279 

𝑅𝑛𝑠−𝑎𝑛𝑑 = 1 −∏{𝐹𝑋(𝑥𝑚1
|𝜃𝑋
𝑡) + 𝐹𝑌(𝑦𝑚1

|𝜃𝑌
𝑡) − 𝐶[𝐹𝑋(𝑥𝑚1

), 𝐹𝑌(𝑦𝑚1
)|𝜃𝐶

𝑡]}

𝑛

𝑡=1

       (15) 280 

𝑅𝑛𝑠−𝑘𝑒𝑛 = 1 −∏𝐾𝑐
𝑡(𝑝𝑘𝑒𝑛)(𝑥𝑚2 ,𝑦𝑚2)                      

𝑛

𝑡=1

                                                      (16) 281 

where 𝑅𝑛𝑠−𝑎𝑛𝑑, 𝑅𝑛𝑠−𝑘𝑒𝑛 indicate the nonstationary risk for a design life level of n 282 

years in the bivariate case corresponding to two types of joint return period. The 283 

stationary risk can be calculated in the same way with marginal and copula distribution 284 

parameters being constant. 285 

In this study, comparison of hydrological risk for the bivariate case between 286 

stationary and nonstationary models can be quantified by the risk changing rate ∆𝑅𝑇0
𝑛  287 

which can be calculated as: 288 

∆𝑅𝑇0
𝑛 =

1

𝑛
∑

|𝑅𝑖
𝑛𝑠 − 𝑅𝑖

𝑠|

𝑅𝑖
𝑠

𝑛

𝑖=1

                                                                                                     (17) 289 

where 𝑅𝑖
𝑛𝑠 and 𝑅𝑖

𝑠 are nonstationary risk and stationary risk of a certain hydraulic 290 

structure for a design life of i years. ∆𝑅𝑇0
𝑛  helps quantify the difference in risk between 291 

stationary and nonstationary models.  292 
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3. Application 293 

3.1. Study area and data collection 294 

The area selected for the study is Haihe River basin, China, which belongs to the 295 

temperate East Asian monsoon climate zone (Figure 2). In summer, heavy rains take 296 

place and temperature and humidity are high caused by marine air masses. The annual 297 

rainfall has a great spatial and temporal variability across the basin due to the 298 

inconsistency of intensity, retreat time and influence of the Pacific subtropical high over 299 

the years. Natural disasters, such as urban floods and mountain torrents induced by 300 

extreme rainfall events in the basin have caused huge losses to the social economy and 301 

people's lives and property, and have been highly valued by decision-making authorities. 302 

As a result, time-varying copula-based multivariate risk analysis of this basin is 303 

conducive to providing reliable strategies and alternative options for water resources 304 

risk-based decision making.  305 

Daily rainfall data from Haihe River basin observed at Wutaishan, Fengning, 306 

Zhangjiakou, Beijing, Tianjin, and Nangon were analyzed for the proposed 307 

nonstationary model. Detailed information on these six gauges is presented in Table 1. 308 

According to various data ranges shown in Table 1, the rainfall series from 1958-2017 309 

was selected as the final version.  310 

 311 

Insert Figure 2 Here. 312 

Insert Table 1 Here. 313 
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 314 

4.2. Preprocessing Analysis 315 

Before developing a nonstationary frequency analysis model, it is essential to 316 

examine nonstationarities of extreme precipitation attributes (Ps and Im) as well as the 317 

structure of dependence between these two attributes. A series of statistical tests (i.e. 318 

Ljung-Box test, univariate and multivariate Man-Kendall tests, and univariate and 319 

multivariate Pettitt tests) were performed to detect the nonstationarity in extreme 320 

precipitation time series. Trends in the time series can be evaluated using various tests 321 

(Lima et al., 2016; Yilmaz et al., 2017; Sarhadi and Soulis, 2017). Table 2 shows results 322 

of tests detecting nonstationarity, while Figure 3 shows the spatial distribution of trends 323 

and change points for two attributes of rainfall extremes (Ps and Im) as well as the 324 

dependence structure between them. First, time series of these two rainfall extremes (Ps 325 

and Im) for all 6 stations can pass the Ljung-Box test with 20 lags (p.value>0.05 in 326 

Table 2). Extreme observations are mutually independent with no serial autocorrelation, 327 

so it is appropriate to apply the standardized Mann-Kendall test to evaluate the 328 

statistical significance of trend without any modification (Serinaldi and Kilsby, 2016).  329 

As shown in Figure 3, concurrences of univariate and bivariate trends, the 330 

nonstationarities in rainfall extremes can be detected at several stations (stations 2, 3, 331 

and 4). Station 1 exhibits a significant nonstationarity for extreme attribute Ps, while 332 

extreme attribute Im and dependence structure show an insignificant decreasing trend. 333 

On the other hand, stations 5 and 6 show a weak decreasing trend. The above tests 334 
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totally recommend the presence of nonstationarities in extreme series as well as the 335 

dependence pattern across three out of 6 sites. According to Porporato and Ridolfi 336 

(1998), an insignificant trend should not be ignored because of its effect on the results 337 

of hydrological risk analysis. Hence, even if precipitation extremes at a certain station 338 

may recommend statistically weak trends, both the nonstationary and stationary models 339 

are established for each station in the following section.  340 

 341 

Insert Table 2 Here. 342 

Insert Figure 3 Here. 343 

 344 

4.3. Marginal distribution fitting  345 

The nonstationarity can appear either in univariate variables or in dependence 346 

structure in the multivariate framework (Bender et al., 2014). Results of trend and 347 

change point tests performed in Section 4.1 pointed out the necessity to take the 348 

nonstationarity of marginal distributions into consideration. In this study, the 349 

Generalized Extreme Value (GEV) distribution which is a good hybrid of the Gumbel, 350 

Fréchet, and Weibull distributions fits the block or annual maximum time series better 351 

(Cheng et al., 2014). Table 3(a)-(b) shows performances of nonstationary vs. stationary 352 

models for these six stations. The location parameter (𝜇) and scale parameter (𝜎) are 353 

regarded as time variant, while the shape parameter 𝜅 is time invariant; it should be 354 

noted that modeling of time-varying 𝜅  requires a sufficiently long record of 355 
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observations (Cheng et al., 2014). Despite the exception of Im for station 4, the shape 356 

parameter 𝜅  for most fitted models was in the interval of [-0.3,0.3] which is in 357 

accordance with the previous study (Martins and Stedinger, 2000; Ganguli and 358 

Coulibaly, 2017). The best fitted model was selected by performing the minimum DIC 359 

criterion combined with the Bayes factor (BF) test. For instance, the GEVns-2 model 360 

(nonstationary GEV model with time varying location and scale parameters) was the 361 

best selected model for the extreme attribute Im extracted from station 1. That was 362 

because the BF values of GEVns-2 and GEVns-1 were both smaller than 1 which meant 363 

that these two nonstationary models passed the BF test. Then, the best fitted 364 

nonstationary model GEVns-2 for Im of station 1 was achieved following the DIC test. 365 

Similarly, the best fitted marginal distribution of two extreme rainfall attributes for all 366 

these six stations was selected. Except for stations 4 and 5, the best distributions for the 367 

other stations were parallel for nonstationarity tests shown in Section 4.1. 368 

 369 

Insert Table 3(a)-(b) here. 370 

 371 

4.4. Copula fitting 372 

Elliptical and Archimedean (Clayton, Gumbel, and Frank) copulas have been 373 

widely applied in hydrological practice. In this study, time-varying elliptical copulas, 374 

Student t (St) copula, as well as Clayton, Gumbel and Frank copulas were selected as 375 

alternative models to simulate the dependence structures of extreme attributes. The 376 
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Gaussian copula was not used in this study because of its deficiency in describing 377 

dependencies of extremes (Renard and Lang, 2007). Once a marginal distribution was 378 

estimated based on test statistics, the dependence structure for Im and Ps was described 379 

by the time-varying or time invariant copula functions. Table 4(a)-(b) illustrates the 380 

results of best fitted copula, based on the minimum AICc and maximum log-likelihood 381 

value (LL). The time-varying Student t (St) copula exhibited the best performance 382 

among the eight candidate copulas (four stationary copulas as well as the corresponding 383 

nonstationary copulas) for stations 1, 2, 3, 4, and 6, while the stationary St copula was 384 

the best one for station 5 which meant that results of dependence structure modelling 385 

for station 5 did not indicate any nonstationarity signal which was reasonable, according 386 

to multivariate MK and Pettit tests of station 5 (Table 2). Contrary to station 5, the 387 

nonstationary St copula fitted better than did the stationary model for stations 1 and 6 388 

which was not in accordance with the nonstationarity tests for these two stations (Table 389 

2). Based on the above results, an insignificant trend or weak change point would lead 390 

to a nonstationary probability function of dependence patterns to some extent 391 

(Porporato and Ridolfi, 1998) which should be dealt with cautiously.  392 

With the best fitted marginal distributions and the best copula, the quantiles of 393 

extreme rainfall attributes (Ps and Im) were derived from the pseudo-observations 394 

ranging from 0 to 1 in order to provide a benchmark for return period and risk analysis 395 

for hydrological and hydraulic design. The method of analysis is presented in the 396 

following section. 397 
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 398 

Insert Table 4(a)-(b) here. 399 

 400 

4.5. Nonstationary return period and risk analysis for univariate and bivariate cases 401 

(1) Univariate return period: Once parameters of the best fitted models for 402 

univariate and bivariate cases have been estimated, the extreme rainfall quantiles for 403 

certain return levels (T) can be simulated. In this section, return period and risk analysis 404 

was performed by comparing stationary and nonstationary models. The estimated 405 

rainfall quantiles (Ps and Im) versus time in the univariate case are shown in Figures 4 406 

for the six stations of Haihe River. Im and Ps for stations 4 and 6 are not provided, 407 

because the best marginal model for the extreme attributes of these two stations was the 408 

stationary GEV model (Table 3). In the case of Ps for station 1 shown in Figure 3, a 409 

100-year Ps quantile under stationary circumstances (GEVs model with dashed red line 410 

in Figure 3) (355 mm) corresponded to a 35-year Ps under nonstationary conditions 411 

(GEVns-2) in the year 1960 and a 60-year Ps in the year 1970. In other words, an 412 

exceedance probability of 0.01 increased to 0.028 and 0.017. On the other hand, the 413 

return period associated with a given quantile decreased from 1960 to 2020 for Im of 414 

station 4 and Ps of station 5, while the return period increased for extreme attributes of 415 

other stations. Interestingly, the temporal variability between different stations 416 

corresponding to the best selected nonstationary model exhibited a significant 417 

difference. For example, the nonstationary GEVns-2 model fitted to Ps of stations 1, 2, 418 
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3, and 5 showed a significant upward or downward trend of extreme quantiles with 419 

years. Compared to the temporal variability, the attributes of stations 4 and 6 with 420 

GEVns-1 model showed a weaker trend which demonstrated the time variability of scale 421 

parameter of the GEV distribution. Finally, it is noteworthy that nonstationary isolines 422 

were over stationary isolines for Ps of stations 1 and 5 as well as Im of station 3 (marked 423 

in blue star in Figure 4) which meant that the stationary model would underestimate the 424 

risk for a certain return period.    425 

Insert Figure 3 here. 426 

Insert Figure 4 here. 427 

 428 

(2) Joint return period (JRP) based on AND and KEN method: 429 

After the nonstationary copula and GEV distribution models were selected 430 

according to several goodness-of-fit tests, the design values characterizing annual 431 

extreme rainfall events were determined through Kendall’s (𝐽𝑅𝑃𝑘𝑒𝑛) or AND’s joint 432 

return period (𝐽𝑅𝑃𝑎𝑛𝑑) expressed by Equations (8)-(10). Although the copula model for 433 

station 5 was stationary, it was regarded as a nonstationary model because of the 434 

marginal nonstationary GEVns-2 model for Ps or Im, which existed at other stations.  435 

Since events with lower exceedance probabilities are of interest for hydrological 436 

practice and the joint return period of 50-year level is able to minimize the uncertainties 437 

of extrapolation. In this study we focused typically on events with a joint return period 438 

of 𝐽𝑅𝑃𝑘𝑒𝑛 (𝐽𝑅𝑃𝑎𝑛𝑑)=50 which means the exceedance probability was equal to 0.02. 439 
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Figure 5 shows isolines of Kendall return period and AND-based return period at the 440 

50-year level for both stationary and nonstationary models. Since the number of isolines 441 

of the nonstationary model were 60 (sample size) which might show certain 442 

overlapping areas in the isoline map, four isolines corresponding to the year 1960, 1980, 443 

2000, and 2020 are presented for simplicity. For comparison, the 𝐽𝑅𝑃𝑘𝑒𝑛(𝐽𝑅𝑃𝑎𝑛𝑑)-444 

isolines derived from the corresponding stationary model, which was composed of 445 

stationary GEV and stationary copula model, are also shown. Observations belonging 446 

to each station are also presented. Although the plots for all the years are not shown, 447 

the variability of design quantiles over time showed the nonstationary behavior of the 448 

dependence structure. 449 

From Figure 5, 𝐽𝑅𝑃𝑘𝑒𝑛 was larger than 𝐽𝑅𝑃𝑎𝑛𝑑 for the dependence structure of 450 

the same extreme rainfall attributes, which was caused by Kendall’s return period 451 

method of generating the same dangerous region, regardless of different realizations 452 

(Salvadori et al. 2011). Focusing on 𝐽𝑅𝑃𝑘𝑒𝑛  and 𝐽𝑅𝑃𝑎𝑛𝑑  for station 1, the design 453 

values of Ps varied over time, while the design values of Im did not vary with time. 454 

From the horizontal direction, both the 𝐽𝑅𝑃𝑘𝑒𝑛-isolines and 𝐽𝑅𝑃𝑎𝑛𝑑-isolines exhibited 455 

a left-moving trend, recommending a descending trend for Ps. The maximum Ps values 456 

for the year 1960 were measured as 341.6 mm and 371.5 mm corresponding to 𝐽𝑅𝑃𝑘𝑒𝑛 457 

and 𝐽𝑅𝑃𝑎𝑛𝑑=50, respectively, while 246.4 mm and 264.8 mm is calculated as the 458 

minimum marginal values. The gap between them reached 100 mm. On the other hand, 459 

none of the 𝐽𝑅𝑃𝑘𝑒𝑛 and 𝐽𝑅𝑃𝑎𝑛𝑑-isolines exhibited a variation trend of Im values for 460 
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station 1 from the vertical perspective, which can be attributed to the stationary GEV 461 

model for Im of station 1 (Table 3). Due to sudden changes in the magnitudes of 462 

marginal values, the Kendall isolines also crossed each other. In a similar way, the 463 

nonstationary behavior of the variables was detected from the variation of design values 464 

of extreme attributes at the other five stations compared to the isolines derived from the 465 

stationary model (denoted as black line). Figure 5). It is noteworthy that the stationary 466 

copula model for station 5 also exhibited the variation of design values derived from 467 

both 𝐽𝑅𝑃𝑘𝑒𝑛 and 𝐽𝑅𝑃𝑎𝑛𝑑. A weak variation of 22.3 mm for Ps and 4.9 mm for Im was 468 

detected because of the corresponding nonstationary GEV model (Table 3).  469 

 470 

Insert Figure 5 here. 471 

 472 

(3) Univariate risk 473 

The hydrological risk of a certain design extreme attribute quantile 𝑥𝑇0 can be 474 

computed using Equations. (6) and (7) on the basis of the initial return period 𝑇0 and 475 

design life n. The best marginal distribution model for Im of station 1 as well as Ps of 476 

stations 4 and 6 were the stationary GEV model, so these three scenarios were not taken 477 

into consideration in this part. Except for the results of Ps of station 5, the risk results 478 

of extreme attributes of other five stations were very similar (Figure 6). Here, we 479 

considered the risk result of the attribute Im of station 2 for detailed illustration. 480 

Comparing the risk of stationary and nonstationary models, a definite conclusion can 481 
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be addressed: risk can increase from the stationary condition to nonstationary condition. 482 

For example, when 𝑇0= 50 and n=20, the risks for the stationary and nonstationary 483 

conditions were 33.24% and 46.8%, respectively. That is to say an unjustified 484 

assumption would lead to an overestimation of the risk under a certain return period 485 

and design life. For Im of station 2, the nonstationary risk was higher than the stationary 486 

risk when n ≤ 53. On the other hand, the nonstationary risk was smaller than the 487 

stationary risk when n ≥ 53. This conclusion can be detected from the Ps of station 1.  488 

Once 𝑇0 was decided, the risk changing rate was calculated by equation (17). 489 

Here, 𝑇0 was set as 50 for illustration. For attribute Im, the risk changing rate ∆𝑅𝑇0
𝑛  490 

corresponding to 𝑇0=50 was 45.93%, 5.31%, 18.25%, 39.44% and 37.10% for stations 491 

2, 3, 4, 5 and 6, respectively. For attribute Ps, ∆𝑅𝑇0
𝑛  was 61.26%, 22.47%, 59.51% and 492 

20.53% for stations 1, 2, 3 and 5. Generally, Im of station 2 and Ps of station 1 should 493 

be paid more attention with the highest risk changing rate in hydrological practice. 494 

 495 

Insert Figures 6 here. 496 

       497 

(3) Bivariate risk based on 𝐽𝑅𝑃𝑘𝑒𝑛 and 𝐽𝑅𝑃𝑎𝑛𝑑 498 

The hydrological nonstationary risk in the bivariate case cannot be calculated until 499 

the most likely event at 𝑇0-year level is generated. In this part, we first focused on the 500 

development of the most likely design events where the joint probability density 501 

functions had their maximum values on the 50-year level. Figures 7(a) and (b) illustrate 502 
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the time dependent development of both variables Ps (upper panel) and Im (lower panel) 503 

through the 𝐽𝑅𝑃𝑘𝑒𝑛 and 𝐽𝑅𝑃𝑎𝑛𝑑  methods. The attribute Ps for stations 1, 2, and 3 504 

showed a positive trend, while attribute Im for stations 4 and 5 exhibited a negative 505 

trend through the 𝐽𝑅𝑃𝑘𝑒𝑛 and 𝐽𝑅𝑃𝑎𝑛𝑑 methods. On the other hand, the trend of the 506 

design value of Im was not significant.  507 

 The hydrological nonstationary risk based on 𝐽𝑅𝑃𝑘𝑒𝑛  and 𝐽𝑅𝑃𝑎𝑛𝑑  was 508 

computed using equations (15)-(16). Figures 8(a) and (b) show the nonstationary risk 509 

R of the most likely design combinations of Ps and Im at the 𝑇0-year level. The risk 510 

results of extreme attributes of stations 1, 3, 4, and 6 were very similar, while the results 511 

of stations 2 and 5 exhibited a similar pattern. For stations 1, 3, 4, and 6, the risk 512 

increased with design life n under both stationary and nonstationary conditions, but for 513 

any 𝑇0, the nonstationary risk was higher than stationary risk from both 𝐽𝑅𝑃𝑘𝑒𝑛 and 514 

𝐽𝑅𝑃𝑎𝑛𝑑 methods. For stations 2 and 5, the nonstationary risk was lower than stationary 515 

risk from both the 𝐽𝑅𝑃𝑘𝑒𝑛 and 𝐽𝑅𝑃𝑎𝑛𝑑 methods. The corresponding changing rate to 516 

quantify the differences in hydrological risk for the bivariate case between stationary 517 

and nonstationary models was also calculated by equation (17). Whether it was 518 

calculated through the 𝐽𝑅𝑃𝑘𝑒𝑛 and 𝐽𝑅𝑃𝑎𝑛𝑑 methods, the changing risk rate increased 519 

as 𝑇0  increased, which meant that nonstationarity influenced the risk of lower 520 

exceedance probabilities more than that of higher exceedance probabilities.  521 

Since a 50-year level with lower exceedance probabilities (0.02) is of great interest 522 

in hydrological practice and necessary to control the uncertainties of extrapolation 523 
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(Bender et al., 2014), in this part, we focused on the risk changing rate under the 50 524 

year-level for each station. For 𝐽𝑅𝑃𝑎𝑛𝑑, the risk changing rate ∆𝑅𝑇0
𝑛  corresponding to 525 

𝑇0=50 was 41.83%, 7.96%, 24.27%, 6.94%, 9.21%, and 70.63% for stations 1, 2, 3, 4, 526 

5, and 6, respectively. For 𝐽𝑅𝑃𝑘𝑒𝑛 , the risk changing rate ∆𝑅𝑇0
𝑛  corresponding to 527 

𝑇0=50 was 59.93%, 8.44%, 44.19%, 10.69%, 11.96%, and 75.29% for stations 1, 2, 3, 528 

4, 5, and 6, respectively. According to the above results of risk changing rate, changing 529 

risk rates based on the 𝐽𝑅𝑃𝑘𝑒𝑛 method were higher than those through the 𝐽𝑅𝑃𝑎𝑛𝑑 530 

method, which indicated that the 𝐽𝑅𝑃𝑘𝑒𝑛 -based risk was more sensitive to the 531 

nonstationarity of marginal and bivariate distribution models.  532 

 533 

Insert Figures 7(a)-(b) here. 534 

Insert Figures 8(a)-(b) here. 535 

 536 

4.6. Further discussion 537 

Based on the above analysis, the nonstationary risk analysis over extreme rainfall 538 

events using the time-varying GEV and copula-based distribution models were 539 

distinguished from those where the partial assumption of stationarity was employed 540 

(Figures 4-8). These results showed the significance of considering nonstationarity 541 

when calculating return period and hydrological risk both in univariate and bivariate 542 

cases. There were also certain differences between the results using Kendall’s joint 543 

return period method and AND’s return period method. Im of station 2 and Ps of station 544 
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1 should be concerned with the highest risk changing rate from the perspective of 545 

univariate case, while the dependence structure of station 6 should be paid more 546 

attention with the highest risk changing rate from the perspective of bivariate case. 547 

According to the results performed by the proposed time-varying models, the 548 

following points should be emphasized: 549 

 It is necessary to use statistical tests, such as the Ljung-Box test, univariate 550 

and multivariate Mann-Kendall test, and univariate and multivariate Pettitt 551 

test to evaluate nonstationarities of extreme rainfall attributes (Ps and Im) as 552 

well as the dependence between these two attributes. These two attributes 553 

corresponding to six stations showed no serial correlation which rationalized 554 

the implementation of traditional multivariate Mann-Kandall tests without 555 

any modification. 556 

 Nonstationarity in the dependence structure and marginal variable was non-557 

ignorable. The nonstationary (time-varying) GEV and copula-based model 558 

not only addressed the abrupt changes and significant trends existed in the 559 

marginal variables, but also evaluated the dependence of multivariate 560 

hydrological series, which led to the reliable estimation of hydraulic design 561 

quantiles. 562 

 The traditional hydrological risk under nonstationary conditions in the 563 

univariate case was expanded to the bivariate case through the Kendall joint 564 

return period method and AND return period method. According to the return 565 
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period analysis in the univariate case, the scale parameter of the nonstationary 566 

GEV distribution demonstrated a significant time variability for uncertainty. 567 

The joint return period and risk analysis also showed that the 𝐽𝑅𝑃𝑘𝑒𝑛-based 568 

risk was more sensitive to the nonstationarity of marginal and bivariate 569 

distribution models. 570 

Moreover, the two indexes used in this study, revealing the characteristics of 571 

extreme rainfall events, i.e., Ps and Im, representing rainfall volume and intensity, 572 

respectively were extracted from observed daily precipitation datasets. Risk 573 

analysis based on these two attributes helped understand extreme rainfall patterns, 574 

especially storm events lasting several days, which would be devastating to urban 575 

infrastructure and farmlands. In addition, the duration which is another meaningful 576 

extreme rainfall attribute should also be incorporated into multivariate risk 577 

analysis. 578 

5. Conclusions 579 

In this paper, a nonstationary risk analysis through the time-varying Generalized 580 

Extreme Value (GEV) and copula-based distribution model is performed over the 581 

extreme rainfall events in Haihe River Basin. The time-dependent copula and GEV 582 

models are applied to these two attributes (Ps and Im) extracted from daily rainfall data 583 

of six stations in Haihe River basin, China. Nonstationarity and trends in the attribute 584 

series were investigated through multivariate Mann-Kendall test and multivariate 585 

Pettist test. The best nonstationary GEV model was selected for the attribute of each 586 
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station through the minimum DIC criterion combined with the Bayes factor (BF) test, 587 

while the best-fitted time-varying copula was selected through the minimum Corrected 588 

Akaike Information Criterion (AICc). Based on frequency analysis by the Kendall joint 589 

return period method and the AND return period method, the design values of the two 590 

indexes were computed and shown by the 𝐽𝑅𝑃𝑘𝑒𝑛-isolines and 𝐽𝑅𝑃𝑎𝑛𝑑-isolines. The 591 

extended bivariate nonstationary DLL-based risk was calculated through the estimated 592 

most likely event (combinations of Ps and Im) to quantify the risk of each station under 593 

nonstationary conditions. Analysis of extreme rainfall occurrence risk based on the 594 

observed index series demonstrated that station 6 should be paid more attention with 595 

the highest risk changing rate. The following conclusions can be drawn from this study: 596 

1.  A 100-year Ps quantile under stationary conditions (355 mm) can correspond to a 597 

35-year Ps under nonstationary conditions. In other words, an exceedance probability 598 

of 0.01 can increase to 0.028 and 0.017. On the other hand, the return period associated 599 

with a given quantile can decrease for Im of some stations but can increase for other 600 

stations. 601 

2. The stationary model would underestimate the risk for a certain return period.  602 

3. From the marginal return period to the joint return period, there can be a significant 603 

upward or downward trend in extreme quantiles in the univariate case which can 604 

change into a weak trend in the joint return period.  605 

4. Nonstationarity influences the risk of lower exceedance probabilities more than that 606 

of higher exceedance probabilities.  607 
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5. Changing risk rates based on the 𝐽𝑅𝑃𝑘𝑒𝑛  are higher than those based on the 608 

𝐽𝑅𝑃𝑎𝑛𝑑 method, which indicated that the 𝐽𝑅𝑃𝑘𝑒𝑛-based risk is more sensitive to 609 

the nonstationarity of marginal and bivariate distribution models.  610 

This study emphasizes the significance of incorporating nonstationarity into 611 

multivariate risk analysis through the investigation of univariate and multivariate trend 612 

and change points in the attribute series. The Kendall return period is justified as more 613 

practical method for hydraulic design than the AND return period method according to 614 

the calculation of the design quantiles for the extreme rainfall. The extended bivariate 615 

nonstationary DLL-based risk method was applied to both stationary and nonstationary 616 

conditions.  617 
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Table 1. Information on meteorological gauges of Haihe River basin 

 
Station ID Station name 

Location 
Data range 

Longtitude Latitude 

1 53588 Wutaishan 113°32′ 39°02′ 1952-2017 

2 54308 Fengning 116°32′ 41°12′ 1957-2017 

3 54401 Zhangjiakou 115°11′ 40°50′ 1958-2017 

4 54511 Beijing 116°19′ 39°57′ 1958-2017 

5 54527 Tianjin 117°10′ 39°06′ 1958-2017 

6 54705 Nangon 115°23′ 37°22′ 1956-2017 

 

  

44
  

https://doi.org/10.5194/hess-2019-358
Preprint. Discussion started: 14 October 2019
c© Author(s) 2019. CC BY 4.0 License.



T
a

b
le

 2
. 

D
et

ec
ti

o
n

 o
f 

tr
en

d
s 

an
d

 c
h

an
g

e 
p

o
in

ts
 i

n
 e

x
tr

em
e 

ra
in

fa
ll

 a
tt

ri
b

u
te

s 
co

ll
ec

te
d

 f
ro

m
 s

ix
 s

ta
ti

o
n

s 

S
ta

ti
o

n
 

N
o

. 
A

tt
ri

b
u

te
 

L
-j

u
n

g
-B

o
x
 T

es
t 

U
n

iv
a
ri

a
te

 M
K

 
U

n
iv

a
ri

a
te

 P
et

ti
tt

 T
es

t 
M

u
lt

iv
a
ri

a
te

 M
K

 
M

u
lt

iv
a
ri

a
te

 P
et

ti
tt

 T
es

t 

p
.v

al
u
e 

p
.v

al
u
e 

Z
 

st
at

is
ti

cs
 

p
.v

al
u
e 

p
.v

al
u
e 

Z
 t

at
is

ti
cs

 
p
.v

al
u
e 

1
 

P
s 

 
0
.9

2
7
 

0
.0

6
3
 

-1
.8

5
6

*
 

0
.0

4
8

 
0

.4
5

0
 

-0
.7

5
5

 
0

.0
8

9
 

Im
 

0
.7

9
8
 

0
.6

7
4
 

0
.4

2
1
 

0
.7

0
8

 

2
 

P
s 

 
0
.3

0
7
 

0
.1

0
5
 

-1
.6

5
2

*
 

0
.0

8
9

 
0

.0
9

8
 

-1
.6

4
5

*
 

0
.0

9
5

 
Im

 
0
.4

6
2
 

0
.1

3
2
 

-1
.6

4
9

*
 

0
.0

9
1

 

3
 

P
s 

 
0
.9

8
6
 

0
.3

4
5
 

-0
.9

4
4

 
0

.1
3

1
 

0
.0

9
9

*
 

-1
.6

4
1

 
0

.0
7

8
 

Im
 

0
.5

7
5
 

0
.0

5
1
 

-1
.9

6
3

*
*
 

0
.0

1
2

 

4
 

P
s 

 
0
.9

8
1
 

0
.0

7
2
 

-1
.7

9
9

*
 

0
.0

9
8

 
0

.0
5

5
 

-1
.9

2
2

*
 

0
.0

3
9

 
Im

 
0
.9

7
1
 

0
.0

5
4
 

-1
.9

2
6

*
 

0
.0

8
9

 

5
 

P
s 

 
0
.0

5
1
 

0
.5

2
4
 

-0
.6

3
8

 
0

.8
0

1
 

0
.6

0
6

 
0

.5
1

6
 

0
.5

8
9

 
Im

 
0
.7

4
7
 

0
.2

1
4
 

-1
.2

4
4

 
0

.6
7

8
 

6
 

P
s 

 
0
.8

1
5
 

0
.2

2
6
 

-1
.2

1
2

 
0

.4
5

4
 

0
.1

1
5

 
-1

.5
7

5
 

0
.3

5
9

 
Im

 
0
.9

2
3
 

0
.0

6
7
 

-1
.8

3
1

*
 

0
.0

2
4

 

*
*

an
d

 *
 r

ep
re

se
n

t 
st

at
is

ti
ca

ll
y
 s

ig
n

if
ic

an
t 
at

 5
%

 a
n

d
 1

0
%

 s
ig

n
if

ic
an

ce
 l
ev

el
s;

 T
h

e 
st

an
d

ar
d

iz
ed

 M
an

n
-K

en
d

al
l 
te

st
 s

ta
ti

st
ic

 (
Z

 s
ta

ti
st

ic
s)

 i
n

 u
n

iv
ar

ia
te

 

an
d

 m
u

lt
iv

ar
ia

te
 c

as
es

 i
n

d
ic

at
es

 p
o

si
ti

v
e 

(n
eg

at
iv

e)
 w

it
h

 a
n

 i
n

cr
ea

si
n

g
 (

d
ec

re
as

in
g

) 
tr

en
d

, 
an

d
 s

ta
ti

st
ic

al
ly

 s
ig

n
if

ic
an

t 
at

 5
%

 a
n

d
 1

0
%

 s
ig

n
if

ic
an

ce
 

le
v

el
s 

w
h

en
 |Z

|>
1

.9
6

 a
n

d
 |Z

|>
1

.6
4

 r
es

p
ec

ti
v

el
y
; 

C
h

an
g

e 
p

o
in

t 
te

st
s 

in
 u

n
iv

ar
ia

te
 a

n
d

 m
u

lt
iv

ar
ia

te
 c

as
es

 a
re

 p
er

fo
rm

ed
 a

t 
1

0
%

 s
ig

n
if

ic
an

ce
 l

ev
el

. 

      

45
  

https://doi.org/10.5194/hess-2019-358
Preprint. Discussion started: 14 October 2019
c© Author(s) 2019. CC BY 4.0 License.



T
a

b
le

 3
(a

) 
P

er
fo

rm
an

ce
 o

f 
st

at
io

n
ar

y
 a

n
d

 n
o

n
st

at
io

n
ar

y
 G

E
V

 m
o

d
el

s 
fi

tt
ed

 t
o

 f
o

r 
th

e 
 m

ar
g
in

al
 d

is
tr

ib
u

ti
o

n
 c

o
rr

es
p

o
n

d
in

g
 t

o
 e

ac
h

 a
tt

ri
b

u
te

 

(s
ta

ti
o

n
s 

1
-3

) 

S
ta

ti
o

n
 

A
tt

ri
b

u
te

 
M

o
d

el
 

μ
 

σ
 

κ
 

D
IC

 
B

F
 

1
 

P
s 

G
E

V
s 

1
4

4
.3

7
 

4
5

.3
2

 
0

.0
5

8
 

1
9

4
4

.4
7

 
- 

G
E

V
n

s-
1

 
1

4
7

.8
2

+
0

.0
0

1
4

t 
4

6
.6

7
 

0
.0

3
3

 
1

9
4

3
.0

3
 

0
.9

9
9

9
 

G
E

V
n

s-
2

 
1

5
1

.8
5

-0
.0

0
0

4
2

t 
ex

p
(3

.9
2
-0

.0
0

0
0

3
8

t)
 

0
.0

1
9

 
1

9
4

2
.0

8
 

0
.9

9
9

1
 

Im
 

G
E

V
s 

5
0

.6
4

 
1

8
.1

3
 

0
.0

1
2

 
1

5
9

3
.7

1
 

- 

G
E

V
n

s-
1

 
4

6
.6

9
+

0
.0

0
1

3
t 

1
7

.8
1

 
0

.0
3

5
 

1
5

9
7

.5
8

 
1

.0
0

1
1

 

G
E

V
n

s-
2

 
5

1
.7

-0
.0

0
0

6
2

t 
ex

p
(2

.9
6

-0
.0

0
0

0
3

7
t)

 
0

.0
1

9
 

1
5

9
6

.5
3

 
1

.0
0

4
 

 

2
 

P
s 

G
E

V
s 

1
0

6
.2

5
 

2
8

.8
4

 
-0

.1
2

 
1

7
4

0
.9

2
 

- 

G
E

V
n

s-
1

 
1

0
4

.0
8

-0
.0

0
0

1
8

t 
2

8
.8

3
 

-0
.1

2
 

1
7

4
2

.6
6

 
0

.9
9

8
 

G
E

V
n

s-
2

 
9

9
.9

2
+

0
.0

0
2

8
t 

ex
p

(3
.2

5
+

0
.0

0
0

0
5

7
t)

 
-0

.1
3

 
1

7
4

2
.2

9
 

0
.9

9
6

 

Im
 

G
E

V
s 

4
0

.7
1

 
1

4
.0

1
 

-0
.0

5
3

 
1

4
9

7
.5

3
3

 
- 

G
E

V
n

s-
1

 
4

2
.0

2
+

0
.0

0
0

2
6

t 
1

4
.3

0
 

-0
.0

9
9

 
1

4
9

3
.4

7
 

0
.9

9
7

 

G
E

V
n

s-
2

 
4

2
.9

0
-0

.0
0

0
3

1
t 

ex
p

(2
.3

9
+

0
.0

0
0

1
2

t)
 

-0
.0

8
2

 
1

4
9

2
.8

2
 

0
.9

9
6

 

 

3
 

P
s 

G
E

V
s 

8
6

.9
2

 
2

6
.9

2
 

-0
.0

7
7

 
1

7
2

4
.3

5
 

- 

G
E

V
n

s-
1

 
8

8
.4

8
+

0
.0

0
0

0
9

6
t 

2
7

.1
6

 
-0

.0
8

5
 

1
7

2
4

.3
0

6
 

1
.0

0
0

2
 

G
E

V
n

s-
2

 
8

5
.7

8
+

0
.0

0
1

4
t 

ex
p

(3
.5

7
-0

.0
0

0
1

4
t)

 
-0

.0
9

1
 

1
7

2
3

.7
6

 
0

.9
9

9
 

Im
 

G
E

V
s 

3
4

.3
1

 
1
1

.0
0

 
0

.1
3

 
1

4
5

5
.2

 
- 

G
E

V
n

s-
1

 
3

7
.5

1
-0

.0
0

0
6

7
t 

11
.3

8
 

0
.1

0
 

1
4

4
8

.4
1

 
0

.9
9

5
 

G
E

V
n

s-
2

 
4

1
.7

6
-0

.0
0

3
0

t 
ex

p
(2

.3
7
+

0
.0

0
0

0
1

9
t)

 
0

.1
1

 
1

4
4

9
.8

2
 

0
.9

9
6

 

T
a

b
le

 3
(b

) 
P

er
fo

rm
an

ce
 o

f 
st

at
io

n
ar

y
 a

n
d

 n
o

n
st

at
io

n
ar

y
 G

E
V

 m
o

d
el

s 
fi

tt
ed

 f
o

r 
m

ar
g
in

al
 d

is
tr

ib
u

ti
o

n
 c

o
rr

es
p

o
n

d
in

g
 t

o
 e

ac
h

 a
tt

ri
b

u
te

 (
S

ta
ti

o
n

 2
-6

) 

S
ta

ti
o

n
 

A
tt

ri
b

u
te

 
M

o
d

el
 

μ
 

σ
 

κ
 

D
IC

 
B

F
 

46
  

https://doi.org/10.5194/hess-2019-358
Preprint. Discussion started: 14 October 2019
c© Author(s) 2019. CC BY 4.0 License.



4
 

P
s 

G
E

V
s 

1
4

1
.6

9
 

5
5

.8
7

 
0

.1
9

 
2

0
3

4
.2

6
5

 
- 

G
E

V
n

s-
1

 
1

4
4

.7
3

-0
.0

0
1

6
t 

5
5

.9
9

 
0

.1
9

 
2

0
3

6
.3

0
 

1
.0

0
1

4
 

G
E

V
n

s-
2

 
1

3
9

.8
0

-0
.0

0
0

1
4

t 
ex

p
(3

.8
8

+
0

.0
0

0
0

6
0

t)
 

0
.2

1
 

2
0

3
7

.0
5

 
1

.0
0

1
9

 

Im
 

G
E

V
s 

5
6

.3
6

 
2

2
.2

9
 

0
.3

4
 

1
7

5
1

.5
9

 
- 

G
E

V
n

s-
1

 
6

5
.7

3
-0

.0
0

3
5

t 
2

3
.1

7
 

0
.3

1
 

1
7

4
9

.3
1

 
0

.9
9

9
5

 

G
E

V
n

s-
2

 
6

0
.3

3
-0

.0
0

0
5

5
t 

ex
p

(3
.1

0
+

0
.0

0
0

0
2

6
t)

 
0

.3
1

 
1

7
4

9
.4

8
 

0
.9

9
9

8
 

 

5
 

P
s 

G
E

V
s 

1
6

0
.3

4
 

5
6

.0
7

 
-0

.2
1

 
1

9
6

3
.4

7
 

 

G
E

V
n

s-
1

 
1

4
8

.2
2

+
0

.0
0

1
6

t 
5

4
.7

4
 

-0
.1

8
 

1
9

6
2

.3
5

 
1

.0
0

0
2

 

G
E

V
n

s-
2

 
1

5
0

.2
5

+
0

.0
0

11
t 

ex
p

(4
.0

7
-0

.0
0

0
0

3
8

t)
 

-0
.1

9
 

1
9

6
2

.1
2

 
0

.9
9

9
9

 

Im
 

G
E

V
s 

6
7

.4
6

 
2

6
.3

7
 

0
.0

7
2

 
1

7
5

2
.3

6
 

 

G
E

V
n

s-
1

 
7

7
.7

2
-0

.0
0

4
1

t 
2

6
.8

8
 

0
.0

4
7

 
1

7
4

7
.3

0
 

0
.9

9
7

6
 

G
E

V
n

s-
2

 
7

0
.1

9
-0

.0
0

0
7

2
t 

ex
p

(3
.6

6
-0

.0
0

0
1

9
t)

 
0

.0
6

7
 

1
7

4
9

.5
3

 
0

.9
9

7
9

 

 

6
 

P
s 

G
E

V
s 

1
3

7
.5

6
 

5
7

.4
4

 
-0

.2
4

 
1

9
6

5
.7

9
 

- 

G
E

V
n

s-
1

 
1

3
3

.6
9

+
0

.0
0

0
8

4
t 

5
8

.3
1

 
-0

.2
5

 
1

9
6

8
.0

9
 

1
.0

0
1

7
 

G
E

V
n

s-
2

 
1

3
8

.2
6

-0
.0

0
0

8
7

t 
ex

p
(4

.2
5

-0
.0

0
0

1
t)

 
-0

.2
5

 
1

9
6

7
.7

0
 

1
.0

0
1

5
 

Im
 

G
E

V
s 

6
3

.0
2

 
2

9
.4

3
 

0
.0

3
3

 
1

7
6

7
.7

2
 

- 

G
E

V
n

s-
1

 
6

9
.2

6
-0

.0
0

5
3

t 
2

7
.9

3
 

0
.0

5
9

 
1

7
6

7
.2

4
 

1
.0

0
0

1
 

G
E

V
n

s-
2

 
5

7
.0

5
+

0
.0

0
0

8
3

t 
ex

p
(3

.4
5

-0
.0

0
0

0
7

1
t)

 
0

.0
7

2
 

1
7

6
6

.9
2

 
0

.9
9

9
9

 

  

47
  

https://doi.org/10.5194/hess-2019-358
Preprint. Discussion started: 14 October 2019
c© Author(s) 2019. CC BY 4.0 License.



Table 4(a) Performance of stationary and nonstationary copula models fitted to the 

dependence structure of two attributes (stations 1-3) 

Station Model  Copula 𝜃 LL AICc 

1 

Sa 

Stc 0.8066 28.83 -55.59 

Clayton 1.9725 23.81 -45.55 

Gumbel 2.2677 25.08 -48.08 

Frank 8.2702 24.88 -46.55 

 

NSb 

St exp(0.2998-0.0002t) 31.42 -58.71 

Clayton exp(-4.8096+0.0023t) 22.73 -43.39 

Gumbel exp(-5.268+0.0256t) 23.63 -46.49 

Frank 7.677+0.00028t 21.14 -42.45 

 

2 

S 

St 0.9000 51.55 -101.05 

Clayton 3.7056 42.85 -83.63 

Gumbel 3.4208 52.42 -102.77 

Frank 13.592 45.88 -89.68 

 

NS 

St exp(0.4247-0.0003t) 53.46 -102.786 

Clayton exp(-3.289+0.0017t) 41.38 -80.59 

Gumbel exp(-4.344+0.0356t) 45.57 -88.57 

Frank 10.592+0.0018t 46.07 -93.09 

 

3 

S 

St 0.8491 38.25 -74.44 

Clayton 3.0403 35.57 -69.06 

Gumbel 2.6696 33.21 -64.35 

Frank 9.4212 34.89 -67.15 

 

NS 

St exp(-1.6982+0.0008t) 41.49 -78.84 

Clayton NaN NaN NaN 

Gumbel NaN NaN NaN 

Frank 11.385-0.0011t 35.18 -68.59 
aS is stationary copula model; bNS represents the time-varying copula model; cSt 

represents Student’s t copula. 
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Table 4(b) Performance of stationary and nonstationary copula models fitted to the 

dependence structure of two attributes (stations 2-6) 

Station Model  Copula 𝜃 LL AICc 

4 

S 

St 0.9001 43.10 -87.13 

Clayton 2.944 36.68 -71.30 

Gumbel 3.273 46.82 -91.57 

Frank 11.462 44.68 -87.67 

 

NS 

St exp(-1.6101+0.0008t) 51.79 -99.46 

Clayton exp(-3.369+0.0027t) 38.97 -75.89 

Gumbel exp(-4.564+0.0289t) 44.68 -85.98 

Frank 12.398-0.00081t 44.68 -87.67 

 

5 

S 

St 0.9000 47.977 -93.886 

Clayton 3.2678 40.62 -79.17 

Gumbel 3.1054 42.94 -83.82 

Frank 11.023 44.68 -87.67 

 

NS 

St exp(0.5868-0.0003t) 46.00 -91.359 

Clayton exp(-2.987+0.0037t) 42.56 -82.69 

Gumbel exp(-3.898+0.0252t) 41.69 -81.59 

Frank 12.589-0.00036t 42.57 -83.79 

 

6 

S 

St 0.8889 43.85 -83.55 

Clayton 3.4955 44.77 -84.47 

Gumbel 2.8959 37.84 -73.61 

Frank 11.227 41.89 -81.79 

 

NS 

St exp(0.7846-0.0005t) 46.02 -87.90 

Clayton exp(-3.876+0.071t) 39.59 -78.89 

Gumbel NaN NaN NaN 

Frank 11.462 44.68 -87.67 

Inf: infinite number, or out of scope of computation 
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Figure 1. Flowchart of this study 
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Figure 5. Isolines of Kendall return period and AND-based return period at the 50-year 

level for both stationary and nonstationary models. (1)-(6) represent the station number.  
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Figure 6(a). The most likely design event of Ps and Im with 𝐽𝑅𝑃𝑎𝑛𝑑 = 50 for six 

stations 
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Figure 6(b). The most likely design event of Ps and Im with 𝐽𝑅𝑃𝑘𝑒𝑛 = 50 for six 

stations 
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Figure 7. Nonstationary risk R of the Haihe River design extreme rainfall quantile 

𝑥𝑇0  under th univariate case. The nonstationary design life level-based hydrological risk 

R is regarded as a function of design life n for 𝑥𝑇0 with an initial return period 𝑇0. 
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Figure 8(a). Nonstationary risk R of the most likely design combinations of Ps and Im 

at 𝑇0-year level based on 𝐽𝑅𝑃𝑠−𝑎𝑛𝑑 and 𝐽𝑅𝑃𝑠−𝑘𝑒𝑛.  
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Figure 8(b). Nonstationary risk R of the most likely design combinations of Ps and Im 

at 𝑇0-year level based on 𝐽𝑅𝑃𝑠−𝑎𝑛𝑑 and 𝐽𝑅𝑃𝑠−𝑘𝑒𝑛. 
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