
Reply to Referee #1

Z. Yin on behalf of all co-authors

1 “This paper presents a modeling study of the effects of irrigation and dams
on streamflow changes in the Yellow River Basin. There are many similar
attribution studies in the literature looking at various influencing factors in
the study region. Authors argue that streamflow fluctuations are not well
examined in previous studies. But I am not convinced that this attempt
would lead to a significant advance in this field.”
A: Thank you very much for your comments. It is true that many attribution studies
have been performed in the Yellow River Basin (YRB). But different from them, there
are three main advantages is this study.
First, novel crop module and China’s Plant Functional Types (PFT) map were used in
this work. Accurate crop simulation is a precondition of reasonable irrigation estimation.
Some previous studies do not have crop simulations and need observed or satellite-based
data (e.g., Leaf Areas Index and fraction of photosynthetically active radiation absorbed
by green vegetation) to drive their irrigation simulations. Although some Global Hy-
drological Models and Global Land Surface Models (GHMs and GLSMs) did develop
their crop modules, the crop functions, which are always based on C3 grass generics
parameterizations, are too coarse to simulation varied crop types and phenology over
China. The novel crop module in ORCHIDEE is able to simulate most physical processes
throughout the whole crop growth period (Wang, 2016), It has specific parameterizations
for wheat, maize and rice, which are the three main staple crops in China, which have
been calibrated based on census data (Wang et al., 2017). Moreover, the novel China’s
PFT map has been developed including the fractions of wheat, maize, and rice based on
1:1 million vegetation map and provincial scale census data from the National Bureau
of Statistics. For the first time, the irrigation consumption is estimated based on varied
phenology of different crop types in different regions.
Second, we simulate river discharges and dam operations in the YRB and validate them
on a recent time period. Some global studies simulated the Yellow River with irri-
gation and dam operations. But the period of most simulations starts from 1960s or
1970s, when a high proportion of discharges was less affected by dams. In this study,
we focus on the period when huge reservoirs (LongYangXia in 1986 and XiaoLangDi
in 1999) started regulation. More importantly, we are the first to show the simulated
water storage change of reservoirs and to validate it with observations from literature.
The correlation coefficient of simulated and observed water storage change of LiuJiaXia
and LongYangXia is over 0.9, suggesting that the dam model is able to reproduce dam
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operations under climate variations.
Third, detailed diagnosis of anthropogenic factors in the YRB. Many global studies ad-
mit the complexity in simulating the streamflows of the YRB (Haddeland et al., 2014;
Hanasaki et al., 2018; Wada et al., 2014, 2016). However, rare studies demonstrate where
the mismatches from, and whether any key factor or mechanism is missing in the model.
Through reviewing literature and reports, we demonstrated several possible important
factors (mechanisms) missed in current simulations in the YRB, which are not well rep-
resented in GHMs and GLSMs as well. Details are discussed in our reply to Comment
3.

2 “1. The main drawback of this modeling study lies in the coarse reso-
lution of the simulations. The hydrological modeling community has ad-
vanced significantly towards hypo-resolution simulations, especially at the
river basin scale. Here, authors conduct the simulations at a spatial reso-
lution of 0.5◦×0.5◦ in the river basin, using global-scale products for model
inputs and validations. I believe authors should utilize local data for config-
uring their model in this specific river basin, given the availability of various
high-resolution meteorological forcing data in China and ET products as
well.”
A: To pursue accurate river discharge simulations, many hydrological models used high
resolution atmospheric forcing (like 10 km) as driver. However, different from their ob-
jective for short-term flood prediction, our aim is to understand the mechanisms and
discover missing mechanisms of how human activities affect the discharge fluctuations in
the YRB, for which high resolution forcing is not necessary. In fact, our previous study
(Xi et al., 2018) utilized 0.1◦ forcing (Chen et al., 2011) to attribute different factors
to the trends of streamflows over China, which showed large overestimation of Yellow
River annual discharge. Thus, the crucial questions, which are our objectives as well,
are whether irrigation can explain the discharge overestimation in Xi et al. (2018) and
what is the impact of dam operations on the river streamflow. Obviously, increasing
spatial resolution is not helpful to interpret the mismatch. We agree with the referee’s
comments that high-resolution forcing is compulsory for accurate simulations. But be-
fore that, all important mechanisms should be implemented in the model.
In fact, the GSWP3 forcing has been corrected by a suite of ground-based observa-
tions (http://hydro.iis.u-tokyo.ac.jp/GSWP3/exp1.html#boundary-conditions).
For instance, its precipitation assimilates with the GPCC (Global Climatology Centre)
precipitation dataset that includes numerous gauges intensively distributed over China
(Fig. R1, Becker et al. (2013)). Long-term (1982–2014) in-situ ET measurements (eddy
covariance) that are still rare over China, particularly in the YRB (Chen et al., 2014; Lian
et al., 2018). Although uncertainties exist in global ET products, they are able to reflect
monthly ET magnitude and inter-annual variations (Pan et al., 2020). Nevertheless, our
previous study (Yin et al., 2018) validated ORCHIDEE-simulated soil moisture (which
indirectly reflects ET dynamics) over China by in-situ measurements, which shows a
good agreement (median correlation coefficient 0.53 and RMSE 0.07 m3.m−3).
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Figure R1: The map of 67,200 gauging stations used for the GPCC precipitation data
production (from Becker et al. (2013)).

3 “2. Extensive calibrations should be performed before using the model
for quantifying the anthropogenic impacts. Authors argue that streamflow
fluctuations have not been well examined in previous studies. but in figure
5-6, the model shows rather poor performance in simulating the seasonality
and the peak streamflow, even with consideration of irrigation and dams.”
A: We agree that model calibration is necessary before utilization for scientific research.
Previous studies demonstrate that our model performs well in simulating soil moisture
dynamics (Yin et al., 2018), naturalized river streamflows (Table S1 in Xi et al. (2018)),
leaf area index (Section S2 in Xi et al. (2018)), amount and trend of irrigation with-
drawals (Yin et al., 2020), trends of total water storage (Section 3.4 in Yin et al. (2020)),
and ET (Table S1 in online supplement) over China and in the YRB.
However, we cannot fully agree that our model performances are poor in simulating
streamflow fluctuations based on Figure 5–6. First, after considering irrigation and
dams, the bias of annual discharge and seasonality is substantially reduced (SB and
SDSD reduce dramatically in Fig. 7a). Second, our study provides the comparison of
simulated and observed water storage change of the LongYangXia and LiuJiaXia reser-
voirs for the first time. The correlation coefficient is 0.9, which, in our opinion, is
quite good given the lack of information of the operation rules. Third, although natural
discharge simulations with NSE=0.9 in a small sub-basin of the Yellow River is cited in
our study, the NSE of them is incomparable to that of our simulations to conclude that
our simulations are poor. A simple proof is given in our reply to the comment 13 from
the second referee.
It is true that mismatches still exist between simulations and observations. However,
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how to treat these mismatches depends on your goal. If the model services for short-
or mid-term streamflow prediction, it is necessary to calibrate the parameters in the
model to make the simulated streamflows fit the observations as well as possible re-
gardless the detailed physical processes and other linked variables (e.g., surface energy
balances, carbon cycles, vegetation dynamics, etc). However, such approach is probably
not conducive to fundamental model improvements in terms of projecting streamflow
variations under climate change, because some important missing mechanisms may be
obscured by extensive calibrations. For instance, a study highlighted by HESS currently
questioned why some well-calibrated models cannot perform well in forecasting river
discharges under climate change (Duethmann et al., 2020). Through zooming in to a
catchment in Austria, they revealed that “the importance of considering interrelations
between changes in climate, vegetation and hydrology for hydrological modelling in a
transient climate.”
On the other hand, which is our case, if the model is used to demonstrate interactive
mechanisms among climate, water resources, and human activities, these mismatches
should be well investigated rather than be directly calibrated. For instance, we find
that our model underestimates the annual discharge at LanZhou in the period 2000–
2002 (Fig. 3b), during which Q̂IR was almost negatively correlated to the Qobs (Fig. 5a).
From China Water Resources Bulletin (2000-2002, http://www.mwr.gov.cn/sj/tjgb/
szygb/), we find that to avoid discharge cutoff (Q < 1 m3.s−1) irrigation and hydropower
are strictly restricted. It suggests that integrated catchment management plays an im-
portant role in river flow variation, especially for extreme years. Obviously, models are
not able to reproduce this special reaction by over calibration, if the related mechanisms
are missing.
Moreover, from these mismatches, we also reveal other possible missing factors and mech-
anisms: 1) the Hetao Plateau withdraws 50×108 m3 water from the Yellow River, which
is neglected in most models because there is no large dam but multiple small reservoirs
and complicated channel networks. It may lead to the overestimation of peakflows in
Fig. 5; 2) The souring sediment is a special operation target of the XiaoLangDi dam,
which release water one month ahead resulting in the delay of simulated water storage
change (right panel of Fig. 6). All in all, as the famous statistician George Box said,
“All models are wrong, but some are useful” (Box, G. E. P. 1976), if the “wrong” thing
in the simulation can help us to discover important missing mechanisms rather than
cover them by over calibration, I think the work is “useful”. The discussion here are
summarized in Sect. 4 of the revised manuscript.

4 “3. In the irrigation scheme, irrigation water requirement is met only by
the available stream water. How is the water availability defined? How does
the model perform in simulating irrigation water use, compared to census
data?”
A: Thanks. It should be “available water resources”, which has been corrected in the
revised version. The available water resources include three water reservoirs in OR-
CHIDEE: 1) stream reservoir (streamflow); 2) fast reservoir (surface runoff); and 3)
slow reservoir (deep drainage). Detailed introduction has been added in Section 2.1.1.
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The irrigation module has been introduced and validated in Yin et al. (2020), which
shows a good agreement of spatial distribution with census data. In Section 1, we
added: “In a study focusing on China (Yin et al., 2020), ORCHIDEE estimated irri-
gation withdrawal coincided well with census data (provincial-based spatial correlations
are ≈0.68), and successfully explained the decline of total water storage in the YRB.”

5 “4. In the abstract, ‘Irrigation is found to be the dominant factor leading
to 63.7% reduction of the annual discharges’. Is streamflow reduction caused
by anthropogenic factors only? How about the effects of changing climate?
Authors need to show the relative contribution of each factor (including ir-
rigation) to streamflow changes in the abstract and conclusion sections.”
A: As industry and urban water consumptions are not taken into account in this study,
we turn to report the amount of irrigation consumption instead of percentage of annual
discharge. It is revised as: “Irrigation is found to substantially reduce the river stream-
flow by consuming approximately 242.8±27.8×108 m3.yr−1 in line with the census data
(231.4 ± 31.6 × 108 m3.yr−1).” The stream reduction here means the difference between
mean annual natural discharge and mean annual observed discharge due to irrigation
(call it R1), not the impact of irrigation on the long-term decreasing trend of observed
discharge (call it R2, if significant trend exists).
The streamflow reduction (R1) is mainly caused by anthropogenic factors (e.g., water
consumption, reservoir surface evaporation, etc). However, the trend of streamflow re-
duction (R2) is not only caused by anthropogenic factors. Indeed, climate change is the
primary driver of trends of the Yellow River streamflows, which has been demonstrated
in our previous attribution study including climate change, CO2 rise, land use change,
and human activities (Xi et al., 2018). As this study concentrates on possible impacts of
simulating anthropogenic factors on R1, we did not perform the similar analysis shown in
Xi et al. (2018). Nevertheless, we demonstrate that climate change, at least the change
of precipitation, has little effect on the change of streamflow seasonality (Section. 3.2
and Figure S4).
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