
Dear reviewer, 

 

We were so lucky to receive such a detailed and high-quality review from you. This is one of the 

best review comments we received in the last two years in my academic career, and it will 

substantially improve the quality of manuscript. 

 

As such, we are happy to provide our responses below to each of your comments. Comments are 

highlighted in boldface and our responses are in normal text. 

(‘Eq’ refers to the equations in manuscript, while ‘Equation’ refers to the equations in this document.) 

 

We believe our objective is to exhibit the robustness and accuracy of MOIST, rather than have new 

insights into existing experiments. While our validations are not exhaustive, we have compared 

MOIST with two revised versions of HYDRUS-1D, which were published by Stumpp et al. (2012) 

and Zhou et al. (2021), respectively. Figure 11 in the manuscript showed that the results obtained 

from MOSIT were comparable to those obtained using two versions of revised HYDRUS-1D, and 

the statistical information presented in Table 6 indicated that MOIST slightly outperforms than them 

under certain conditions. However, we acknowledge that more validations are necessary in the 

future. 

  

Regarding to the sensitivity analysis on the choice of kinetic fractionation factor formulations, we 

have included this in Appendix A of this document and plan to put it in the discussion section of the 

revised manuscript. 

 

0/ It would be useful to provide a list of notations with the units. 

 

Thank you for your comments. We will provide a list of notations with the units as appendix in the 

revised manuscript. 

 

1/L39: do you really address this problem with the MOIST model? 

 

In the study of Haverd and Cuntz (2010), the heat flux was calculated as the sum of sensible and 

latent heat (Eq. A.24 from Haverd and Cuntz (2010)), without considering the variation of heat 

capacity of the liquid and vapor phases. We implemented these variations in our heat transport 

equation. However, this consideration was not originally addressed in our work; rather, we just 

highlighted a limitation in the heat transport equation used by Haverd and Cuntz (2010). 

 

2/ L57: I do not consider that a Matlab program is something fully accessible as paying for an 

expensive Matlab licence is necessary to use the developments 

 

Thank you for your comments. MATLAB is one of widely used computer programming 

environment. We chose MATLAB because the good performance of the ode solvers, as described 

in Appendix B. Once well-tested, we will consider migrating MOIST to an open-source language, 

such as Python, so that the program is available both in MATLAB and Python. 

 



3/ Eq. (4) Dv is not defined 

 

Thank you for your comments. We will define Dv in the revised manuscript. 

 

4/ Eq. (5) looks strange 

 

Thank you for pointing out a typo in the manuscript (our program used the correct equation). The 

Eq. (5) should be: 
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5/ Eq (10) in Braud et al. (2005) (their Equation (9) has an additional term). Why do you neglect 

it (as in Haverd and Cuntz, 2010)? 

 

Thank you for your comments. We did not neglect the additional term. As shown below, the Cv term 

in Equation (2) includes the additional term in Braud et a. (2005). Considered the vapor movement 

within soil is dominated by the Fick’s law: 
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Similarly, the isotope movement in vapor phase within soil can be written as: 

q
iv

= -Div
∂civ

∂z
                                                                   (3) 
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Div
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Therefore, the isotope movement in vapor phase consists of a convection term (-αdiffα cilqv
) and a 

diffusion term (-Divcv α
∂ cil

∂z
), as shown in the Braud et al. (2005). 

  

6/ Eq. (12) there are several options in the literature for the specification of nD. Why do you chose 

this formulation? 

 

Thank you for your comments. We chose nD equation from Melayah et al. (1996) because it 

describes the isotopic fractionation, which is caused by diffusion, in both wet and dry soil. In 

addition, the sensitivity analysis (Appendix A) showed that the MOIST is not sensitive to the choice 

of formulations when considering kinetic fractionation. Moreover, Braud et al. (2005) have stated 

that there are no objective criteria for selecting one formulation over others. Nevertheless, in the 

future, we can easily update this formulation in the MOIST source code with a more reasonable one, 

if needed. 

  



7/ Eq. (24) and (25) (even if taken from Haverd and Cuntz, 2010) are strange as they are already 

provided in a discretized form, contrarily to the other equations. Same comment for Eq. (27) 

 

Thank you for your comments. We presented the continuous form in a discretized form (Eq. (24), 

(25), and (27)) were written in a discretized form because they arethey are only used in the top half 

layer for upper boundary solutions. However, they should be in the continuous form. We will fix 

this problem we will add the continuous form in the revised manuscript. 

 

8/ section 2.1.4: the formulation of the boundary conditions for the various equations is very 

important for getting correct results. The authors put much effort in fully coupling the equations 

in the soil but put much less attention in the formulation of the boundary conditions. The choices 

made would require more justifications even if they seem to be similar to Haverd and Cuntz 

(2010). 

More generally, it seems that the authors have recoded the Haverd and Cuntz (2010) model 

without considering the litter. It would be relevant to say it if it the truth. 

 

We utilized the equations of energy, water, and isotope mass conservation at the air-soil interface 

proposed by Haverd and Cuntz (2010) but did not consider the litter layer at the current stage of our 

work. MOIST is based on cell-centered numerical method, which requires us to consider the water 

content, temperature and isotopic compositions at soil-air interface and the fluxes within the top 

layer. This means that the fluxes from the center of the topsoil layer to the soil-air interface are 

balanced by the fluxes from soil-air interface to the atmosphere. The upper boundary calculation 

method from Haverd and Cuntz (2010) met our requirements, so we recoded the upper boundary 

from ‘Soil-Litter-Isotope’ model (Haverd and Cuntz, 2010). We will make this clearer in the revised 

manuscript. 

 

162. Should be Eq. (24) and (25)? 

Sorry for the typo. They should be Eq. (24) and (25). We will address this in the revised manuscript. 

 

9/ L191: should be Eq. (19)? 

Thanks. It should be Eq. (19). We will correct it in the revised manuscript. 

 

10/ the description of the numerical implementation is too short. What are the variables that you 

are computing? I would be curious to see the three discretized coupled equations in order to see 

where is the benefit of having them fully coupled. In other words, on which system of equations 

do you implement the Matlab solver (in the equations presently given in the paper, there are more 

than three unknown sets of variables). 

 

Thank you for your comments. We added detailed descriptions about the numerical implementation 

in Appendix B. 

 

11/ L194: when you use the soil water pressure as variable, it is continuous at the interface 

between layers with different hydraulic properties, which limits the problem you mention here. 

 



We agree. Our intention was to state that when physical properties are different between soil layers, 

the hydraulic conductivity can vary drastically at the layer interface, leading to potential oscillation 

problems. We will provide a more accurate statement in the revised manuscript.  

 

11/ L220. The reference with the DOI of the dataset should appear in the reference list, not only 

in the text. This is a reference like a standard paper and it should be cited as such. 

 

Thank you for your comments. We will cite the dataset correctly in the revised manuscript. 

 

12/ Eq. (34) and (35): did you checked the MOIST model behavior using the Van Genuchten 

(1980) model for the retention curve and the Brooks and Corey (1964) model for the hydraulic 

conductivity as done in Braud et al. (2005)?   

 

Thank you for your comments. We will add this information (like Table 2 in Braud et al., 2005 and 

Fig 3 in Zhou et al., 2021) in the revised manuscript. 

 

13/Figure 5, 6, 7: You could zoom on the 0-0.5 cm layer and avoid the 0 y-axis at the very top of 

the figure to get more legible figures. Furthermore, the Test case 3 is almost invisible (at least on 

a printed version). 

 

Thank you for your comments. We will update these figures in the revised manuscript. 

 

14/Section 3.2: graphical comparison is fine, but I would like to see a comparison between the 

simulated peak concentration and slope of the oxygen 18 – deuterium relationships (see Braud et 

al., 2005, Tables 3 and 5). This would provide a more robust evaluation of the model performance.  

 

Thank you for your comments. We will add this information in Section 3.2 in the revised manuscript. 

 

15/ the demonstration from Eq. (43) to (47) would require more details to be fully understandable. 

 

Thank you for your comments. Eq. (41) and (42) in the manuscript are ‘thought’ experiment. They 

were used to illustrate the error difference between segregated and coupled methods. The segregated 

method may introduce more errors than coupled method because more errors could be accumulated 

as compared to the coupled method. The coupled method, however, can reduce the error 

accumulation by solving a set of equations simultaneously. In our manuscript, Eq. (41) and (42) 

were used as an example for understanding the error difference between segregated and coupled 

method. 

 

The example in the manuscript: 
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Equation (7) can be rewritten by chains rule: 
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If segregated method is used to solve these two equations for θ and c, they should be written discrete 

form in both spatial and temporal (explicit is the simplest to understand): 
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within a small spatial step. Therefore, error terms should be introduced to balance Equation (9), 

which are Err1 and Err2 in Eq. (43). Then θ can be solved in Equation (9) and further used to solve 

c in Equation (8). 

 

In the coupled method, Equation (8) can be rewritten by combining Equation (6): 
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Rewritten Equation (10) in discrete form can obtain Eq. (47) in the manuscript. Compared to 

segregated method, the coupled method can potentially reduce numerical errors by analytically 

inserting Equation (6) into Equation (10). Therefore, the coupled method should be more accurate 

than segregated method on solving a set of partial differential equations. 

 

16/ Figure 12 is not cited in the paper. Furthermore, if the purpose of the figure were to 

demonstrate that the coarser vertical spatial resolution provides results as accurate as in Figure 

5, it would be more informative to show the difference between both simulations. Visually, it seems 

that the peak is simulated deeper in Figure 12 than in Figure 5, which would not be very 

satisfactory as the peak is located at the evaporation front. 

 

We forgot to cite Fig 12 at the end of line 554.  

 

Regarding to the discrepancy in peak locations between Fig 12 and Fig 5, this is because when the 

coarse spatial step is used, some surface information could be lost. For example, in Fig 12, the soil 

water profile is also different from that in Fig 5 because we cannot capture the drying layer when 

the spatial step is larger than its thickness. This also explains why the peak locations in the isotope 

profiles are deeper in Figure 12, as the layer thickness is 0.1 m, which is larger than the location of 

the peak (around 0.05 m). Therefore, with larger spatial discretization, more surface information 

may be lost. However, MOIST still reflects the correct trend even under with coarse spatial 

discretization. 

 

17/ L588-593: this paragraph is not supported by the results. Other reasons than solving or not 

the fully coupled equations could explain discrepancies between the models, one of them being 

the specification of the boundary conditions or the specification of the kinetic fractionation factor, 

that may be different in the different models. 

 

Agreed. Indeed, there are many reasons could be related to the discrepancies between the model 



because MOIST and HYDRUS have many differences. The upper boundary will play an important 

role, especially the water, heat, and isotopic fluxes vary constantly under field simulations. We will 

this in the revised manuscript. 

 

18/ L595-610: the question of the numerical method (cell-centered versus vertex-centered) is 

strange here as the method used in the MOIST model has not been presented before. 

 

Thank you for your comments. We will include the cell-centered method in method section.  



Appendix A 

 

According to Braud et al. (2005), we conducted the sensitive analysis on various formulations of 

the kinetic fractionation factor (𝛼𝑘 ) to calculate upper boundary conditions of isotope transport 

under non-saturated and non-isothermal conditions. These conditions are chosen because they are 

closer to reality than saturated and isothermal conditions.  

 

The formulations used in five cases are described below. 

 

Case 1: 
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where nk is calculated by: 

nk = 
(θsurface-θr)0.5+(θs-θsurface)

θs-θr
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where θsurface is the soil water conent at soil surface (m3 m-3); θr is residual soil water content (m3 

m-3); θs is the saturated soil water content (m3 m-3). 

 

Case 3: 

αk=1                                                                       (A4) 

 

Case 4: 

αk=1+nk (
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where ra is the sum of ram and raT; ram and raT are turbulent and molecular resistances to the water 

vapor transport. ram can be calculated by (Brutsaert, 1982): 
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where u* is the friction velocity, which is 0 in this case because the wind speed is 0 m s-1; 𝑍𝑜𝑚 is 

the roughness length for momentum (m), v is the air kinematic viscosity (m2 s-1). 

 

Case 5: 

αk=1                                                                       (A8) 

nD≠1                                                                       (A9) 



where nD is calculated by: 

nD=0.67+0.33exp(1-
θsurface

θr

)                                                     (A10) 

 

Table A1 was formatted as Table 6 from Braud et al. (2005) and our results were found to be similar. 

However, calculated maximum δ2H values were slightly smaller than those reported by Braud et al, 

(2005). This difference may be attributed to the discrepancies in the model structure, upper boundary 

calculation, and the numerical schemes used. 

 

Table A1 demonstrated that the variations of indexes among the 5 cases are small. As mentioned 

above, 𝛼𝑘 is not equal to one in cases 1, 2, and 4, while it is equal to one in cases 3 and 5. Thus, 

cases 1, 2, and 4 can be grouped together as group 1, while cases 3 and 5 can be grouped together 

as group 2. The differences of inner group are much smaller than inter group. This suggests that 

MOIST is not sensitive to the formulations used to calculate the kinetic fractionation coefficient, 

but rather to the consideration of kinetic fractionation itself. If kinetic fractionation is not considered 

(αk is 1), the maximum δ values of isotope species will be underestimated, as observed in cases 3 

and 5, because the isotope enrichment at soil surface will not occur. The kinetic fractionation cannot 

be ignored in reality. Therefore, MOIST should perform consistently across available formulations 

used to calculate the kinetic fractionation coefficient.  

 

Table A1. Comparison of formulations used to calculate kinetic fractionation coefficient under non-

saturated and non-isothermal conditions.  
Case1 Case 2 Case 3 Case 4 Case 5 

Calculated max δ2H (‰) 39.65 39.51 36.06 38.39 36.90 

Calculated max δ18O (‰) 20.84 20.69 17.12 19.47 18.05 

Depth of maximum (m) 0.02 0.02 0.02 0.02 0.02 

Calculated liquid  

HDO/H2
18O slope 

1.93 1.93 2.13 2.00 2.07 

Calculated vapor  

HDO/H2
18O slope 

3.51 3.47 2.87 3.64 3.00 

 

  



Appendix B. 

 

The transport equations of soil water, heat, and isotopes are: 
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where θ  and θv  are the soil water content and equivalent liquid water content (m3 m-3), 

respectively; q is the water flux (m s-1); S is the sink term (s-1); Csoil is the soil heat capacity (J m-3 

K); T is the temperature; λE is the latent heat of vaporization (J kg-1); ρ is the water density (kg 

m-3); q
T
 is the heat flux (J m-2 s-1); Cil is the isotopic concentration of soil water (kg m-3); α is 

the equilibrium fractionation coefficient (α* in the manuscript); q
i
 is the isotopic flux (kg m-2 s-1). 

Explanation of Equation. (B2) can be referred to Appendix C. 

 

The equivalent liquid water content θv (m
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3  msoil
-3 ) can be expressed by pore space within soil 
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where θs  is the saturated soil water content (m3 m-3); mliquid water
3   and mair

3   are the volume of 

liquid water (m3) and air (m3) within soil pore space; massliquid water and massair are the mass of 

liquid water (kg) and mass of air (kg) in the soil pore space; ρ
liquid water

 and ρ
air

 are the density of 

liquid water (kg m-3) and air (kg m-3), respectively; massvapor is the mass of vapor (kg) within soil 

pore space. 

 

Then, the ideal gas law can be incorporated into Equation. B4: 
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where Pvaporsat
 and Pair are the saturated vapor pressure (kpa) and air pressure (kpa), respectively; 

Mwater and Mair are the mole weight of water (kg mol-1) and air (kg mol-1), respectively. 

 

Equation. A5 can be further simplified by applying the ideal gas law again on Pair: 
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where R is the ideal gas constant (J mol-1 K-1). Similarly, the unsaturated vapor concentration in soil 

pore space in terms of equivalent liquid water content, Cv, is given by: 
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Saturated vapor pressure, Pvaporsat
, can be calculated by Tetens formula (Ham, 2015). Then, Cvsat 



is written as: 
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Considering the influence of variation of both soil water content and temperature on the relative 

humidity, hr is given by (Philip, 1957): 

hr= e
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Besides, according to the definition of hr: 
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which can be rewritten by combining Equations. B6 and B7: 
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Therefore, the equivalent water content of the volumetric water vapor content, θv, can be written 

as: 

θv=(θs-θ)Cvsathr                                                            (B12) 

 

Introducing Equation.B11 to Equations. B1 - B3: 
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Note that the head-based Richards’ equation is used in our model, 
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solve Equation. B13, B14, and B15 for h, T, and Cil at each time step simultaneously. Since Cvsat is 

the function of T (Equation. B8), hr is the function of h and T (Equation. B9), and α is the function 
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with coefficients A to E: 
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Equations. B13, B14, and B15 were transformed into a system of coupled ordinary differential 

equations by Equations. B16-B24. This system is solved by MATLAB solvers (ode113/ode23tb) 

simultaneously. The derivative vector (
∂h

∂t
, 

∂T

∂t
, and 

∂Cil

∂t
), having a length of the number of spatial 

discretization multiplied by three. 

 

To construct the derivative vector, values from Equation. B17 were calculated firstly because they 

were also used in Equation. B16. Equation. B17 showed that temporal variation of temperature was 

influenced by q, qT, θ, and other parameters from coefficients A-D. Reversely, T influences hr and 

Cvsat (Equations. B19-B22) and further affect the water transport within soil (Equation. B16).  

 

Equation. B16 showed that temporal variation of h was closely related to T because 
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from Equation. B16 is 
∂T

∂t
 (Equation. B17). Besides, soil heat properties, such as soil heat capacity 

and latent heat of vaporization (included in coefficients A and B), were also involved in soil water 

(vapor) movement.  

 

Equation. B24 shows that isotope transport was influenced by all the parameters coupled. 

Specifically, water transport (Equation. B16) affects isotopic fluxes since isotopes were treated as 

solutes, while heat transport (Equation. B17) had an influence on equilibrium fractionation 

coefficients and further on the isotopic concentration in soil water. Both water and heat transport 

affected hr and Cvsat in soil. Therefore, values for derivative vector construction from Equation. 

B17 were calculated based on Equations. B16, B17, B23, and B24.  

 

Finally, the derivative vector, along with the initial conditions and the time span were passed to the 

solvers. The solver then computed the solution of this system over the specified time span 

numerically. Numerical schemes of solvers are described below. 

 

Numerical scheme of ode113 

The ode113 solver uses an adaptive, variable-order, variable-step-size (VOVS) method. This is 

implemented with a variable order Adams-Bashforth-Moulton (ABM) method (ode113, 2023), 



which is a combination of an explicit types of the Adams-Bashforth (AB) and an implicit type of 

Adams-Moulton (AM) methods. Specifically, the AB method is used to estimate the solution at the 

new time step by taking multiple previous time steps into account, while the AM method is used to 

make corrections. 

 

The ode113 can select automatically between the 1st and 13th order approximation (the highest order 

used appears to be 12) during the computation based on the estimation errors. This is helpful for 

minimizing the estimated errors and for achieving high efficiency in time. Moreover, the time step 

size is adjusted according to the estimation error. In this way, ode113 can handle a wide range of 

ODE problems with high accuracy and efficiency.  

 

Therefore, ode113 can do a good job when the transport media is relatively uniform. However, 

ode113 is susceptible to numerical oscillation when hydraulic conductivities between layers differed 

greatly because of the adopted explicit scheme.  

 

Numerical schemes of ode23tb 

Ode23tb is a solver specifically designed for solving ODEs with highly oscillatory solutions 

(ode23tb, 2023), such as those arising from heterogeneity in hydraulic conductivities between soil 

layers. The 'tb' stands for that the solver combines a trapezoidal rule (sometimes referred as the 

second-order AM method (Adams methods, 2023)) with a 2nd order backward differentiation 

formula (BDF). Because of this, ode23tb is an efficient and accurate solver for stiff ODE systems, 

making it less susceptible to numerical instability. 

 

Like ode113, ode23tb can adjust the step size automatically based on the estimated error and the 

oscillatory behavior of the solution. However, ode23tb is an implicit solver, making it more 

computationally expensive than other solvers. But because it adopts the trapezoidal BDF method, it 

is more efficient and accurate than other types of implicit methods, such as the fully implicit Euler 

method or the backward Euler method (Time integration, 2023). Therefore, ode23tb may work 

better than ode113 when the soil physical properties are greatly differed between layers. 

  



Appendix C.  

The heat transport equation within soil is written as: 
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Equation. (C1) can be rewritten by the chains rule: 
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Then: 
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where Cwq
l
+Cvhq

v
 and CvhT+ρλE can be treated as constants within each layer and Equation. (C3) 

is rewritten as: 

Csoil
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∂t
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∂t
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∂z
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where Constant1=Cwq
l
+Cvhq

v
 and Constant2=CvhT+ρλE.  

 

Assuming q
T
=-kH

∂T

∂z
+Constant1T +Constant2q

v
 , Equation (C4) can be further simplified: 

Csoil
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∂q
T

∂z
                                                          (C5) 

Equation. (C5) is the same as Equation. (B2). 
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