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information quantity and quality 

 

RC1.1: The manuscript entitled "Sensitivity of hydrological machine learning prediction 

accuracy to information quantity and quality" present a valuable discussion about the influence 

of information quantity and quality on the performance of machine-learning-based (ML) models 

for hydrological prediction. 

Response to RC1.1: Thank you for recognizing the value of this study. 

 

RC1.2: Below are some points regarding its methodology, results, and potential areas for 

improvement: 

It is quite trivial that calibrated models can offer training samples with high quality and thus help 

machine learning models achieve significant performance improvement. Could you please 

further clarify which key scientific findings/insights can be offered by this study? 

Response to RC1.2: We appreciate your feedback and understand your point. Indeed, it is 

reasonable to expect that calibrated models provide higher-quality training data compared to 

uncalibrated models. However, our question is: what specifically makes the outputs of a 

calibrated model high-quality training data? In other words, if calibrated model outputs do 

improve machine learning model accuracy, why is that the case? The aim of this study is not 

simply to recommend using calibrated mechanistic model outputs to enhance accuracy. Instead, 

we seek to understand how to improve the accuracy of hydrological machine learning models 

efficiently by exploring the underlying qualities of training data that contribute to this 

improvement. In this study, we examined the relationship between the quantity and quality of 

information in training datasets and the prediction accuracy of hydrological machine learning 

models. Our assumption is that training sample quantity and quality can be quantified using 

information theory measures, specifically marginal entropy for quantity and transfer entropy for 

quality. 

To clarify our approach, we have added our research questions and hypotheses to the article 

(after the sentence ending in Line 69 on Page 3), providing readers with a clear understanding of 

the core objectives of this study: “The research question that this study tried to answer was how 

the quantity and quality of information in training datasets, as measured by marginal entropy and 

transfer entropy, can affect the prediction accuracy of hydrological machine learning models? 

Our hypothesis was that a higher quantity and quality of information in training datasets, as 

indicated by increased marginal entropy and transfer entropy, would positively correlate with 

improved prediction accuracy in these models.” 



 

RC1.3: Figure 1. classifies Random Forest (RF), Support Vector Machine (SVM) as clustering 

methods, Artificial Neural Network (ANN) as neural network method. What are the essential 

differences between the two categories of ML models and whether such differences will 

influence the following discussion? 

Response to RC1.3: The essential differences between clustering methods and neural network 

methods in machine learning are rooted in their objectives, underlying mechanisms, and 

applications. The clustering methods are unsupervised learning techniques that aim to group data 

points into clusters based on similarity or distance measures without prior knowledge of labels. 

They are primarily used for data exploration, identifying inherent patterns, and segmenting data 

into meaningful clusters. Neural networks are typically used in supervised or reinforcement 

learning contexts, aiming to learn complex patterns in labeled data for prediction, classification, 

or decision-making tasks. They are known to be versatile and well-suited for high-dimensional 

and non-linear data. These differences have important implications for the choice of machine 

learning models. We have revised the last paragraph of the discussion section and added another 

paragraph with a focus on how the distinctions between clustering methods and neural networks 

influence their respective effectiveness and applications: 

“Negative IUE-TE values were observed when watershed responses were predicted using RF and 

SVM models (red star in Fig. 8[b]), particularly in the WD+UC case, suggesting challenges in 

leveraging additional information from training data. The RF and SVM models, which rely on 

“piecewise” linear decision boundaries or hyperplanes to partition input space, struggled to 

manage the “curse of dimensionality” (Bellman, 1961) and complex non-linear relationships 

between variables. While SVM models use kernel functions to transform non-linear decision 

spaces into linear ones, and RF models employ non-linear decision boundaries, prior studies 

indicate that such methods are not always effective in resolving high-dimensional issues, often 

sampling less informative features (Wang and Xia, 2016; Ye et al., 2013). Despite the radial basis 

kernel function and Bayesian optimization employed in this study to enhance SVM performance 

(Shawe-Taylor and Sun, 2011), the model's predictive accuracy remained inconsistent. 

Conversely, the ANN model avoided negative IUE scores, demonstrating its resilience and 

ability to more efficiently utilize quality information, even with lower-quality training data in 

cases such as WD+UC (Table S3). 

Neural networks, particularly the ANN model, excel in handling high-dimensional, non-linear 

data, making them more effective than RF and SVM for this study’s hydrological predictions. 

With diverse features such as precipitation, temperature, and watershed characteristics 

contributing to accurate predictions, the ANN model utilized the rich, high-dimensional data 

from calibrated and uncalibrated SWAT outputs to achieve strong performance. Unlike clustering 

methods, which primarily group data without a predictive function, neural networks improve 

prediction accuracy through learning from labeled data and adapting to input quality. The 



absence of negative IUE scores for ANN underscores its flexibility and robustness. These 

findings affirm the ANN model's suitability for high-dimensional, quality-driven hydrological 

modeling, highlighting its advantage over other methods in tasks requiring predictive precision 

and adaptability to data complexity.” 

 

RC1.4: For Sect. 2.2, the input variables of machine learning models are not clear. It might need 

further explanation about the setting-up process of machine learning models. 

Response to RC1.4: We appreciate your observation regarding the insufficient explanation of 

the machine learning model setup process. To address this, we have provided a more detailed 

description of the input variables and clarified the dataset division process in the revised 

manuscript. We have also elaborated on the optimization procedures for each model, which were 

conducted using Bayesian optimization to ensure efficient and accurate parameter tuning. 

In the sub-section of “2. Method and Materials: 2.2 Data-driven (or machine learning) models” 

of the revised manuscript, we state: “The optimization of three machine learning models—RF, 

SVM, and ANN—was carried out using Bayesian optimization, a method that improves 

decision-making efficiency by iteratively identifying the most promising hyperparameter 

configurations (Jones, 2001). Compared to traditional grid or random search methods, Bayesian 

optimization is notably more efficient in finding optimal hyperparameters (Yu and Zhu, 2020). 

For the RF model, key parameters such as the maximum number of splits, the number of 

predictors per split, and the number of trees were optimized. In the case of the SVM model, the 

kernel scale, epsilon, and cost parameters were fine-tuned. For the ANN model, optimization 

focused on activation functions and layer sizes. These optimizations were designed to enhance 

each model's performance by leveraging input variables—including precipitation, temperature, 

and watershed characteristics—that were carefully selected to align with the study's objectives.” 
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RC1.5: Line 151: why is the threshold correlation arbitrarily selected as 0.30? 

Response to RC1.5: The interpretation of a correlation coefficient of 0.30 varies depending on 

the context and field. While some define 0.30 as the threshold for a “medium” correlation 

(Woolf, 2009), others describe it as a low correlation (Asuero et al., 2006) or weak correlation 

(Schober and Schwarte, 2018). Low or weak correlations suggest some degree of structure or 

association, as opposed to no meaningful correlation when values fall below this threshold. Since 

the correlation coefficient measures linear agreement between two variables (e.g., observed vs. 



predicted), achieving high linear correlations in hydrological modeling is uncommon due to the 

inherently complex and nonlinear nature of hydrological processes, especially on relatively fine 

temporal scales such as daily. Based on the literature, we determined that a correlation value of at 

least 0.30 represents the minimum acceptable strength of correlation between observed and 

predicted hydrological variables for this study. 
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RC1.6: Figure 4. uses 3D plotting which might make comparison between different cases and 

models difficult. Could you please use a 2D figure with legends instead? 

Response to RC1.6: Thank you for your valuable feedback; we understand your concerns and 

have made the necessary adjustments. The figures have been revised to a 2D format for 

improved clarity, with each watershed represented by a distinct symbol. Additionally, the training 

dataset is now plotted along the x-axis for better visualization. 
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Figure 4. Prediction accuracy (KGE) of hydrological ML models trained with the different 

training data set combinations. The KGE values that do not satisfy the acceptable accuracy levels 

(e.g., i.e., 0.54 for flow, 0.17 for SS, and -0.03 for TN/TP) are included in gray areas. 

 


