W. Jakubowski
The two-dimensional Bivariate Generalized Pareto Distribution (BGPD) of Tajvidi (1996) is applied in order to estimate the extreme values of the low flow deficit amounts and durations probabilities. Eight parameters BGPD depends on two one-dimensional distributions – Univariate Generalized Pareto Distributions (UGPDs). Each of these three parameter UGPDs describes the probability of one of low flow indices. To fit BGPD into observed data a three steps method of estimation is proposed: (1) For a given shift parameter of each UGPD two others are estimated by the maximum likelihood method. (2) For given shifts and the UGPD parameters estimated in the first step the remaining ones, connected to the bivariate distribution function formula, are also estimated by the maximum likelihood method. (3) The best shift pair is chosen by maximization of the correlation coefficient of the estimated BGPD. The results are applied to statistical description of the low flow index extremes behaviour at four different catchments profiles. To extract the low flow time series data the standard constant threshold level method is applied. Finally the estimated probabilities are compared to the Zelenhasic and Salvai (1987) model.
Received: 03 Mar 2006 – Discussion started: 06 Jun 2006
Publisher's note : Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
W. Jakubowski
Viewed
Total article views: 1,837 (including HTML, PDF, and XML)
HTML
PDF
XML
Total
BibTeX
EndNote
1,121
643
73
1,837
92
91
HTML: 1,121
PDF: 643
XML: 73
Total: 1,837
BibTeX: 92
EndNote: 91
Views and downloads (calculated since 01 Feb 2013)
Month
HTML
PDF
XML
Total
Feb 2013
4
11
1
16
Mar 2013
4
9
1
14
Apr 2013
12
0
12
May 2013
1
9
0
10
Jun 2013
1
10
0
11
Jul 2013
12
0
12
Aug 2013
7
0
7
Sep 2013
7
0
7
Oct 2013
3
9
0
12
Nov 2013
4
0
4
Dec 2013
2
6
1
9
Jan 2014
1
8
0
9
Feb 2014
3
7
3
13
Mar 2014
5
6
2
13
Apr 2014
3
4
1
8
May 2014
6
0
6
Jun 2014
1
8
0
9
Jul 2014
11
0
11
Aug 2014
3
11
0
14
Sep 2014
2
6
0
8
Oct 2014
9
0
9
Nov 2014
1
10
0
11
Dec 2014
4
7
0
11
Jan 2015
5
0
5
Feb 2015
4
5
0
9
Mar 2015
8
7
0
15
Apr 2015
12
0
12
May 2015
2
0
2
Jun 2015
4
1
0
5
Jul 2015
7
2
0
9
Aug 2015
3
1
0
4
Sep 2015
0
Oct 2015
4
2
0
6
Nov 2015
6
0
6
Dec 2015
0
Jan 2016
7
5
0
12
Feb 2016
8
3
1
12
Mar 2016
8
0
8
Apr 2016
7
4
0
11
May 2016
4
1
0
5
Jun 2016
6
3
0
9
Jul 2016
5
1
1
7
Aug 2016
3
2
0
5
Sep 2016
3
1
0
4
Oct 2016
2
8
10
Nov 2016
3
6
9
18
Dec 2016
3
3
0
6
Jan 2017
3
1
0
4
Feb 2017
6
1
0
7
Mar 2017
12
4
0
16
Apr 2017
12
0
12
May 2017
16
1
1
18
Jun 2017
20
2
1
23
Jul 2017
8
3
1
12
Aug 2017
4
10
0
14
Sep 2017
2
11
0
13
Oct 2017
2
6
0
8
Nov 2017
3
6
0
9
Dec 2017
4
6
0
10
Jan 2018
7
8
0
15
Feb 2018
11
6
1
18
Mar 2018
4
8
0
12
Apr 2018
6
8
0
14
May 2018
9
12
0
21
Jun 2018
4
13
0
17
Jul 2018
2
12
0
14
Aug 2018
3
12
0
15
Sep 2018
3
9
0
12
Oct 2018
3
11
0
14
Nov 2018
4
16
0
20
Dec 2018
3
9
0
12
Jan 2019
6
9
0
15
Feb 2019
5
4
0
9
Mar 2019
5
13
0
18
Apr 2019
3
9
0
12
May 2019
5
9
0
14
Jun 2019
9
7
0
16
Jul 2019
6
4
0
10
Aug 2019
5
9
0
14
Sep 2019
3
8
1
12
Oct 2019
10
0
10
Nov 2019
4
5
0
9
Dec 2019
1
6
0
7
Jan 2020
1
2
0
3
Feb 2020
4
4
0
8
Mar 2020
0
Apr 2020
0
May 2020
5
1
1
7
Jun 2020
7
2
0
9
Jul 2020
13
10
8
31
Aug 2020
2
1
3
6
Sep 2020
1
1
0
2
Oct 2020
4
3
1
8
Nov 2020
5
2
1
8
Dec 2020
8
1
9
Jan 2021
8
4
0
12
Feb 2021
6
3
0
9
Mar 2021
4
3
0
7
Apr 2021
4
3
0
7
May 2021
3
3
0
6
Jun 2021
10
1
0
11
Jul 2021
10
3
0
13
Aug 2021
8
0
8
Sep 2021
8
1
0
9
Oct 2021
13
3
0
16
Nov 2021
9
3
1
13
Dec 2021
15
5
0
20
Jan 2022
11
3
0
14
Feb 2022
14
3
0
17
Mar 2022
8
1
1
10
Apr 2022
8
1
1
10
May 2022
8
1
1
10
Jun 2022
1
1
2
Jul 2022
21
2
1
24
Aug 2022
4
2
0
6
Sep 2022
7
1
0
8
Oct 2022
15
1
0
16
Nov 2022
20
4
1
25
Dec 2022
11
3
0
14
Jan 2023
9
3
2
14
Feb 2023
9
3
0
12
Mar 2023
3
2
0
5
Apr 2023
10
1
0
11
May 2023
35
3
0
38
Jun 2023
35
5
1
41
Jul 2023
48
2
1
51
Aug 2023
49
2
0
51
Sep 2023
59
2
1
62
Oct 2023
45
3
1
49
Nov 2023
16
1
0
17
Dec 2023
24
0
24
Jan 2024
24
0
24
Feb 2024
23
1
1
25
Mar 2024
15
3
2
20
Apr 2024
10
13
3
26
May 2024
5
3
8
Jun 2024
28
1
2
31
Jul 2024
9
1
0
10
Aug 2024
7
1
8
Sep 2024
8
0
8
Oct 2024
6
4
0
10
Nov 2024
4
1
0
5
Dec 2024
12
1
0
13
Jan 2025
2
2
0
4
Cumulative views and downloads
(calculated since 01 Feb 2013)
Month
HTML views
PDF downloads
XML downloads
Feb 2013
4
11
1
Mar 2013
8
20
2
Apr 2013
8
32
2
May 2013
9
41
2
Jun 2013
10
51
2
Jul 2013
10
63
2
Aug 2013
10
70
2
Sep 2013
10
77
2
Oct 2013
13
86
2
Nov 2013
13
90
2
Dec 2013
15
96
3
Jan 2014
16
104
3
Feb 2014
19
111
6
Mar 2014
24
117
8
Apr 2014
27
121
9
May 2014
27
127
9
Jun 2014
28
135
9
Jul 2014
28
146
9
Aug 2014
31
157
9
Sep 2014
33
163
9
Oct 2014
33
172
9
Nov 2014
34
182
9
Dec 2014
38
189
9
Jan 2015
38
194
9
Feb 2015
42
199
9
Mar 2015
50
206
9
Apr 2015
62
206
9
May 2015
64
206
9
Jun 2015
68
207
9
Jul 2015
75
209
9
Aug 2015
78
210
9
Sep 2015
78
210
9
Oct 2015
82
212
9
Nov 2015
88
212
9
Dec 2015
88
212
9
Jan 2016
95
217
9
Feb 2016
103
220
10
Mar 2016
111
220
10
Apr 2016
118
224
10
May 2016
122
225
10
Jun 2016
128
228
10
Jul 2016
133
229
11
Aug 2016
136
231
11
Sep 2016
139
232
11
Oct 2016
141
232
19
Nov 2016
144
238
28
Dec 2016
147
241
28
Jan 2017
150
242
28
Feb 2017
156
243
28
Mar 2017
168
247
28
Apr 2017
180
247
28
May 2017
196
248
29
Jun 2017
216
250
30
Jul 2017
224
253
31
Aug 2017
228
263
31
Sep 2017
230
274
31
Oct 2017
232
280
31
Nov 2017
235
286
31
Dec 2017
239
292
31
Jan 2018
246
300
31
Feb 2018
257
306
32
Mar 2018
261
314
32
Apr 2018
267
322
32
May 2018
276
334
32
Jun 2018
280
347
32
Jul 2018
282
359
32
Aug 2018
285
371
32
Sep 2018
288
380
32
Oct 2018
291
391
32
Nov 2018
295
407
32
Dec 2018
298
416
32
Jan 2019
304
425
32
Feb 2019
309
429
32
Mar 2019
314
442
32
Apr 2019
317
451
32
May 2019
322
460
32
Jun 2019
331
467
32
Jul 2019
337
471
32
Aug 2019
342
480
32
Sep 2019
345
488
33
Oct 2019
345
498
33
Nov 2019
349
503
33
Dec 2019
350
509
33
Jan 2020
351
511
33
Feb 2020
355
515
33
Mar 2020
355
515
33
Apr 2020
355
515
33
May 2020
360
516
34
Jun 2020
367
518
34
Jul 2020
380
528
42
Aug 2020
382
529
45
Sep 2020
383
530
45
Oct 2020
387
533
46
Nov 2020
392
535
47
Dec 2020
400
535
48
Jan 2021
408
539
48
Feb 2021
414
542
48
Mar 2021
418
545
48
Apr 2021
422
548
48
May 2021
425
551
48
Jun 2021
435
552
48
Jul 2021
445
555
48
Aug 2021
453
555
48
Sep 2021
461
556
48
Oct 2021
474
559
48
Nov 2021
483
562
49
Dec 2021
498
567
49
Jan 2022
509
570
49
Feb 2022
523
573
49
Mar 2022
531
574
50
Apr 2022
539
575
51
May 2022
547
576
52
Jun 2022
548
576
53
Jul 2022
569
578
54
Aug 2022
573
580
54
Sep 2022
580
581
54
Oct 2022
595
582
54
Nov 2022
615
586
55
Dec 2022
626
589
55
Jan 2023
635
592
57
Feb 2023
644
595
57
Mar 2023
647
597
57
Apr 2023
657
598
57
May 2023
692
601
57
Jun 2023
727
606
58
Jul 2023
775
608
59
Aug 2023
824
610
59
Sep 2023
883
612
60
Oct 2023
928
615
61
Nov 2023
944
616
61
Dec 2023
968
616
61
Jan 2024
992
616
61
Feb 2024
1,015
617
62
Mar 2024
1,030
620
64
Apr 2024
1,040
633
67
May 2024
1,045
633
70
Jun 2024
1,073
634
72
Jul 2024
1,082
635
72
Aug 2024
1,089
635
73
Sep 2024
1,097
635
73
Oct 2024
1,103
639
73
Nov 2024
1,107
640
73
Dec 2024
1,119
641
73
Jan 2025
1,121
643
73
Cited
Saved
Latest update: 06 Jan 2025