सामग्री पर जाएँ

अतिचालकता

मुक्त ज्ञानकोश विकिपीडिया से
चित्र:Tc graph.gif
सामान्य चालकों तथा अतिचालकों में ताप के साथ प्रतिरोधकता का परिवर्तन
एक उच्च ताप अतिचालक के ऊपर एक दूसरा चुम्बक प्रोत्थापित (levitate) होकर हवा में तैर रहा है।

जब किसी मैटेरियल को 0°k तक ठंडा किया जाता है तो उसका प्रतिरोध पूर्णतः शून्य प्रतिरोधकता प्रदर्शित करते हैं। उनके इस गुण को अतिचालकता (superconductivity) कहते हैं। शून्य प्रतिरोधकता के अलावा अतिचालकता की दशा में पदार्थ के भीतर चुम्बकीय क्षेत्र भी शून्य हो जाता है जिसे मेसनर प्रभाव (Meissner effect) के नाम से जाना जाता है।

सुविदित है कि धात्विक चालकों की प्रतिरोधकता उनका ताप घटाने पर घटती जाती है। किन्तु सामान्य चालकों जैसे ताँबा और चाँदी आदि में, अशुद्धियों और दूसरे अपूर्णताओं (defects) के कारण एक सीमा के बाद प्रतिरोधकता में कमी नहीं होती। यहाँ तक कि ताँबा (कॉपर) परम शून्य ताप पर भी अशून्य प्रतिरोधकता प्रदर्शित करता है। इसके विपरीत, अतिचालक पदार्थ का ताप क्रान्तिक ताप से नीचे ले जाने पर, इसकी प्रतिरोधकता तेजी से शून्य हो जाती है। अतिचालक तार से बने हुए किसी बंद परिपथ की विद्युत धारा किसी विद्युत स्रोत के बिना सदा के लिए स्थिर रह सकती है।

अतिचालकता एक प्रमात्रा-यांत्रिक दृग्विषय (quantum mechanical phenomenon.) है। अतिचालक पदार्थ चुंबकीय परिलक्षण का भी प्रभाव प्रदर्शित करते हैं। इन सबका ताप-वैद्युत-बल शून्य होता है और टामसन-गुणांक बराबर होता है। संक्रमण ताप पर इनकी विशिष्ट ऊष्मा में भी अकस्मात् परिवर्तन हो जाता है।

यह विशेष उल्लेखनीय है कि जिन परमाणुओं में बाह्य इलेक्ट्रॉनों की संख्या 5 अथवा 7 है उनमें संक्रमण ताप उच्चतम होता है और अतिचालकता का गुण भी उत्कृष्ट होता है।

प्रमुख अतिचालक पदार्थ

[संपादित करें]
धातु TC [K] TC [°C]
Al 1.2 -271.95
In 3.4 -269.75
Sn 3.7 -269.45
Hg 4.2 -268.95
Ta 4.5 -268.65
V 5.4 -267.75
Pb 7.2 -265.95
Nb 9.3 -263.85
पदार्थ 	         प्रकार 	         क्रान्तिक ताप Tc(K)
जस्ता (Zinc)	      धातु (metal) 	       0.88
अलमुनियम (Aluminum)	 धातु (metal) 	       1.19
टिन (Tin)	      धातु (metal) 	        3.72
पारा (Mercury)	      धातु (metal) 	       4.15
YBa2Cu3O7 	      सिरामिक (ceramic)        90
TlBaCaCuO  	      सिरामिक (ceramic)        125

अतिचालकता के उपयोग

[संपादित करें]

१) बहुत अधिक चुम्बकीय क्षेत्र तीव्रता वाले चुम्बक (जैसे १० टेस्ला) बनाने के लिये अतिचालक तारों का प्रयोग किया जाता है। इन्हें अतिचालक चुम्बक कहते हैं। इनका उपयोग कण त्वरकों में होता है।

२) भविष्य में इनका उपयोग छोटे एवं अधिक कार्यदक्ष ट्रान्सफार्मर, मोटर, विद्युत जनित्र, आदि बनाने में किया जा सकता है।

३) अतिचालकों का उपयोग स्क्विड (SQUIDs के निर्माण में होता है जो सर्वाधिक संवेदनशील चुम्बकीय-क्षेत्र-मापी हैं।

४) इनका उपयोग ऊर्जा के भण्डारण के लिये किया जा सकेगा क्योंकि किसी अतिचालक लूप में एक बार धारा स्थापित करके छोड़ देने पर वह अनन्त काल तक चलती रहेगी।

५) इसका उपयोग मैगनेटिक लैविटेशन (magnetic lavitation) में किया जा सकेगा।

६) इनके अतिरिक्त अतिचालक ट्रांसमिशन लाइने, विद्युतचुम्बक, रेडियो-आवृत्ति कैविटी, अतिचालक ट्रांजिस्टर, अतिचालक इलेक्ट्रॉन-पुंज लेंस (सुपरट्रॉनी), अतिचालक बीयरिंग, बोलोमीटर (एक विकिरण संसूचक युक्ति), आदि में भी अतिचालकता का प्रयोग हो रहा है।

अतिचालकता के प्रकार

[संपादित करें]

परिचय एवं इतिहास

[संपादित करें]
अतिचालकता का कालक्रम

जब कोई धातु किसी उपयुक्त आकार में, जैसे बेलन अथवा तार के रूप में ली जाती है, तब वह विद्युत के प्रवाह में कुछ न कुछ प्रतिरोध अवश्य उत्पन्न करती है। किंतु सर्वप्रथम सन् 1911 में केमरलिंग ओन्स ने एक सनसनीपूर्ण खोज की कि यदि पारे को 4 डिग्री (परम ताप) के नीचे ठंढा कर दिया जाए तो उसका विद्युतीय प्रतिरोध अकस्मात् नष्ट होकर वह पूर्ण सुचालक बन जाता है। लगभग 20 धातुओं में, जिनमें राँगा, पारा, सीसा इत्यादि प्रमुख हैं, यह गुण पाया जाता है। जिस ताप के नीचे यह दशा प्राप्त होती है उस ताप को संक्रमण ताप (ट्रैजिशन टेंपरेचर) कहते हैं और इस दशा की चालकता को अतिचालकता। संक्रमण ताप न केवल भिन्न-भिन्न धातुओं के लिए पृथक्-पृथक् होते हैं, अपितु एक ही धातु के विभिन्न समस्थानिकों के लिए भी विभिन्न होते हैं। पैलेडियम ऐंटीमनी जैसे कई मिश्र धातुओं में भी अतिचालकता गुण पाया जाता है।

परमाणु में इलेक्ट्रॉन अंडाकार पथ में परिक्रमा करते हैं और इस दृष्टि से वे चुंबक जैसा कार्य करते हैं। बाहरी चुंबकीय क्षेत्र से इन चुंबकों का आघूर्ण (मोमेंट) कम हो जाता है। दूसरे शब्दों में, परमाणु विषम चुंबकीय प्रभाव दिखाते हैं। यदि ताप तास किसी पदार्थ को उपयुक्त चुंबकीय क्षेत्र में रखा जाए तो उस सुचालक का आंतरिक चुंबकीय क्षेत्र नष्ट हो जाता है, अर्थात् वह एक विषम चुंबकीय पदार्थ जैसा कार्य करने लगता है। तलपृष्ठ पर बहने वाली विद्युत धाराओं के कारण आंतरिक क्षेत्र का मान शून्य ही रहता है। इसे माइसनर का प्रभाव कहते हैं। यदि अतिचालक पदार्थ को धीरे-धीरे बढ़ने वाले चुंबकीय क्षेत्र में रखा जाए तो क्षेत्र के एक विशेष मान पर, जिसे देहली मान (थ्रेशोल्ड वैल्यू) कहते हैं, इसका प्रतिरोध पुनः अपने पूर्व मान के बराबर हो जाता है।

अतिचालकता की व्याख्या एवं सिद्धान्त

[संपादित करें]
अतिचालकता

अतिचालकता के सिद्धांत को समझाने के लिए कई सुझाव दिए गए हैं। किंतु इनमें से अधिकांश को केवल आंशिक सफलता ही प्राप्त हुई है। वर्तमान काल में बार्डीन, कूपर तथा श्रीफर द्वारा दिया गया सिद्धांत पर्याप्त संतोषप्रद है। इसका संक्षिप्त नाम वी.सी.एस. सिद्धांत है। इसके अनुसार अतिचालकता चालक इलेक्ट्रॉनों के युग्मन से उत्पन्न होती है। यह युग्मन इलेक्ट्रॉनों के बीच आकर्षक बल उत्पन्न हो जाने से पैदा होता है। आकर्षक बल उत्पन्न होने का मुख्य कारण फोनान या जालक कपनों (लैटिस वाइब्रेशन) का अभासी विनिमय (वरचुअल एक्सचेंज) है।

इन्हें भी देखें

[संपादित करें]

बाहरी कड़ियाँ

[संपादित करें]
  翻译: