
Proceedings of the 2009 Winter Simulation Conference
L.H. Lee, M.E. Kuhl, J.W. Fowler, and S. Robinson, eds.

A GENERAL SYSML MODEL FOR DISCRETE PROCESSES
IN PRODUCTION SYSTEMS

Oliver Schönherr
Oliver Rose

Institute of Applied Computer Science

Dresden University of Technology
Dresden, 01062, GERMANY

ABSTRACT

In many areas of science, like computer science or electri-
cal engineering, modeling languages have been estab-
lished, however, this is not the case in the field of discrete
processes (Weilkiens 2006). There are two reasons which
motivate such a development. First, modeling languages
allow realizing projects by the principles of systems engi-
neering. So one obtains clearness even for large projects
and reduces the discrepancy between model and reality.
Second, modeling languages are a central part of auto-
matic code generation. In this paper, we present our first
steps in developing a simulation-tool-independent de-
scription of production systems and first ideas on how to
convert such a general model into simulation-tool-specific
models.

1 INTRODUCTION

In the field of software engineering automatic code gen-
eration of UML-Models by CASE-tools is very common
and standardized (Fowler 2003, p.23). For modeling dis-
crete processes there are many approaches called “Model
Based Software Engineering” (MBSE) like Stateflow
Coder, ASCET, or ADAGE, but none of them has been
established as a standard (Committee of Software Engi-
neering 2004). This could be due to the lack of an ade-
quately powerful or general modeling language. However,
in particular for modeling discrete processes in production
automatic code generation is useful, because there are
many different tools such optimizers or schedulers which
cannot exchange their non-standardized models.
 The Object Management Group (OMG) developed
the Systems Modeling Language (SysML) to facilitate
modeling of complex systems. SysML is a standard based
on the standardized general-purpose Unified Modeling
Language (UML). There have been many disputes about
SysML during the short period of time since its publica-
tion. SysML is spreading very fast, today many of the

most prominent developers of modeling tools like ARTi-
SAN, Telelogic, I-Logix and Sparx Systems make use of
SysML in their tools.
 This paper presents an approach for automatic model
generation of discrete processes in production. Our aim is
to develop production models by means of SysML and to
build converts from SysML models to a large variety of
simulation tools. At first we consider whether SysML is
suitable for modeling discrete processes in production. In
order to understand the specifics of modeling production
systems we interviewed experts, studied present literature
and conducted a market analysis of simulation modeling
tools. Based on this knowledge we intend to create a gen-
eral possible model for discrete processes in production
which permits comprehensive production scenarios. In
addition we tested whether SysML is appropriate to build
our general model. After the concept for building produc-
tion models with SysML, we developed a practical ap-
proach for automated model generation few simulators
based on SysML models.

2 MARKET ANALYSIS

To understand the specifics of modeling, we made an ex-
tensive market analysis of simulation modeling tools in
combination with a survey of literature and expert inter-
views. Every simulation tool provides its own approach to
model production scenarios since each of them attempts
to build models in a comprehensive and comfortable way.
We used this knowledge of modeling to understand and
structure discrete processes in production.
 Due to our final goal of automated model generation
from given SysML models, it was also important to know
the modeling peculiarities of the simulators. Furthermore
we have tested whether the simulators are suitable for au-
tomated model generation (for example input/output for-
mat), in order to find a suitable tool for our prototype. A
part from the ability to build models properly, we also

Page 115

Schönherr and Rose

tested other important tool properties like simulation
speed.
 There are many simulation tools which are applied in
the field of production; we consider 24 of them. After a
first examination of obvious exclusion criteria, six tools
remained for our detailed analysis. We excluded all tools
which are not able to model discrete processes in produc-
tion, which are too slow or whose price is obviously dis-
proportionate.
 For testing the tools, we customized the criteria from
the market overview “Simulationstechnik in Produktion
und Logistik” to our problem (Noche and Wenzel 1991)
and obtained the following list of criteria:

• modeling concept
• data import/export
• simulation speed
• statistical analysis / portability
• presentation
• costs / support costs

 We defined a test scenario which we used coherently
and consistently. For an efficient evaluation of our criteria
the test scenario should cover a broad spectrum of model-
ing possibilities of production but still remain manage-
able. We chose a marginally modified scenario from (Law
and Kelton 1991, p. 685ff.) as our test case.
 In summary, Simul8, AnyLogic and Em-Plant were
able to largely meet the requirements, although Em-Plant
does not use the well-structured, hierarchical and, hence,
for automated model generation suitable data format
XML. Aditional details can be found in (Schönherr 2008)
and (Bohn 2008).

3 SPECIFICATION OF A GENERAL MODEL

Due to detailed research and by making use of our market
analysis, we developed a general model for discrete proc-
esses in production, which includes comprehensive pro-
duction scenarios. We checked whether our model can be
represented with SysML. In accordance with UML,
SysML divides the model into a structural and a behavior
part. The structural part describes the static structure, like
the elements and their relationships, in a system. In the
behavior part SysML describes the dynamic behavior
from and between its elements.

3.1 The Structural Model

SysML provides four diagrams for describing the struc-
ture of a model. In 2006, Huang, Ramamurthy and
McGinnis proposed how to describe the structure of a
production system with SysML. In their work they use the
“Block Definition Diagram” and the “Internal Block Dia-
gram” to build a metamodel for flow shop problems
(Huang et. al 2007, p. 798f). In this paper, we try to create

a general model for all fields of production like flow shop
or open shop problems. We also use the block definition
diagram and the internal block diagram (Figure 1).
 Whereas in other areas workflow is determined by
information flow, in production the entity controls the be-
havior of the model: the entity is the central element be-
cause it represents the job or lot which moves through and
is processed by the elements of the machinery. All events
in a model, except for interruptions, are triggered by the
entity. The entities enter the system through the arrival
process and leave it through the departure process. While
they travel on specified routes, different processes execute
actions on them, for which the processes may use re-
sources but they do not have to. Along their way the enti-
ties can be stored in queues.
 To describe the internal relationships between the dif-
ferent elements (for example, the route of the entities), we
use the internal block diagram like McGinnis and Huang
(Huang et al. 2007, p.799). Here, we describe the different
elements the entity passes through as blocks with object
flow ports.

3.2 The Behavior Model

We found no existing approach for modeling the behavior
in the literature. We used the knowledge that we obtained
through our market analysis to define patterns for the be-
havior of the identified elements. We could split these
patterns into phases.
The process could be split into four phases:

1. Accept the incoming entity to start the activity.
2. Attach the needed resources to start the activity.
3. Execute an action on entity.
4. Forward entity.

 The arrival process consists of ”create entity” and
“forward entity”. The departure process consists of “re-
ceive entity” and “destroy entity”. The queue consist of
“receive entity” , “insert entity” and “forward entity”. The
resource pool element only consists of “setting up”.
 After we split the elements into phases, we split these
phases into patterns of behavior. Then we tested whether
these pattern can be represented with SysML. It turned
out that all patterns can be modeled with SysML activity
diagrams. Details can be found in (Schönherr 2008).

Page 116

Schönherr and Rose

Figure 1: Structural metamodel as SysML Block Definition Diagram

4 A PRACTICAL APPROACH FOR
AUTOMATED MODEL GENERATION

We developed a software that automatically generates
models for simulation tools from given SysML models. In
the previous section we attained that SysML has the abil-
ity to model comprehensive production scenarios. This is
the basis for our approach. To build an effective tool we
use a multilayer architecture (Figure 2). At first we build
the model with a SysML modeling tool. The modeling
tool should provide a suitable data interchange format,
contain all identified SysML elements and must be appro-
priate for building large models.
 If the SysML model is available in a suitable ex-
change format, it can be transformed into an equivalent of
a simulation modeling tool. Since it should be possible to
transform a SysML model into models of different simu-
lation tools, a separate output must be generated for each
program. Each simulation needs a suitable dedicated
model in a special input format. To simplify the software
architecture, the model generation is divided into two
steps, which involve an additional “internal model”. In the
first step we used a program called “parser”. The parser
reads the SysML model, which is specified in the ex-
change format, filters out all non-relevant information,
and writes the remaining significant parts into the internal
model. In the second step, a program, called “translator
plugin”, prepares the data from the internal model for a

special simulation tool. More precisely, it takes all the re-
levant data and translates them into the input data format
of the simulation program, which is defined by rules.
Since each simulator has its own format, one must write a
separate translator plugin for each simulation tool.
 The advantage of the proposed architecture compared
to the performance of a single step conversion from a
SysML file into a model for a simulation program is that
the first step (the parser) does only need to be executed
once. However, the architecture assigns a special role to
the “internal model” because it must be particularly suited
to derive models for simulation tools. The internal model
must contain all information for the generation of produc-
tion models and must still remain transparent.
 When creating the SysML model, the model must
adhere to certain structures in order to be properly recog-
nized by the parser. These structures are defined in the
metamodel. In the complete created model every object
and ability must be a subset of the metamodel, otherwise
the parser cannot recognize them.

Currently, we develop a prototype implementation of
this architecture in JAVA including a converter to the
AnyLogic simulation package.

Page 117

Schönherr and Rose

Figure 2: System architecture of the converter

5 SUMMARY AND OUTLOOK

We tried to identify and structure the significant proper-
ties of discrete processes in production systems. At the
moment, we did not identify all peculiarities because the
behavior of systems is very complex. We intend to extend
our model as our modeling work progresses. In addition,
we intend to gain new insights from working on larger
sample systems from our partners in the semiconducter
industry.
 Furthermore, we tested whether SysML is suitable to
build models based on our concept. It turned out that
SysML is comprehensively usable, the structural model
and all behavior patterns can be modeled with SysML.
 A problem of modeling with SysML is the represen-
tation of large systems. It is obvious that modeling effort
as well as clarity can be problematic. But this is a problem
of all graphical modeling languages. To solve the prob-
lem, modeling must be scalable. One approach would be
to separate domain model and instance model. Another
possible solution would be to prepare design patterns for
recurring behavior. At the moment, we are working on
both solution approaches.

REFERENCES

Bohn D. 2008. Eine Marktanalyse von Simulationstools
für die Modellierung von Produktionssystemen als
Grundlage für die Konvertierung eines SysML-
Modells in den Simcron Modeller. Unpublished in-
ternship thesis. Department of Computer Science.
Dresden University of Technology.

Fachausschuss Software Engineering 2004. Code Generi-
erung und modellbasierte Softwareentwicklung für
Luft- und Raumfahrtsysteme.

<http://www.t6.dglr.de/Veranstaltun
gen/2004_MDSE/DGLR_T64_2004_bericht
.html> [31.10.2008]

Fowler M. 2003. UML Distilled: A Brief Guide to the
Standard Object Modeling Language. Pearson Edu-
cation.

Huang E., R. Ramamurthy, L. McGinnis. 2007. System
and simulation modeling using SysML. Proceedings
of the 2007 Winter Simulation Conference.

Law A.M., W.D. Kelton. 2000. Simulation Modeling and
Analysis. McGraw-Hill.

Noche B., S. Wenzel. 1991. Marktspiegel Simulation-
stechnik in Produktion und Logistik. TÜV Verlag
Rheinland.

Schönherr O. 2008. Ein allgemeines SysML-Modell zur
Abbildung diskreter Prozesse in der Produktion. Mas-
ter thesis. Department of Computer Science. Dresden
University of Technology.

Weilkiens T. 2006. Systems Engineering mit
SysML/UML. Dpunkt Verlag.

AUTHOR BIOGRAPHIES

OLIVER SCHÖNHERR is a PhD student at the Dres-
den University of Technology. He is a member of the sci-
entific staff at the Chair for Modeling and Simulation. He
received his M.S. degree in computer science from the
Dresden University of Technology, Germany. His e-mail
address is
<oliver.schoenherr@tu-dresden.de>

OLIVER ROSE holds the Chair for Modeling and Simu-
lation at the Institute of Applied Computer Science of the
Dresden University of Technology, Germany. He re-
ceived an M.S. degree in applied mathematics and a Ph.D.
degree in computer science from Würzburg University,
Germany. His research focuses on the operational model-
ing, analysis and material flow control of complex manu-
facturing facilities, in particular, semiconductor factories.
He is a member of IEEE, INFORMS Simulation Society,
ASIM, and GI.
Web address: <www.simulation-dresden.com>.

Page 118

