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Abstract

While ontology-mediated query answering most often adopts
(unions of) conjunctive queries as the query language, some
recent works have explored the use of counting queries cou-
pled with DL-Lite ontologies. The aim of the present paper
is to extend the study of counting queries to Horn descrip-
tion logics outside the DL-Lite family. Through a combi-
nation of novel techniques, adaptations of existing construc-
tions, and new connections to closed predicates, we achieve
a complete picture of the data and combined complexity of
answering counting conjunctive queries (CCQs) and cardi-
nality queries (a restricted class of CCQs) in ELHI⊥ and
its various sublogics. Notably, we show that CCQ answer-
ing is 2EXP-complete in combined complexity for ELHI⊥
and every sublogic that extends EL or DL-LiteHpos. Our study
not only provides the first results for counting queries beyond
DL-Lite, but it also closes some open questions about the
combined complexity of CCQ answering in DL-Lite.

1 Introduction
Ontology-mediated query answering (OMQA) facilitates ac-
cess to data through the use of ontologies, which provide
a convenient vocabulary for query formulation and capture
domain knowledge that can be exploited to obtain more
complete query results. The OMQA approach has been ex-
tensively studied over the past fifteen years (Poggi et al.
2008; Bienvenu and Ortiz 2015; Xiao et al. 2018), leading to
the identification of ontology languages that are well suited
to OMQA due to their attractive computational properties.
Particular attention has been paid to Horn description log-
ics of the DL-Lite and EL families (Calvanese et al. 2007;
Baader, Brandt, and Lutz 2005).

While most work on OMQA considers that the user query
is a conjunctive query (CQ), there has been significant inter-
est in exploring the possibility of adopting more expressive
query languages for OMQA. In particular, several works
have investigated ways of equipping CQs with some form of
counting (Calvanese et al. 2008; Kostylev and Reutter 2015;
Feier, Lutz, and Przybylko 2021). A recent approach, pro-
posed in (Bienvenu, Manière, and Thomazo 2020) as a gen-
eralization of (Kostylev and Reutter 2015), considers count-
ing conjunctive queries (CCQs) that are syntactically de-
fined like standard CQs except that some variables may be
designated as counting variables. In each model of the

knowledge base, we can count the number of possible as-
signments to the counting variables that make the query an-
swer hold. As the count value may differ between models,
the goal is to identify intervals that provide upper and lower
bounds on the count values across all models.

The problem of answering CCQs is intractable, in both
data and combined complexity, for common DL-Lite di-
alects such as DL-Litecore and DL-LiteHcore(Kostylev and
Reutter 2015). Recent works have shown that intractabil-
ity arises even for simple forms of CCQs (Calvanese et al.
2020a; Bienvenu, Manière, and Thomazo 2021). However,
some interesting tractable cases have also been identified,
notably, rooted CCQs (Bienvenu, Manière, and Thomazo
2020; Calvanese et al. 2020a; Nikolaou et al. 2019) and car-
dinality queries (Bienvenu, Manière, and Thomazo 2021)
coupled with DL-Litecore ontologies. Query rewriting tech-
niques have also begun to be explored (Calvanese et al.
2020b). However, despite these advances, we still have only
a partial understanding of CCQ answering in common DL-
Lite dialects, and the precise combined complexity has re-
mained elusive: the current bounds for DL-LiteHcore are be-
tween coNEXP and coN2EXP (Kostylev and Reutter 2015).
Moreover, to the best of our knowledge, CCQ answering has
not yet been studied for DLs outside the DL-Lite family.

In this paper, we extend the study of CCQ answering to
other well-known Horn description logics, such as EL and
the more expressive ELHI⊥. The techniques used in the
DL-Lite context do not readily transfer to EL due to the
presence of conjunction, and in any case, our results show
that they do not achieve the optimal combined complexity
even for DL-Lite. We therefore develop a new approach
based upon the observation that there exists a model min-
imizing the count value that consists of an arbitrary struc-
ture I∗ containing all assignments for the counting vari-
ables, augmented with structures that are tree-shaped, pro-
vided we ignore edges to and from I∗. Importantly, we can
bound the size of the central component I∗, which enables
us to explore all possible options for I∗. Checking whether
a given I∗ can be extended to a model preserving the min-
imum count value can be done by specifying a set of pat-
terns (intuitively representing a pair of adjacent elements),
and testing via local consistency conditions whether they
can be coherently assembled. This latter step takes inspi-
ration from a CQ answering technique for existential rules



Combined complexity Data complexity
DL-Litepos DL-Litecore DL-LiteHpos DL-LiteHcore EL(H⊥), EL(HI) EL(H)I⊥ EL(HI⊥)

Concept NL coNP NL coNP

†

EXP coNEXP coNP

Role NL coNP coNP

†

coNP

†

EXP coNEXP coNP

CCQ coNEXP† coNEXP† 2EXP 2EXP 2EXP 2EXP coNP

Figure 1: Complexity results for CCQs and cardinality queries, all bounds are tight. †/

†

: previously known upper / lower bound.

(Thomazo et al. 2012), and is also similar in spirit to type-
elimination style procedures, which have been employed for
reasoning with expressive DLs, see e.g. (Rudolph, Krötzsch,
and Hitzler 2012; Eiter et al. 2009).

Using this new approach, we are able to establish a 2EXP
upper bound in combined complexity for ELHI⊥. A match-
ing lower bound, which applies to both EL and DL-LiteHpos,
is obtained by establishing a novel connection between CCQ
answering and OMQA with closed predicates. This yields
2EXP-completeness for a wide range of Horn DLs and
closes the combined complexity gap for CCQ answering
in DL-LiteHcore. We further prove a coNEXP lower bound
for DL-Litepos, which matches an existing coNEXP up-
per bound, yielding the precise combined complexity for
DL-Litecore as well. We also explore how to shrink the size
of the models implicitly generated by our procedure, pro-
ducing models with bounded size which we use to show that
CCQ answering is coNP-complete in data complexity for all
logics between EL and ELHI⊥.

In addition to CCQs, we also investigate the special case
of cardinality queries, which correspond to Boolean atomic
CCQs and allow us to ask for (bounds on) the number of
members of a given concept or role. We obtain a com-
plete picture of data and combined complexity of answer-
ing cardinality queries in ELHI⊥ and its various sublogics.
While the data complexity is coNP-complete for all con-
sidered logics, the combined complexity ranges from NL or
coNP in DL-Lite logics to EXP or coNEXP for EL and its
extensions. We achieve these results using a variety of the
techniques: refinements of our approach for general CCQs,
adaptations of existing constructions, and further reductions
involving closed predicates. Figure 1 summarizes the com-
plexity results for both CCQs and cardinality queries.

Paper Organization Section 2 introduces the necessary
preliminaries, in particular, the syntax and semantics of the
considered DLs and the definition of CCQs. Sections 3
and 4 present our complexity results for CCQs and cardi-
nality queries, respectively, and sketch the underlying tech-
niques (an appendix with full proofs can be found in the
long version of this paper, available on arXiv). Section 5
concludes with a discussion of future work.

2 Preliminaries
Knowledge Bases We assume mutually disjoint sets NC,
NR, and NI of concept, role, and individual names. A knowl-
edge base (KB) K = (T ,A) consists of an ABox A and a
TBox T . An ABox is a finite set of concept assertions A(b)
(with A ∈ NC, b ∈ NI) and role assertions P(a, b) (with

P ∈ NR, a, b ∈ NI). We denote by Ind(A) the set of individ-
uals occurring in an ABox A.

A TBox is a finite set of axioms. In ELHI⊥, TBoxes
consist of concept inclusions B1 ⊑ B2, positive role inclu-
sions R1 ⊑ R2, and negative role inclusions1 R1 ⊓ R2 ⊑ ⊥,
where the Ri are roles drawn from N±

R = {P,P− | P ∈ NR}
and the Bi are (complex) concepts constructed as follows:

B := ⊥ | ⊤ | A | B1 ⊓ B2 | ∃R.B with A ∈ NC,R ∈ N±
R

Various sublogics of ELHI⊥ can be obtained by disallow-
ing role inclusions, inverse roles, and/or the bottom con-
struct. For example, EL is obtained by removing all three
features, while ELI⊥ corresponds to disallowing role inclu-
sions (retaining inverse roles and ⊥). We shall also consider
some DL-Lite dialects that are fragments of ELHI⊥. The
most expressive, DL-LiteHcore, allows positive and negative
role inclusions, and restricted forms of concept inclusions:

D1 ⊑ D2 D1 ⊓D2 ⊑ ⊥ Di := A | ∃R.⊤

with A ∈ NC,R ∈ N±
R . The logics DL-LiteHpos, DL-Litecore,

and DL-Litepos are obtained respectively by dropping nega-
tive inclusions, role inclusions, or both features.

We shall use sig(T ) (resp. sig(K)) to denote the signature
of a TBox T (resp. KB K), i.e. the set of concept and role
names appearing in T (resp. K).

Semantics of KBs An interpretation takes the form I =
(∆I , ·I), where ∆I is a non-empty set (called the domain)
and ·I is the interpretation function that maps each A ∈ NC

to AI ⊆ ∆I , each P ∈ NR to PI ⊆ ∆I × ∆I , and each
a ∈ NI to aI . In this paper, we will make the Standard
Names Assumption by setting aI = a. Note however that our
results only rely upon the weaker Unique Names Assumption
(UNA), which stipulates that aI ̸= bI whenever a ̸= b.

The function ·I naturally extends to roles and complex
concepts: (P−)I = {(y, x) | (x, y) ∈ PI}, ⊥I = ∅, ⊤I =
∆I , (B1 ⊓ B2)

I = BI
1 ∩ BI

2 and (∃P.B)I = {d | (d, e) ∈
PI , e ∈ BI}. An inclusion G ⊑ H is satisfied in I if GI ⊆
HI ; an assertion A(b) (resp. P(a, b)) is satisfied in I if b ∈
AI (resp. (a, b) ∈ PI). An interpretation is a model of a
TBox T (resp. KB K) if it satisfies all axioms in T (resp.
axioms and assertions in K). A KB is satisfiable if it has at
least one model. An inclusion (resp. assertion) Φ is entailed
from T (resp. K), written T |= Φ (resp. K |= Φ), if Φ is
satisfied in every model of T (resp. K).

1We follow e.g. (Bienvenu et al. 2014) by including negative
role inclusions in ELHI⊥, so that it has DL-LiteHcore as a sublogic.



Example 1. Consider the ABox Ae := {A1(a),B(b)} and
the ELHI⊥ TBox Te:
A1 ⊑ ∃R.A2 A2 ⊑ ∃R.A1 B ⊑ ∃R.B R ⊓ R− ⊑ ⊥
A2 ⊑ ∃R.B B ⊑ ∃R.C B ⊑ C B ⊓ B ⊑ ⊥
Our example KB is Ke := (Te,Ae). Figures 2a and 2c
depict models of Ke.

We can view an interpretation I as a (possibly infinite) set
of assertions AI = {A(e) | e ∈ AI ,A ∈ NC} ∪ {P(e, e′) |
(e, e′) ∈ PI ,P ∈ NR}. We say that I is T -satisfiable if
T ∪ AI has a model, and it is T -saturated if AI contains
every assertion entailed by (T ,AI).

Counting Queries We consider counting queries as de-
fined in (Bienvenu, Manière, and Thomazo 2020) (which
generalizes the queries considered in (Kostylev and Reut-
ter 2015; Calvanese et al. 2020a)). A counting conjunctive
query (CCQ) takes the form q(x) = ∃y∃z ψ(x,y, z), where
x,y, z are tuples of answer, existential, and counting vari-
ables, respectively, and ψ is a conjunction of concept and
role atoms with terms from NI ∪x∪y∪ z. We use terms(q)
for the set of all terms occurring in q, and we treat queries as
sets of atoms when convenient. The usual notion of con-
junctive query (CQ) is captured by CCQs without count-
ing variables (i.e. z = ∅). A CCQ q is Boolean if x = ∅.
Concept cardinality queries are Boolean CCQs of the form
∃z A(z) (A ∈ NC), while role cardinality queries have the
form ∃z1, z2 R(z1, z2) (R ∈ NR).

A match for a CCQ q in an interpretation I is a homomor-
phism from q into I, i.e. a function π that maps each term
in q to an element of ∆I such that π(t) = t when t ∈ NI,
π(t) ∈ AI for every A(t) ∈ q, and (π(t), π(t′)) ∈ PI for
every P(t, t′) ∈ q. If a match π maps x to a, then the re-
striction of π to z is called a counting match (c-match) of
q(a) in I. The set of answers to q in I, denoted qI , contains
all pairs (a, [m,M ]), with m,M ∈ N ∪ {+∞}, such that
the number of distinct c-matches of q(a) in I belongs to the
interval [m,M ]. A certain answer to q w.r.t. K is an answer
in every model of K, that is a pair from

⋂
I|=K q

I .
As usual, it is sufficient to consider the Boolean

case: (a, [m,M ]) is a certain answer to a CCQ q(x) iff
(∅, [m,M ]) is a certain answer to the Boolean CCQ q(a)
obtained by replacing x with a. Thus, from now on, we
focus on Boolean CCQs, and work with candidate answers
[m,M ] in place of (∅, [m,M ]).

We further observe that since ELHI⊥ cannot restrict the
size of models, the least upper bound M in a certain answer
[m,M ] is: 0 if the underlying CQ is unsatisfiable w.r.t. T ,
1 if q has a match in every model but z = ∅; and +∞ oth-
erwise. As the first two cases can be readily handled using
existing techniques, we focus on identifying certain answers
of the form [m,+∞].
Example 2. Let qe := ∃y ∃z R(y, z) ∧ C(z) be a Boolean
CCQ. Intervals [0,+∞] and [1,+∞] are certain answers to
qe over Ke. Interval [4,+∞] is not as the models depicted
on Figures 2a and 2c contain only 3 matches for qe.

To clarify how our notion of certain answer relates to stan-
dard OMQA semantics, we note that a Boolean CQ q is en-
tailed from K iff [1,+∞] is a certain answer to q over K.

Complexity Given a ELHI⊥ knowledge base K =
(T ,A), a Boolean CCQ q, and an integerm ≥ 0 (in binary),
we are interested in the complexity of deciding whether
[m,+∞] is a certain answer to q w.r.t. K. We will consider
the two usual complexity measures: combined complexity
which is in terms of the size of the whole input, and data
complexity which is only in terms of the size of A and m
(T and q are treated as fixed). If O is a TBox, ABox, KB,
or CCQ, then the size of O, denoted |O|, is the number of
occurrences of concept and role names in O.

Normal form As is standard (see e.g. (Bienvenu et al.
2014)), we work with ELHI⊥ TBoxes in a convenient nor-
mal form, where every concept inclusion has one of the fol-
lowing restricted shapes:

A ⊑ ⊥ ⊤ ⊑ A A1 ⊓A2 ⊑ A
A1 ⊑ ∃R.A2 ∃R.A1 ⊑ A2

with A,A1,A2 ∈ NC,R ∈ N±
R . Through the introduction of

fresh concept names, we can transform in polynomial time
any TBox T into a normal-form TBox T ′ that is a model-
conservative extension of T (hence, indistinguishable from
T from the point of view of queries). We therefore assume
w.l.o.g. that all considered TBoxes are in normal form.

Closed Predicates A KB with closed predicates consists
of a KB (T ,A) and a set Σ ⊆ NC∪NR of closed predicates.
An interpretation I is a model of (T ,A,Σ) if it is a model
of (T ,A) which interprets the closed predicates according
to A, i.e. AI = {a | A(a) ∈ A} for every A ∈ Σ ∩ NC and
PI = {(a, b) | P(a, b) ∈ A} for every P ∈ Σ ∩ NR. Query
entailment is then defined as for classical KBs, but using this
modified notion of model.

3 General Case of CCQs
This section presents our main contributions: a decision pro-
cedure and associated tight complexity bounds for CCQ an-
swering in ELHI⊥ and its sublogics.

To improve readability, we have split the section into sev-
eral parts. Section 3.1 presents a double-exponential-time
decision procedure, whose correctness proof is detailed in
Section 3.2. We explain, in Section 3.3, how to shrink the
size of the models implicitly generated by our procedure,
which we use to show coNP data complexity. Finally, in
Section 3.4, we prove the required lower bounds.

3.1 Decision Procedure
In this subsection, we devise a procedure that computes in
double-exponential time the minimum amount of c-matches,
which immediately yields the following upper bound:

Theorem 1. CCQ answering in ELHI⊥ is in 2EXP w.r.t.
combined complexity.

Let us fix a satisfiable KB K = (T ,A) and a (Boolean)
CCQ q. The next lemma provides an upper bound on the
minimal number of c-matches.

Lemma 1. There exists a model of K with less than M :=
(|Ind(A)|+ 3 |T | 2|T |)|q| c-matches for q.



•
a

A1,B,C
•b

B,C

◦γ

B,C ◦ A2

◦
A2

δ

◦A1 ◦ A1 ◦
B

(a) A model Ie of Ke.

P∗, ∅ P1,R.A2

P2,R.A1 P3,R.A2

P2,R.A1

P4,R.B

P4,R.B

P5,R.C

P5,R.C

(b) Pattern tree Pe.

•
a

A1,B,C
•b

B,C

◦γ

B,C

◦ A2

◦
A1

◦ A2

◦
A1

◦ B

◦ B

(c) Model I♢
e built from P∗

e .

Figure 2: Interpretations and pattern tree used along our examples, labels for the only role R have been omitted for readability.

Proof sketch. We can exhibit a model having at most
|Ind(A)|+ 3 |T | 2|T | elements.

It follows that in any model I having a minimum num-
ber of c-matches, the set ∆∗ ⊆ ∆I of elements appearing
in the image of a c-match has size at most M · |q|. We can
thus iterate over all such ∆∗, and even over all induced in-
terpretations I∗ = I|∆∗ , in double-exponential time w.r.t.
combined complexity. The core task will then be to deter-
mine, given such a candidate I∗, whether we can extend I∗

into a model of K without introducing new c-matches.
Let us fix our candidate I∗ and see how to check for a

suitable extension. The challenging axioms to handle are
those of the form A ⊑ ∃R.B, as they might require us to
introduce new elements. We define the set Ω := {R.B |
A ⊑ ∃R.B ∈ T } and call its members (existential) heads.
Importantly, as our correctness proof will establish, it is suf-
ficient to consider extensions of I∗ which are obtained by
adding tree-shaped structures of new elements, plus some
edges between the new elements and ∆I∗

(we may need to
use elements from ∆I∗

as witnesses for existential heads to
avoid new query matches). This property enables us to build
such an extension by piecing together local interpretations
corresponding to the addition of a single edge, using two
distinguished symbols ⊚ and ⊛ as placeholders for fresh el-
ements. We shall call these building blocks patterns, as they
are inspired by a notion of the same name introduced for CQ
answering with existential rules (Thomazo et al. 2012).

Patterns not only consist of a local interpretation, but
also other information needed to ensure that assembled pat-
terns do not violate any TBox axioms or introduce any new
matches. In particular, we shall keep track of (partial) query
matches involving the local elements using the notion of a
coherent specification. Intuitively, such a specification tells
us which matches should be realized in the constructed ex-
tension, and naturally contains at least the matches of sub-
queries of q already realized in the local interpretation.
Definition 1. Let I be an interpretation.
• The specification MI induced by I is the set of pairs
(r, π) such that r ⊆ q and π : r → I is a (full) match.

• A coherent specification M over I is a set of pairs (r, π)
where r ⊆ q and π is a partial mapping from terms(r) to
∆I such that M contains MI and if (r1, π1), (r2, π2) ∈

M with π1 and π2 defined and equal on var(r1)∩var(r2),
then (r1 ∪ r2, π1 ∪ π2) ∈ M.
To check the compatibility of different specifications, we

will need to be able to restrict them to a subdomain:
Definition 2. The restriction of a specification M over an
interpretation I to a domain ∆ ⊆ ∆I , denoted M|∆ , is the
set of pairs (r, π′) such that π′ is the restriction of some π to
π−1(∆) for some (r, π) ∈ M.
Remark 1. Induced specifications and restrictions of coher-
ent specifications are both coherent specifications.

Patterns will contain a further kind of information called
a prediction, defined next. The purpose will be explained in
more detail once we introduce links between patterns, but
roughly it serves to coordinate the successor patterns of a
pattern to avoid violating negative role inclusions.
Definition 3. A prediction is a function next : Ω →
∆I∗ ∪ Ω verifying that: for all R1.B1,R2.B2 ∈ Ω, if
T |= R1 ⊓ R2 ⊑ ⊥, then next(R1.B1) ̸= next(R2.B2).

We now formally define the central notion of pattern, rel-
ative to I∗ and a candidate specification M∗ over I∗.
Definition 4. A pattern P (w.r.t. I∗ and M∗) is a tuple
(frP , genP , IP ,MP , nextP) where:

• The frontier and generated domains frP and genP are dis-
joints sets of elements from ∆I∗ ∪ {⊚,⊛};

• IP is a T -saturated and T -satisfiable interpretation with
∆IP

= ∆I∗ ∪ frP ∪ genP and such that IP|∆I∗ = I∗;

• MP is a coherent specification of q over IP that preserves
M∗, that is (MP)|∆I∗ = M∗;

• nextP is a prediction.
We shall be interested in two types of patterns. The

(unique) initial pattern P∗ := (∅,∆I∗
, I∗,M∗, Id) simply

represents I∗ and M∗. All other patterns of interest repre-
sent additions of a pair of adjacent elements, and frP and
genP will be singletons (representing these two elements).
Example 3. In our running example, ∆∗

e := {a, b, γ}
(z maps to only these elements). The initial pattern P∗

e
has frontier ∅, generated terms ∆∗

e , interpretation I∗
e :=

(Ie)|∆∗
e

depicted in Figure 3a, and specification M∗
e :=

(MIe)|∆∗
e
. Non-initial patterns will be illustrated later.



•
a

A1,B,C•b

B,C

◦γ

B,C

(a) Interp. I∗
e .

•
a

A1,B,C•b

B,C

◦γ

B,C

◦
A2

⊚

(b) Interp. of Pe
1.

(I∗
e )

◦
A2

⊚
◦
A1

⊛

(c) Interp. of Pe
2.

(I∗
e )

◦
A1

⊛
◦
A2

⊚

(d) Interp. of Pe
3.

(I∗
e )

◦
A2

⊚
◦
B

⊛

(e) Interp. of Pe
4.

• a

A1,B,C•b

B,C

◦γ

B,C ◦
B

⊛

(f) Interp. of Pe
5.

Figure 3: Interpretations of patterns from Example 4.

We now define how to combine patterns together, and
first, when it is necessary to combine them.

Definition 5. We say that R.B ∈ Ω is applicable to e in a
pattern P if e ∈ genP and there exists A ⊑ ∃R.B ∈ T with
e ∈ AIP

but e /∈ (∃R.B)IP
.

When a head is applicable to a pattern, we need to find
another pattern that can realize the head. This is formalized
by the following notion of link between patterns, which re-
quires that the two patterns are compatible (Conditions 1, 2,
3), the second pattern realizes the head (Condition 4), and
certain consistency conditions hold (Conditions 5, 6).

Definition 6. Let R.B be an applicable head on e1 in a
pattern P1. There is a (R.B, e1)-link from P1 to P2 if:

1. frP2 = {e1} and genP2 is a singleton, say {e2};

2. For all concept name A, we have e1 ∈ AIP1 iff e1 ∈ AIP2 ;
3. MP1

|∆I∗∪{e1}
= MP2

|∆I∗∪{e1}
;

4. e2 ∈ BIP2 and for all P ∈ NR: PIP2
= PI∗ ∪ {(e1, e2) |

T |= R ⊑ P} ∪ {(e2, e1) | T |= R− ⊑ P}
5. If ever e2 ∈ ∆I∗ ∩ frP1 , then IP1 ∪ IP2 is T -satisfiable.
6. If e2 ∈ ∆I∗

, then e2 = nextP1(R.B).

We denote LR.B
P1,e1

the set of patterns P2 such that there is a
(R.B, e1)-link from P1 to P2.

Remark 2. Predictions are used in Condition 6 to avoid
problematic situations where two successor patterns merge
back to the same element of ∆I∗

. Specifically, if we have
a R1.B1-link from P0 to P1 and a R2.B2-link from P0 to
P2, with T |= R1 ⊓ R2 ⊑ ⊥, then nextP0

(R1.B1) ̸=
nextP0

(R2.B2), preventing P1 and P2 from using the same
element of ∆I∗

as generated term (which would violate T ).
Condition 5 is similar in spirit, handling the case of the pat-
tern P1 using the frontier element of P0 as a generated term.

Example 4. We consider patterns Pe
1, . . . ,Pe

5 whose inter-
pretations are depicted in Figure 3. Frontier terms are indi-
cated by square-purple and generated terms by circle-green.
Predictions are Id except for nextPe

4
, which maps R.C to γ.

Specifications Mi are given by: M1 = M∗
e∪{(αR, (y, z) 7→

(a,⊚)), (αR, z 7→ ⊚), (αR, y 7→ ⊚)}; M5 = M∗
e ∪

{(qe, (y, z) 7→ (⊛, γ)), (αR, (y, z) 7→ (⊛, γ)), (αR, z 7→
⊛)}; M4 = M1 ∪M5 ∪ {(αR, (y, z) 7→ (⊚,⊛))}; M2 =
M4 \ {(αR, z 7→ ⊛)}; M3 = M5 ∪ {(αR, (y, z) 7→
(a,⊚)), (αR, (y, z) 7→ (⊛,⊚)), (αR, y 7→ ⊚)}, where αR

denotes R(y, z). Observe that Mi may include (partial)
matches which are not present in Pe

i ’s interpretation but are
useful for linking patterns, e.g. (qe, (y, z) 7→ (⊛, γ)) in M4

enables a (R.C,⊛)-link from Pe
4 to Pe

5 (see Example 5).

We now characterize patterns that cannot be used to sat-
isfy a head without introducing a new c-match.

Definition 7. A pattern P is rejecting if one of the two fol-
lowing conditions holds:

• There exists (q, π) ∈ MP with π(z) ∩ {⊚,⊛} ≠ ∅;
• There exists an existential head R.B that applies on e in
P such that all patterns P′ ∈ LR.B

P,e are rejecting.

A pattern is accepting if it is not rejecting.

The acceptance of the initial pattern P∗ is a sufficient con-
dition ensuring I∗ extends to a model having no more c-
matches than encoded in M∗, i.e. the pairs (q, π) ∈ M∗

such that π is defined for all counting variables.

Lemma 2. If P∗ := (∅,∆∗, I∗,M∗, Id) is accepting, then
there exists a model I♢ such that I∗ ⊆ I♢ and if π : q →
I♢ is a c-match, then (q, π) ∈ M∗. In particular, I♢ has at
most as many c-matches as those encoded in M∗.

Furthermore, the minimum amount of c-matches is
reached among initial patterns due to the following result:

Lemma 3. If I is a model of K with m c-matches, then
there exists an accepting initial pattern whose specification
encodes exactly m c-matches.

Before proving Lemmas 2 and 3, let us recap the overall
double-exponential procedure underlying Theorem 1:

Proof of Theorem 1. We consider all possible initial pat-
terns P∗ with an interpretation domain ∆∗ such that
Ind(A) ⊆ ∆∗ and |∆∗| ≤ M |q| (recall Lemma 1). Every
such P∗ is of single-exponential size w.r.t. combined com-
plexity (observe that its specification M∗ corresponds to a
subset of 2q × (∆∗ ∪ {↑})q , where ↑ is a fresh symbol wit-
nessing the use of partial mappings), and thus are double-
exponential in number (up to isomorphism) and can be enu-
merated in double-exponential time. For each such P∗, we
construct in double-exponential time the set of all possible
descendant patterns of P∗ (which are of single-exponential
size, having at most |∆∗| + 2 elements). We then check
whether each possible pattern (P∗ or candidate descendant)
is in fact a well-defined pattern, in particular, its interpreta-
tion is T -satisfiable and T -saturated. These verifications can



be done in double-exponential time, recalling that KB satis-
fiability and instance checking are in EXP for ELHI⊥ (even
the variant with negative role inclusions, see e.g. (Bienvenu
et al. 2014)). Acceptance of P∗ is tested (again in determin-
istic exponential time) by repeatedly iterating over the set of
patterns and removing those that are rejecting either due to
their specification, or due to the removal of all patterns that
could provide a link for an applicable head. If P∗ is found to
be accepting and M∗ encodes m c-matches, then Lemma 2
ensures the existence of a model with at most m c-matches.
Conversely, Lemma 3 ensures that we can find the smallest
such m among the accepting initial patterns.

3.2 Proofs of Lemmas 2 and 3
We now prove the central lemmas of the correctness proof.

From Accepting Patterns to Models To prove Lemma 2,
let us suppose we are given an initial pattern P∗ :=
(∅,∆∗, I∗,M∗, Id) that is accepting. Our aim is to construct
a model I♢ that extends I∗ and is such that (q, π) ∈ M∗ for
every c-match π : q → I♢.

We proceed as follows. For each accepting descendant
pattern P (w.r.t. I∗ and M∗) and each head R.B applicable
to e in P, we choose an accepting pattern chR.B

P,e from LR.B
P,e .

Then, starting from P∗, we build a tree-shaped set of words,
whose letters consist of an accepting pattern and existential
head, and which witnesses the acceptance of P∗.
Definition 8. The pattern tree P is defined as the smallest
set of words such that:
• (P∗, ∅) ∈ P;
• If w · (P, h) ∈ P and R.B is applicable to e in P, then
w · (P, h) · (chR.B

P,e ,R.B) ∈ P .

It remains to ‘glue’ together the interpretations IP accord-
ing to the structure of P . Since a pattern P may occur more
than once, we create a copy of IP for each node in P of
the form w · (P, h). We do not duplicate however elements
from I∗ as they precisely are those we want to reuse. Hence
only the frontier term and the generated term may be dupli-
cated (provided they do not belong to ∆∗). When a node
w · (P1, h1) · (P2, h2) is encountered, we merge the frontier
term of P2 with the already-introduced copy of the gener-
ated element from P1 on which h2 is applied (which is the
only element in frP2 ). Therefore, when considering such a
node w · (P1, h1) · (P2, h2), the only element we might have
to introduce is a copy of the generated term e of P2 (unless
e ∈ ∆∗), which we shall simply name w · (P1, h1) · (P2, h2).
Formally, the copying and merging of elements is achieved
by the following family of duplicating functions, defined in-
ductively for each w · (P, h) ∈ P .

λw·(P,h) : ∆
IP → ∆I∗ ∪ {w,w · (P, h)}

e 7→

 e if e ∈ ∆I∗

w if e ∈ frP \∆I∗

w · (P, h) if e ∈ genP \∆I∗

Note that if e ∈ frP2 \∆I∗
, then e ∈ genP1 \∆I∗

, hence

λw·(P1,h1)·(P2,h2)(e) = λw·(P1,h1)(e) = w · (P1, h1).

The desired model I♢ can then be defined as follows:

I♢ :=
⋃

w·(P,h)∈P

λw·(P,h)(I
P).

Example 5. The patterns introduced in Example 4 are suffi-
cient to witness that P∗

e is accepting. The initial part of Pe is
depicted in Figure 2b. The resulting I♢

e is depicted in Fig-
ure 2c. Notice how it inherits the tree-shaped structure of
Pe up to roles collapsing back in I∗

e .
By definition, each λw·(P,h) is a homomorphism from IP

to I♢. Due to Condition 2, the shared element of linked pat-
terns must belong to the same concepts, so concept member-
ship in I♢ transfers back to IP :

Lemma 4. For all w · (P, h) ∈ P , for all e ∈ ∆IP
and for

all A ∈ NC, if λw·(P,h)(e) ∈ AI♦
, then e ∈ AIP

.
An analogous property fails however for roles, as two pat-

terns P1 = chh1

P,e and P2 = chh2

P,e may reuse the same ele-
ment from ∆∗, that is, genP1 = genP2 ∈ ∆∗. In that case,
satisfied roles in I♢

|∆ where ∆ := λw·(P,h)·(P1,h1)(I
P1) may

not be satisfied in IP1 . Conditions 5 and 6 allow us to show
the following weaker property, sufficient for our purposes:

Lemma 5. For all w · (P, h) ∈ P , d, e ∈ ∆IP
, and P ∈

NR: if (λw·(P,h)(d), λw·(P,h)(e)) ∈ PI♦
, then IP remains

T -satisfiable if we add (d, e) to PIP
.

A similar lemma (given in the appendix) allows us to lift
query matches from I♢ to patterns, yielding the following:
Proposition 1. I♢ is a model of K whose c-matches are
included in those encoded in M∗.

From a Model to an Accepting Initial Pattern We now
turn to the proof of Lemma 3. We fix a model I of K, and
our task is to construct an accepting initial pattern having the
same number of c-matches as I.

Let ∆∗ be the subset of ∆I consisting of all individuals
in A and all elements e such that e = π(z) for some π :
q → I and counting variable z. Set I∗ := I|∆∗ and M∗ :=

(MI)|∆∗ . Notice in particular that the number of c-matches
for q encoded in M∗ is exactly the number of c-matches for q
in I. We claim that P∗ := (∅,∆∗, I∗,M∗, Id) is accepting.

To prove this, we shall build a set of patterns, whose every
pattern P is not trivially rejecting, i.e. P does not satisfy the
base-case condition of a rejecting pattern, and which is real-
ized in I, meaning that IP homomorphically embeds into I.
Observe that the initial pattern P∗ satisfies both conditions.
To pursue the construction, given any pattern P satisfying
the two conditions and a head h applicable to P, we show
how to extract from I another Q which satisfies the condi-
tions and which makes h hold for P. Since the number of
patterns is finite, every sequence of patterns constructed in
such a manner either leads to a trivially accepting pattern
(i.e. one with no applicable heads) or loops back to an al-
ready explored pattern satisfying the conditions. It follows
that all patterns in the set are accepting (in particular, P∗).

To formalize the construction, we shall introduce a func-
tion τ associating to each pattern P a homomorphism IP →



I. Furthermore, we shall assume that, for every R.A ∈ Ω,
we have chosen a function succIR.A that maps every element
e ∈ (∃R.A)I to an element e′ ∈ ∆I such that (e, e′) ∈ RI

and e′ ∈ AI . The construction begins with P∗, for which
we set τ(P∗) := IdI∗→I . Next we take some already con-
structed pattern P1 with its associated function τ(P1), and
consider a head R.B that is applicable to e1 in P1. Since R.B
applies to e, there must exist A ∈ NC such that e ∈ AIP1

and T |= A ⊑ ∃R.B. Set e′1 := τ(P1)(e1). Since
τ(P1) is a homomorphism and I is a model of T , we obtain
e′1 ∈ (∃R.B)I and can set e′2 := succIR.B(e

′
1). If e′2 ∈ ∆∗,

then we set e2 := e′2, otherwise we set e2 to either ⊚ or ⊛
such that e1 ̸= e2.

We can now define the new pattern P2. Its frontier is e1
and its generated term is e2. Its interpretation is given by:

CIP2
:= CI∗ ∪ {ek | e′k ∈ CI , k = 1, 2}

PIP2
:= PI∗ ∪ {(e1, e2) | T |= R ⊑ P}

∪ {(e2, e1) | T |= R− ⊑ P}

Its specification is (MI)|∆∗∪{e′1,e′2} in which e′1 (resp. e′2)
has been replaced by e1 (resp. e2). Its prediction maps a
head h to the value of succIh(e

′
2) if it is defined, else to h.

Finally, we let τ(P2) be the function that maps elements of
∆∗ to themselves, e1 to e′1 and e2 to e′2. Recalling that I is
a model, of K it is then straightforward to verify that P2 is a
well-defined not-trivially-rejecting pattern, satisfying P2 ∈
LR.B
P1,e1

, and such that τ(P2) is indeed a homomorphism.

Example 6. In the model Ie, depicted in Figure 2a, we
can set succIe

R.A2
(a) := δ (other choices of successors are

unique), and then apply the preceding construction to ob-
tain the accepting patterns from Example 4.

3.3 Obtaining Bounded-Size Optimal Models
To obtain optimal models of bounded size, we start from
the pattern tree P and model I♢ we constructed from an
accepting initial pattern. It remains to merge elements of
I♢ to obtain a model of the required size. To identify similar
elements, we consider their neighbourhoods.
Definition 9. Consider an interpretation I and an element
c ∈ ∆I . Its n-neighbourhood N I,∆

n (c) w.r.t. a subdomain
∆ ⊆ ∆I is defined inductively as:

N I,∆
0 (c) := {c}

N I,∆
n+1 (c) := N I,∆

n (c) ∪
{
e

∣∣∣∣ ∃d ∈ N I,∆
n (c) \∆,

∃R ∈ N±
R , (d, e) ∈ RI

}
Observe that we stop adding successors when we reach ∆.

To characterize neighbourhoods in I♢ (w.r.t. domain ∆∗),
we focus on the tree-like structure inherited from P . Recall
that we kept a single pattern for each head R.B applicable to
an element e of a pattern P, namely chR.B

P,e . We can thus con-
sider the bijection σ mapping (P∗, ∅) · (P1, h1) · · · (Pn, hn)

(with n ≥ 1) to ah1 . . . hn, where a is such that frP1 = {a};
we extend σ to ∆∗ by letting σ(e) = e for e ∈ ∆∗. In-
spired by the notion of interleaving used in the DL-Lite set-
ting (Kostylev and Reutter 2015), we define the interlacing
I ′ := σ(I♢), obtained by renaming elements of I♢ using σ.

Denote by ∆◦ := ∆∗ ∪σ(P \P∗) the forest-shaped domain
that is to I ′ what P is to I♢. We define an associated map-
ping f ′ : ∆◦ → I ′ by setting f ′ := σ ◦ f ◦ σ−1 where f
maps each element of ∆∗ to itself and each w · (P, h) ∈ P
to λw·(P,h)(e) where genP = {e}.

The definition of I ′ ensures that every c ∈ ∆I′ \∆∗ be-
longs to σ(P \ P∗) and thus c = aw for some a ∈ ∆∗ and
word w ∈ Ω∗. The tree-shaped structure of ∆◦ ensures that
for all n, there exists a unique prefix rn,c of aw such that (i)
f ′(rn,c) ∈ N I′,∆∗

n (c) and (ii) for any d ∈ N I′,∆∗

n (c), there
exists a unique word wd

n,c such that d = f ′(rn,c · wd
n,c).

This leads us to characterize the n-neighbourhood of an
element c ∈ I ′ via the following function χn,c, whose do-
main Ωn is the set of words over Ω with length ≤ 2n. Notice
that, departing from (Kostylev and Reutter 2015), we keep
track of sets of satisfied concepts, in order to handle con-
junctions of concepts in the left-hand sides of axioms.

χn,c : Ωn → ∆∗ ∪ 2sig(T ) ∪ {∅}

w 7→


∅ if f ′(rn,cw) undefined
f ′(rn,cw) if f ′(rn,cw) ∈ ∆∗

{A ∈ sig(T ) | f ′(rn,cw) ∈ AI′} otherwise

We can now introduce the equivalence relation we use to
merge elements:

Definition 10. The equivalence relation ∼n on ∆I′
is de-

fined as follows: an element e ∈ ∆∗ is ∼n-equivalent only
to itself; elements c1, c2 from ∆I′ \∆∗ are ∼n-equivalent iff
wc1

n,c1 = wc2
n,c2 , χn,c1 = χn,c2 , and |c1| = |c2| mod 2|q|+3.

We obtain a finite model of the required size by merging
elements with respect to ∼|q|+1.

Theorem 2. The interpretation J := I ′/∼|q|+1 is a model
of K that has at most as many c-matches for q as I♢. Its
size is polynomial w.r.t. data complexity, double-exponential
w.r.t. combined complexity, and single-exponential if the size
of the CCQ q is fixed.

Proof sketch. The key to proving that the amount of c-
matches does not increase through the quotient operation is
to exhibit suitable local homomorphisms. Indeed, a match
of q in J maps each connected component C of q into a
|q|-neighbourhood NJ ,∆∗

|q| (c), where c denotes the equiv-
alence class of c w.r.t. ∼|q|+1 and ∆∗ stands for the set
{e | e ∈ ∆∗}. By exhibiting a homomorphism ρc :

NJ ,∆∗

|q| (c) → N I′,∆∗

|q| (c) such that ρ−1
n,c(∆

∗) ⊆ ∆∗, we can
find a match of C in I ′. Such matches for q’s connected
components together form a match of the full q in I ′. It is
mostly straightforward to show that J is a model, except for
negative role inclusions, where the homomorphisms ρc are
needed to move violations of R1 ⊓ R2 ⊑ ⊥ in J back into
I ′. The claimed upper bounds are obtained by analyzing
the size of J (i.e. counting the equivalence classes in ∆J ),
keeping in mind that due to Lemma 1, we may assume that
|∆∗| ≤ |Ind(A)|+ |q| (|Ind(A)|+ 3 |T | 2|T |)|q|.

From Theorem 2, it follows that there exists a model min-
imizing the amount of c-matches with polynomial size w.r.t.



data complexity. One can therefore non-deterministically
guess this interpretation before verifying it is indeed a model
and comparing its amount of c-matches with the input in-
teger. The two latter steps can be done in (deterministic)
polynomial time w.r.t. data complexity, yielding an upper
bound in data complexity for CCQ answering, matching the
corresponding results in the DL-Lite setting (Kostylev and
Reutter 2015; Bienvenu, Manière, and Thomazo 2020).

Theorem 3. CCQ answering in ELHI⊥ is in coNP w.r.t.
data complexity.

3.4 Matching Lower Bounds
We now provide 2EXP lower bounds for EL and DL-LiteHpos,
which together with Theorem 1, establish the 2EXP-
completeness of CCQ answering for ELHI and every
sublogic that extends EL or DL-LiteHpos. The proofs are by
reduction from the problem of answering Boolean union of
conjunctive queries (BUCQs) over KBs with closed predi-
cates, proven 2EXP-hard in (Ngo, Ortiz, and Šimkus 2016).

Theorem 4. CCQ answering in EL is 2EXP-hard w.r.t. com-
bined complexity.

Proof sketch. Consider an EL KB K = (T ,A,Σ) with
closed predicates and a BUCQ q =

∨l
k=1 qk. Examining the

2EXP-hardness proof from (Ngo, Ortiz, and Šimkus 2016),
we may assume that Σ consists only of concept names and
each qk is connected and has only variables as terms.

Pick a fresh individual aux not used in A, and let A′ be ob-
tained from A by adding A(aux) for every concept name A
in K and P(aux, aux) for every role name P in K. Consider
the KB K′ = (T ,A′) and the CCQ q′ built as the conjunc-
tion of (i) all of the CQs qk in q (with all variables treated
as counting variables), (ii) the query qA = ∃zA A(zA) for
each A ∈ Σ, and (iii) the queries q+P = ∃z+P P(z+P , aux) and
q−P = ∃z−P P(aux, z−P ) for each role name P from K. For
each A ∈ Σ, let nA be the number of individuals a such that
A(a) ∈ A, and set N :=

∏
A∈Σ(nA + 1). To complete the

proof, one can show thatN +1 is a certain answer to q′ over
K′ iff K entails q.

Theorem 5. CCQ answering in DL-LiteHpos is 2EXP-hard
w.r.t. combined complexity.

Proof. As the 2EXP-hardness proof for DL-LiteHcore from
(Ngo, Ortiz, and Šimkus 2016) does not involve negative
inclusions, we can employ the same approach as for EL (the
added aux assertions cannot lead to inconsistency).

We thus close the open question of the combined com-
plexity of CCQ answering in DL-LiteHcore. Note that our
lower bound applies even to the subclass of CCQs whose
every variable is a counting variable, as considered in
(Kostylev and Reutter 2015; Calvanese et al. 2020a).

The preceding lower bound does not apply to DL-Litepos,
for which coNEXP membership has been shown (Kostylev
and Reutter 2015; Bienvenu, Manière, and Thomazo 2020).
We pinpoint the exact complexity by giving a matching
lower bound, via a reduction from the exponential grid tiling

problem. Here again the lower bound holds even when re-
stricted to CCQs with only counting variables.

Theorem 6. CCQ answering in DL-Litepos is coNEXP-hard
w.r.t. combined complexity.

4 Cardinality Queries
In this section, we focus on the restricted class of cardinality
queries, which allow one to count the number of elements
belonging to a given concept or role name.

To reduce the number of cases to be studied, we first no-
tice that role cardinality queries are always harder than con-
cept cardinality queries for the logics we consider.

Theorem 7. Let L be a sublogic of ELHI⊥ that can express
A ⊑ ∃P.⊤ (A ∈ NC, P ∈ NR). Then concept cardinality
query answering over L KBs can be polynomially reduced
to role cardinality query answering over L KBs.

Proof. Take a concept cardinality query qA = ∃zA(z) and a
KB K = (T ,A). We pick a fresh role name P ̸∈ sig(K), and
consider the role cardinality query qP = ∃z1, z2 P(z1, z2)
and modified TBox T ′ := T ∪ {A ⊑ ∃P.⊤}.

Any model I of K can be extended to a model I ′ of
K′ = (T ′,A) by setting PI′

:= {(e, e) | e ∈ AI}. Indeed,
this ensures satisfaction of the additional axiom A ⊑ ∃P.⊤.
Moreover, as no new domain elements were introduced, ax-
ioms ⊤ ⊑ B from T remain satisfied, and all other axioms
are not affected since P /∈ sig(T ).

Notice that qA has exactly as many matches in I as qP has
in I ′, hence an interval [m,+∞] is a certain answer to qA
over K iff it is a certain answer to qP over K′.

4.1 Results for EL and its Extensions
The next two results, together with Theorem 7, establish
that cardinality query answering is coNEXP-complete w.r.t.
combined complexity in ELHI⊥ and ELI⊥.

Theorem 8. Role cardinality query answering in ELHI⊥
is in coNEXP w.r.t. combined complexity.

Proof. Theorem 2 proves that the minimal number of
matches is reached with a model of exponential size.

Theorem 9. Concept cardinality query answering in ELI⊥
is coNEXP-hard w.r.t. combined complexity.

Proof sketch. The proof proceeds by reduction from the
complement of the Succinct-3COL problem, known to be
NEXP-complete (Papadimitriou and Yannakakis 1986).

The coNEXP lower bound relies on KBs that only ad-
mit exponentially large models. For logics admitting
polynomial-sized models, the complexity slightly decreases.

Theorem 10. Let L be a sublogic of ELHI⊥ for which ev-
ery satisfiable KB admits a polynomial-sized model. Then
role cardinality query answering over L KBs is in EXP.

Proof sketch. The key observation is that, for logics with
polysize models and single-atom queries, the optimal num-
ber of matches is bounded polynomially in the size of the
KB. We can thus iterate over all polynomial-sized ABoxes



that could represent the restriction of an optimal model to
the ABox and elements in matches. We test whether such
an ABox extends to a model without new matches by per-
forming a satisfiability check, taking the query role as closed
predicate. This gives a deterministic single-exponential time
procedure, since satisfiability of ELHI⊥ KBs with closed
predicates is in EXP (Ngo, Ortiz, and Šimkus 2016).

Corollary 1. Role cardinality query answering in ELH⊥ is
in EXP w.r.t. combined complexity.

Proof sketch. We observe that a variant of the compact
canonical model used in the combined approach (Lutz,
Toman, and Wolter 2009), provides a model also for ELH⊥
KBs with negative role inclusions.

Corollary 2. Role cardinality query answering in ELHI is
in EXP w.r.t. combined complexity.

Proof. Existence of polynomial-sized models is trivial due
to the absence of negative inclusions. For example, extend-
ing A with every possible fact constructed from Ind(A) and
sig(K) yields a model of K = (T ,A).

We conclude this subsection by providing matching lower
bounds for concept cardinality queries in EL.

Theorem 11. Concept cardinality query answering in EL is
EXP-hard w.r.t. combined complexity.

Proof sketch. The proof is by reduction from the problem of
deciding if an EL KB with closed predicates is satisfiable,
proven EXP-hard in (Ngo, Ortiz, and Šimkus 2016).

Theorem 12. Concept cardinality query answering in EL is
coNP-hard w.r.t. data complexity.

Proof sketch. We reduce the complement of the graph 3-
colorability problem to answering the cardinality query
∃z B(z) w.r.t. the TBox T containing A ⊑ ∃R.B and
∃R.Ck ⊓ ∃E.(∃R.Ck) ⊑ B for k ∈ {1, 2, 3}.

4.2 Results for DL-Lite
The data complexity picture being already known from the
literature (Bienvenu, Manière, and Thomazo 2021), we fo-
cus on combined complexity.

We start by establishing tractabililty for DL-Lite(H)
pos KBs.

Theorem 13. Concept cardinality query answering in
DL-Litepos is NL-hard w.r.t. combined complexity.

Proof sketch. We proceed by reduction from the
st-connectivity problem, known to be NL-complete
(Immerman 1999).

Theorem 14. Concept cardinality query answering in
DL-LiteHpos is in NL w.r.t. combined complexity.

Proof. Let qC = ∃zC(z) be a concept cardinality query.
Starting from the canonical model CK of a KB K = (T ,A),
the minimal number of matches can easily be computed.

• If there exists an individual a ∈ Ind(A) such that K |=
C(a), then we can collapse all anonymous elements onto
one such individual (the choice doesn’t matter), obtaining
a model in which matches are exactly such individuals a,
which is clearly minimal (recall we make the UNA). We
can check whether K |= C(a) in NL (Artale et al. 2009)

• Otherwise, if there exists an anonymous match in CK,
then we collapse all anonymous elements onto a chosen
ABox individual, obtaining a model with a single match
for qC, which is clearly optimal. Existence of an anony-
mous match can be checked in NL (Artale et al. 2009).

• Otherwise, there are no matches in CK, hence 0 is the min-
imal number of matches.

Notice that we do not need to actually compute the model
corresponding to the optimal number of matches, and we
only need to compare that number to the input integer.

Theorem 15. Role cardinality query answering in
DL-Litepos is in NL w.r.t. combined complexity.

Proof sketch. The proof relies on the same principle as The-
orem 14, with a more sophisticated case analysis.

Note that the preceding theorem concerns DL-Litepos
rather than DL-LiteHpos, as role cardinality query answering
in DL-LiteHpos is coNP-hard even w.r.t. data complexity.

The introduction of disjointness axioms also leads to in-
tractability, even for concept cardinality queries.

Theorem 16. Concept cardinality query answering in
DL-Litecore is coNP-hard w.r.t. combined complexity.

Proof. Let G = (V, E) be an undirected graph, and consider

TG =
⋃
v∈V

{A ⊑ ∃V,∃V− ⊑ C}∪
⋃

{v1,v2}∈E

{∃V−
1 ⊑ ¬∃V−

2 }.

It is easily verified that G ∈ 3COL iff [4,+∞] /∈ qKG for the
KB KG := (TG , {A(a)}) and query q = ∃zC(z).

Theorem 17. Role cardinality query answering in
DL-LiteHcore is in coNP w.r.t. combined complexity.

Proof sketch. One guesses a small counterexample to
[m,+∞] being a certain answer, relying on the existence
of small models, atomicity of the query, and Theorem 3 of
(Ngo, Ortiz, and Šimkus 2016).

5 Outlook
In this paper, we have extended the study of CCQ answer-
ing to Horn DLs outside the DL-Lite family, establishing a
complete picture of the combined and data complexity of
the problems of answering CCQs and cardinality queries in
ELHI⊥ and its various sublogics. Interestingly, the new
techniques we devised also allowed us to close some open
questions concerning the combined complexity of CCQ an-
swering in DL-Lite. Going forward, the main challenge is
to develop practical algorithms. A first direction is to look
for restrictions on the query or ontology that ensure polyno-
mial data complexity for logics of the EL family. Second, it



would be desirable, for EL but also for DL-Lite, to develop
more refined coNP procedures that are amenable to imple-
mentation using SAT solvers. We believe that our improved
understanding of the structure of optimal models will prove
helpful for both of these research directions.
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A Proofs for Section 3 (General Case of CCQs)
A.1 Proofs for Section 3.1 (Decision Procedure)
The notion of canonical model of a KB will be used several times in the proofs, so we start by recalling its definition.

Canonical model. It is well known that every satisfiable ELHI⊥ KB admits a canonical (or universal) model that embeds
homomorphically into each of its models. We recall how such a model CK can be constructed (see e.g. (Bienvenu and Ortiz
2015)). The domain ∆CK consists of all sequences aR1.M1 . . .Rn.Mn (n ≥ 0) such that a ∈ Ind(A), each Ri belongs to N±

R ,
each Mi is a conjunction of concepts from NC ∪ {⊤} (treated as a set when convenient), and the following conditions hold:

• If n ≥ 1, then T |= M0 ⊑ ∃R1.M1 where M0 = {A ∈ NC ∪ {⊤} | K |= A(a)} and M1 is maximal, as a set of concept
names, for this property.

• For every 1 ≤ i < n, T |= Mi ⊑ ∃Ri+1.Mi+1 and Mi+1 is maximal, as a set of concept names, for this property.

Individual names are interpreted as themselves (aCK = a), and concept and role names are interpreted as follows:

ACK = {a | K |= A(a)} ∪ {e · R.M | A ∈ M}
PCK = {(a, b) | K |= P(a, b)} ∪ {(e, e · P0.M) | T |= P0 ⊑ P} ∪ {(e · P0.M, e) | T |= P0 ⊑ P−}

Lemma 1. There exists a model of K with less than M := (|Ind(A)|+ 3 |T | 2|T |)|q| c-matches for q.

Proof. Consider the canonical model CK of K. For each element of ∆CK , we define its size: the size |a| of an individual a is 1,
the size |w · R.M| of a non-individual element w ·R.M is |w|+ 1. We now equip ∆CK with the following equivalence relation
∼: each individual is only equivalent to itself, while two non-individual elements w1 · R1.M1 and w2 · R2.M2 are equivalent
iff R1.M1 = R2.M2 and |w1| = |w2| mod 3. Let ũ denote the equivalence class of the element u w.r.t ∼ and ν : d 7→ d̃ the
canonical projection.

We claim that the interpretation M := CK / ∼ with domain ∆CK / ∼ and interpretation of atomic concepts and roles given
by ·M := ν◦·CK is a model. Notice it has the desired amount of elements as each equivalence class is: either a single individual,
or fully characterized by an integer modulo 3, a role from sig(T ) and a set of concepts from sig(T ).

We consider each of the possible kinds of assertions and axioms occurring in K:

A(a). Since CK is a model, we have a ∈ ACK . Therefore, the definition of AM gives ã = a ∈ AM.

P(a, b). Since CK is a model, we have (a, b) ∈ PCK . Therefore, the definition of PM gives (ã, b̃) = (a, b) ∈ PM.
A ⊑ ⊥. Since CK is a model, we have ACK = ∅. Therefore, the definition of AM gives AM = ∅.
⊤ ⊑ A. Let u ∈ ⊤M = ∆M. By definition of ∆M, there exists u0 ∈ ∆CK such that ũ0 = u. Since u0 ∈ ⊤CK and CK is a

model, we have u0 ∈ ACK . Therefore the definition of AM gives u = ũ0 ∈ AM.
A1 ⊓A2 ⊑ A. Let u ∈ (A1 ⊓ A2)

M. By definition of AM
1 and AM

2 , there exist u1 ∈ ACK
1 and u2 ∈ ACK

2 with ũ1 = ũ2 = u. Since
ũ1 = ũ2, elements u1 and u2 satisfy the same concepts: either because they both are the same individual, or because
they end with the same R.M, which fully determines the concepts they satisfy. In particular u1 ∈ (A1 ⊓ A2)

CK . Since
CK is a model, we have u1 ∈ ACK , yielding by definition of AM that u = ũ1 ∈ AM.

A1 ⊑ ∃R.A2. Let u ∈ AM
1 . By definition of A1

M there exists u0 ∈ A1
CK with ũ0 = u. Since CK is a model, it ensures there exists

v0 ∈ A2
CK with (u0, v0) ∈ RCK . By definition of A2

M and RM, the element v := ṽ0 satisfies both v ∈ A2
M and

(u, v) ∈ RM, that is u ∈ (∃R.A2)
M.

∃R.A1 ⊑ A2. Let u ∈ (∃R.A1)
M, that is there exists v ∈ AM

1 with (u, v) ∈ RM. By definition of AM
1 and RM, there exist

(u0, v0) ∈ RCK and v1 ∈ ACK
1 such that ũ0 = u and ṽ0 = ṽ1 = v. Again, since ṽ0 = ṽ1 both v0 and v1 satisfy the same

concepts, that is in particular u0 ∈ (∃R.A1)
CK . Since CK is a model, it ensures u0 ∈ ACK

2 , yielding by definition of AM
2

that u = ũ0 ∈ AM
2 .

P ⊑ R. Let (u, v) ∈ PM. By definition of PM, there exists (u0, v0) ∈ PCK such that ũ0 = u and ṽ0 = v. Since CK is a model,
it ensures (u0, v0) ∈ RCK , hence (ũ0, ṽ0) = (u, v) ∈ RM by definition of RM.

R1 ⊓ R2 ⊑ ⊥. By contradiction, assume one can find (u, v) ∈ (R1 ⊓ R2)
M. By definition of RM

1 and RM
2 , there exists (u1, v1) ∈ RCK

1

and (u2, v2) ∈ RCK
2 such that ũ1 = ũ2 = u and ṽ1 = ṽ2 = v.

If either K |= R1(u1, v1) or K |= R2(u2, v2), then, each individual being alone in its equivalence class, we have u1 = u2
and v1 = v2. In particular it gives (u1, v1) ∈ (R1 ⊓ R2)

CK , contradicting CK being a model.
Otherwise we distinguish the four possible cases:
– v1 = u1 · P1.M1 and T |= P1 ⊑ R1.

* v2 = u2 · P2.M2 and T |= P2 ⊑ R2. Since ṽ1 = ṽ2 we have P1.M1 = P2.M2. In particular (u1, v1) ∈ R2
CK ,

which contradicts CK being a model.



* u2 = v2 ·P2.M2 and T |= P2 ⊑ R−
2 . In particular |v1| = |u1|+ 1 mod 3 and |u2| = |v2|+ 1 mod 3. Recall that

ũ1 = ũ2 and ṽ1 = ṽ2, hence |u1| = |u2| mod 3 and |v1| = |v2| mod 3. It yields 0 = 2 mod 3, contradiction.
– u1 = v1 · P1.M1 and T |= P1 ⊑ R−

1 .

* v2 = u2 · P2.M2 and T |= P2 ⊑ R2. Symmetric to the previous case, leading to a contradiction.

* u2 = v2 · P2.M2 and T |= P2 ⊑ R−
2 . Since ũ1 = ũ2 we have P1.M1 = P2.M2. In particular (u1, v1) ∈ R2

CK ,
which contradicts CK being a model.

A.2 Proofs for Section 3.2 (Proofs of Lemmas 2 and 3)
From Accepting Patterns to Models

Lemma 4. For all w · (P, h) ∈ P , for all e ∈ ∆IP
and for all A ∈ NC, if λw·(P,h)(e) ∈ AI♦

, then e ∈ AIP
.

Proof. Letw1 ·(P1, h1) ∈ P be a relevant pattern, e1 an element from ∆IP1 and A a concept name. Assume λw1·P1
(e1) ∈ AI♦

.
By definition of AI♦

there exists a relevant pattern w2 · (P2, h2), and an element e2 ∈ AIP2 such that λw1·(P1,h1)(e1) =
λw2·(P2,h2)(e2). We further refer to this latter equality as (∗). We distinguish 5 cases.

1. e1 ∈ ∆I∗
or e2 ∈ ∆I∗

.
(∗) yields e1 = e2. Interpretation IP2 preserves I∗, hence e2 ∈ AI∗

. Interpretation IP1 preserves I∗, hence e1 ∈ AIP1 .
In the remaining cases, we assume e1, e2 /∈ ∆I∗

, which ensures P1 ̸= P∗ and P2 ̸= P∗. In particular, frP1 , genP1 , frP2 and
genP2 are singletons.

2. e1 ∈ genP1 \∆I∗
and e2 ∈ genP2 \∆I∗

.
(∗) yields P1 = P2. Recall genP1 is a singleton hence e1 = e2, which concludes.

3. e1 ∈ frP1 \∆I∗
and e2 ∈ genP2 \∆I∗

.
(∗) yields w1 = w2 · (P2, h2). In particular w2 · (P2, h2) · (P1, h1) ∈ P , hence P1 = chh1

P2,e2
. By definition of a link we

obtain e1 = e2 (Condition 1) and e1 satisfies the same concepts in both interpretations (Condition 2) hence e1 ∈ AIP1 .
4. e1 ∈ genP1 \∆I∗

and e2 ∈ frP2 \∆I∗
.

Same arguments as for Case 3 but this time with P2 = chh2

P1,e1
.

5. e1 ∈ frP1 \∆I∗
and e2 ∈ frP2 \∆I∗

.
(∗) yields the existence of w · (Q, h) such that w1 = w2 = w · (Q, h). In particular w · (Q, h) · (P2, h2) ∈ P , hence
P2 = chh2

Q,e2
. By definition of a link e2 satisfies the same concepts in both interpretations (Condition 2) hence e2 ∈ AIQ

.
Similarly, w · (Q, h) · (P1, h1) ∈ P , hence P1 = chh1

Q,e2
. By definition of a link we obtain e1 = e2 (Condition 1) and e1

satisfies the same concepts in both interpretations (Condition 2) hence e1 ∈ AIP1 .

Lemma 5. For all w ·(P, h) ∈ P , d, e ∈ ∆IP
, and P ∈ NR: if (λw·(P,h)(d), λw·(P,h)(e)) ∈ PI♦

, then IP remains T -satisfiable
if we add (d, e) to PIP

.

Proof. Let w1 · (P1, h1) ∈ P and d1, e1 ∈ ∆IP1 two elements. Let P ∈ NR be a role name. Assume
(λw1·(P1,h1)(d1), λw1·(P1,h1)(e1)) ∈ PI♦

. By definition of PI♦
, there exist w2 · (P2, h2) ∈ P and (d2, e2) ∈ PIP2 with

λw2·(P2,h2)(d2) = λw1·(P1,h1)(d1) and λw2·(P2,h2)(e2) = λw1·(P1,h1)(e1). We further refer to these two equalities as (∗d) and
(∗e). We distinguish 5 main cases.

1. (d1 ∈ ∆I∗
or d2 ∈ ∆I∗

) and (e1 ∈ ∆I∗
or e2 ∈ ∆I∗

).
(∗d) yields d1 = d2 and (∗e) yields e1 = e2. Interpretation IP2 preserves I∗, hence (d2, e2) ∈ PI∗

. Interpretation IP1

preserves I∗, hence (d1, e1) ∈ PIP1 . It then suffices to recall that IP1 is T -satisfiable.
In the remaining cases, we assume that e1, e2 /∈ ∆I∗

or d1, d2 /∈ ∆I∗
, which ensures P1 ̸= P∗ and P2 ̸= P∗. In particular,

frP1 , genP1 , frP2 and genP2 are singletons. Furthermore, the conditions on roles for a non-initial pattern (Condition 4)
ensures d2 ̸= e2 (recall we assume (d2, e2) ∈ PIP2 ).

2. (d1 ∈ ∆I∗
or d2 ∈ ∆I∗

) and (e1, e2 /∈ ∆I∗
).

(∗d) yields d1 = d2, we distinguish 4 remaining subcases.



(a) e1 ∈ genP1 and e2 ∈ genP2 .
We have λw1·(P1,h1)(e1) = w1 · (P1, h1) and λw2·(P2,h2)(e2) = w2 · (P2, h2). Hence (∗e) yields in particular P1 = P2.
Recall that genP1 is a singleton, so e1 = e2. Therefore IP1 already contains the fact P(d1, e1). Recalling that IP1 is
satisfiable concludes this case.

(b) e1 ∈ frP1 and e2 ∈ genP2 .
We have λw1·(P1,h1)(e1) = w1 and λw2·(P2,h2)(e2) = w2 · (P2, h2). Hence (∗e) yields w1 = w2 · (P2, h2). In particular
w2 · (P2, h2) · (P1, h1) ∈ P , therefore P1 = chh1

P2,e2
and e1 = e2. Notice e1, that is also e2, satisfies the same concepts

in IP1 and in IP2 (Lemma 4 applies to e1 seen in IP1 and e1 seen in IP2 ), and same for d1, that is also d2. Therefore, the
T -satisfiability of IP2 ensures that adding fact P(d1, e1) to IP1 does not violate any negative concept inclusion from T .
We make a case analysis to show the same is true for negative role inclusions:

• First suppose genP1 = {d1}. Since (d1, e1) ∈ PIP2 and e1 ∈ genP2 , then we must have frP2 = {d1} (Condition 4).
We can hence apply Condition 5 from the definition of the link given by P1 = chh1

P2,e2
, ensuring that IP1 ∪ IP2 , which

contains IP1 and fact P(d1, e1), is T -satisfiable.
• If genP1 ̸= {d1}, then there are no roles between d1 and e1 in IP1 (Condition 4), hence no negative role inclusion is

violated by adding fact P(d1, e1) in IP1 .
(c) e1 ∈ genP1 and e2 ∈ frP2 .

Same arguments as for Case 2.b but with P2 = chh2

P1,e1
.

(d) e1 ∈ frP1 and e2 ∈ frP2 .
We have λw1·(P1,h1)(e1) = w1 and λw2·(P2,h2)(e2) = w2. Hence (∗e) yields the existence of w · (Q, h) such that
w1 = w2 = w · (Q, h). In particular w · (Q, h) · (P1, h1) ∈ P , hence P1 = chh1

Q,e1
. Similarly we obtain P2 = chh2

Q,e2
. As

e1, e2 /∈ ∆∗, the pattern Q must be different from P∗, hence its generated term is unique, which gives e1 = e2. Notice e1,
that is also e2, satisfies the same concepts in IP1 and in IP2 (Lemma 4 applies to e1 seen in IP1 and e1 seen in IP2 ), and
same for d1, that is also d2. Therefore, the T -satisfiability of IP2 ensures adding fact P(d1, e1) in IP1 does not violate any
negative concept inclusion from T . It remains to treat the case of negative role inclusions. Notice that due to Condition 4
of links, and the facts that (d2, e2) ∈ PIP2 , e2 /∈ ∆I∗

, and d2 ∈ ∆I∗
, we must have genP2 = {d2} ⊆ ∆I∗

. It follows then
from Condition 6 that nextQ(h2) = d2. We consider two cases:

• If genP1 = {d1}, we obtain similarly nextQ(h1) = d1. Denoting h1 := R1.B1 and h2 := R2.B2, we obtain, by
definition of a prediction, that R1 and R2 are non-contradictory. Due to Condition 4 (on the link between Q and P2), we
have T |= R2 ⊑ P. Therefore P(d1, e1) is non-contradictory with R1(d1, e1) and hence with IP1 as all roles between d1
and e1 in IP1 are consequences of R1(d1, e1) (Condition 4 on the link given by P1 = chh1

Q,e1
).

• If genP1 ̸= {d1}, then there are no roles between d1 and e1 (Condition 4), hence no negative role inclusion is violated by
adding fact P(d1, e1) in IP1 .

3. (d1, d2 /∈ ∆I∗
) and (e1 ∈ ∆I∗

or e2 ∈ ∆I∗
).

This case is symmetric to Case 2.
4. d1, d2, e1, e2 /∈ ∆I∗

.
If (d1 ∈ genP1 and d2 ∈ genP2 ) or (e1 ∈ genP1 and e2 ∈ genP2 ), then (∗d) (resp (∗e)) yields P1 = P2 and we are easily done.
Recalling from the note at the end of Case 1 that we may assume that d2 ̸= e2, we are left with 4 subcases, each immediately
leading to a contradiction.

(a) d2 ∈ genP2 (thus d1 ∈ frP1 and e2 ∈ frP2 ) and e1 ∈ genP1 . (∗d) yields w1 = w2 · (P2, h2) and (∗e) yields w2 =
w1 · (P1, h1), contradiction.

(b) d2 ∈ genP2 (thus d1 ∈ frP1 and e2 ∈ frP2 ) and e1 ∈ frP1 . (∗d) yields w1 = w2 · (P2, h2) and (∗e) yields w2 = w1,
contradiction.

(c) d2 ∈ frP2 (thus e2 ∈ genP2 , thus e1 ∈ frP1 ) and d1 ∈ genP1 . (∗d) yields w2 = w1 · (P1, h1) and (∗e) yields w1 =
w2 · (P2, h2), contradiction.

(d) d2 ∈ frP2 (thus e2 ∈ genP2 , thus e1 ∈ frP1 ) and d1 ∈ frP1 . (∗d) yields w2 = w1 and (∗e) yields w1 = w2 · (P2, h2),
contradiction.

Lemmas 4 and 5 in hand, it is then a technicality to verify that I♢ is a model of K.

Lemma 6. I♢ is a model of K.

Proof. We consider each possible shape of assertion and axiom in K:



A(a). Since I∗ is a model of A, we have a ∈ AI∗
. Recall I∗ is the interpretation of the initial pattern. Therefore the definition

of AI♦
gives a = λP∗,∅(a) ∈ AI♦

.

P(a, b). Since I∗ is a model of A, we have (a, b) ∈ PI∗
. Recall I∗ is the interpretation of the initial pattern. Therefore the

definition of PI♦
gives (a, b) = (λP∗,∅(a), λP∗,∅(b)) ∈ PI♦

.

A ⊑ ⊥. Let u ∈ AI♦
. By definition of AI♦

, there exist w · (P, h) ∈ P and an element e ∈ ∆IP
such that e ∈ AIP

and
λw·(P,h)(e) = u. Since IP is T -satisfiable, it yields a contradiction.

⊤ ⊑ A. Let u ∈ ⊤I♦
= ∆I♦

. By definition of ∆I♦
, we have w · (P, h) ∈ P and an element e ∈ ∆IP

such that λw·P,h(e) = u.
Since e ∈ ⊤IP

and IP is T -saturated, it ensures e ∈ AIP
. Therefore the definition of AI♦

gives u = λw·(P,h)(e) ∈ AI♦
.

A1 ⊓A2 ⊑ A. Let u ∈ A1 ⊓A2
I♦

. By definition of ∆I♦
, there existw ·(P, h) ∈ P and an element e ∈ ∆IP

such that λw·(P,h)(e) = u.

Lemma 4 applied on both concepts A1 and A2 ensures e ∈ A1 ⊓A2
IP

. Since IP is T -saturated, it ensures e ∈ AIP
.

Therefore the definition of AI♦
gives u = λw·(P,h)(e) ∈ AI♦

.

A1 ⊑ ∃R.A2. Let u ∈ AI♦

1 . By definition of A1
I♦

, there exist w · (P, h) ∈ P and an element e ∈ ∆IP
such that e ∈ A1

IP
and

λw·(P,h)(e) = u.
If e ∈ frP , then w cannot be empty (recall the initial pattern has an empty frontier!). Hence we have w = w′ · (P0, h0)

with e ∈ genP0 and λw′·(P0,h0)(e) = u. Lemma 4 gives e ∈ A1
IP0 . Therefore we can assume w.l.o.g. that e ∈ genP , by

considering w instead of w · (P, h).
If R.A2 is not applicable to e in P, then this is because there exists e′ ∈ A2

IP
with (e, e′) ∈ RIP

. Set v := λw·(P,h)(e
′).

By definition of RI♦
and A2

I♦
, we obtain v ∈ AI♦

2 and (u, v) ∈ RI♦
.

If R.A2 is applicable to e in P, then since P is accepting there must exist an accepting pattern P1 ∈ chR.A2

P,e . In particular
w · (P, h) · (P1,R.A2) ∈ P . Let e′ be the generated term of P1. From the definition of a link between patterns, we
have (e, e′) ∈ RIP1 and e′ ∈ AIP1

2 . Set v := λw·(P,h)·(P1,R.A2)e
′. Noticing λw·(P,h)(e) = λw·(P,h)·(P1,R.A2)(e) and by

definition of RI♦
and A2

I♦
, we obtain v ∈ AI♦

2 and (u, v) ∈ RI♦
.

∃R.A1 ⊑ A2. Let u ∈ (∃R.A1)
I♦

, that is, there exists v ∈ AI♦

1 with (u, v) ∈ RI♦
. By definition of RI♦

, there exist w · (P, h) ∈ P
and elements e, e′ ∈ ∆IP

such that (e, e′) ∈ RIP
, λw·(P,h)(e) = u and λw·(P,h)(e

′) = v. By Lemma 4 we obtain

e′ ∈ A1
IP

. Since IP is T -saturated, we have e ∈ A2
IP

. Therefore by definition of A2
I♦

we obtain u ∈ A2
I♦

.

P ⊑ R. Let (u, v) ∈ PI♦
. By definition of PI♦

, there exist w(P, h) ∈ P and elements e, e′ ∈ ∆IP
such that (e, e′) ∈ PIP

,
λw·(P,h)(e) = u and λw·(P,h)(e

′) = v. Since IP is T -saturated, we have (e, e′) ∈ RIP
. Therefore by definition of RI♦

we obtain (u, v) ∈ RI♦
.

R1 ⊓ R2 ⊑ ⊥. Let (u, v) ∈ R1 ⊓ R2
I♦

. By definition of RI♦

1 , there exist w1 · (P1, h1) ∈ P and elements d1, e1 ∈ ∆IP1 such that
(d1, e1) ∈ RIP1

1 , λw1·(P1,h1)(d1) = u and λw1·(P1,h1)(e1) = v. Similarly, by definition of RI♦

2 , there exist a pattern
w2 · (P2, h2) and elements d2, e2 ∈ ∆IP2 such that (d2, e2) ∈ RIP2

2 , λw2·(P2,h2)(d2) = u and λw2·(P2,h2)(e2) = v. In
particular we have λw1·(P1,h1)(d1) = λw2·(P2,h2)(d2) and λw1·(P1,h1)(e1) = λw2·(P2,h2)(e2). By Lemma 5, we can add
(d1, e1) to RIP1

2 while retaining T -satisfiability, contradicting the fact that T contains R1 ⊓ R2 ⊑ ⊥.

It remains to verify that there are no additional c-matches for q in I♢, that is, no more than encoded in M∗. The inherited
tree-like structure of I♢, along with the specifications having to be preserved between linked patterns, ensures that if a match
π : q → I♢ exists, then it is actually already taken into account in the specification of the patterns from P . Therefore, if a
match maps a counting variable z onto an element of shape w · (P, h) in I♢, we shall ensure that (q, z 7→ s), with s either ⊚
or ⊛, belongs to MP . This would contradict P being accepting. The exact (stronger) statement is as follows.

Lemma 7. For allw ·(P, h) ∈ P , if π : r → I♢ is a match of r ⊆ q, then we have (r, π′) ∈ MP where π′ := (λw·(P,h))
−1◦π|∆

with ∆ := π−1(λw·(P,h)(∆
IP
)).

Proof. Considering a breadth-first total order ⩽ on P , and given W ∈ P , define I♢
W as follows:

I♢
W =

⋃
w·(P,h)⩽W

λw·(P,h)(I
P).



We prove by induction on W ∈ P that for all r ⊆ q, all matches π : r → I♢
W and for all w · (P, h) ⩽W , we have (r, π′) ∈ MP

where π′ := (λw·(P,h))
−1 ◦ π|∆ with ∆ := π−1(λw·(P,h)(∆

IP
)).

• Assume W = (P∗, ∅), we have I♢
W = I∗. Consider r ⊆ q and a match π : r → I♢

W . The only w ⩽W is w =W = (P∗, ∅).
Recalling λ(P∗,∅) = Id, we have π′ = π. Therefore (r, π) belongs to the induced specification of I∗. Since M∗ is coherent,
it contains in particular (r, π′), which concludes the base case.

• Assume W ∈ P with (P∗, ∅) < W and the statement holds for all w0 < W (Induction hypothesis 1). Consider r ⊆ q and a
match π : r → I♢

W . Consider w · (P, h) ⩽W . Denote d the distance from W to w · (P, h) in the tree P , that is the number of
links required to move from W to w · (P, h). We prove by induction on d that (r, π′) ∈ MP where π′ := (λw·(P,h))

−1 ◦ π|∆
and with ∆ := π−1(λw·(P,h)(∆

IP
)).

– When d = 0, we have W = w · (P, h). Let W ′ the predecessor of W w.r.t. ⩽. We partition r into r1 the atoms α from r

such that π is a match for α in λW (IP) and r2 the other atoms, which are hence necessarily mapped by π into I♢
W ′ . We

denote by π1 := π|var(r1) and π2 := π|var(r2) the corresponding restrictions of π.
First note that since MP is coherent, it contains the pair (r1, π

′
1) where π′

1 := (λw·(P,h))
−1 ◦ (π1)|∆1 with ∆1 :=

(π1)
−1(λw·(P,h)(∆

IP
)).

Letting w = w′ · (Q, h′), we next note that applying the Induction Hypothesis 1 on W ′ with w (which is indeed ⩽ W ′)
and r2 and π2, gives us (r2, π′

2) ∈ MQ where π′
2 := (λw′·(Q,h′))

−1 ◦ (π2)|∆2 with ∆2 := (π2)
−1(λw′·(Q,h′)(∆

IQ
)).

Since w′ · (Q, h′) · (P, h) ∈ P , we can consider P = chhQ,e, where e denotes the frontier of P. Condition 3 in the definition
of a link therefore ensures (r2, (π′

2)|∆I∗∪{e}) ∈ MP . We’d like to form the union of this latter pair with (r1, π
′
1).

Consider v ∈ var(r1) ∩ var(r2). Since r1 contains only atoms that are mapped on λW (IP) by π, the variable v is thus
mapped either to an element of ∆∗, to w or to w · (P, h). The latter is excluded as r2 only contains atoms that are mapped
in I♢

W ′ but w · (P, h) /∈ ∆I♦
W ′ since ⩽ is breath-first and W ′ < W = w · (P, h). If π(v) ∈ ∆∗, then it is clear that π′

1
and (π′

2)|∆I∗∪{e} are defined and equal on v. Otherwise π(v) = w, which yields that λW (e) = w and λw(e) = w. The
first ensures π′

1 is defined on v and equal to w, while the second ensures the same for (π′
2)|∆I∗∪{e}. As this holds for each

variable in v ∈ var(r1) ∩ var(r2), and that MP is coherent we have (r1 ∪ r2, π′
1 ∪ (π′

2)|∆I∗∪{e}) ∈ MP , which is the
desired pair.

– Assume now the property holds for all w at distance d ≥ 0 from W (Induction Hypothesis 2). Let wd+1 ⩽ W be exactly
at distance d + 1 from W . In particular, notice that wd+1 < W . There exists a link between wd+1 and some wd ⩽ W at
distance exactly d from W . We distinguish two cases:

* wd+1 = wd · (P, h). We exhibit another suitable partition of r. Denote w+
d+1 the elements w′ · (Q, h′) ∈ P such that

wd+1 is a prefix of w′ · (Q, h′) and w′ · (Q, h′) ⩽ W . Define rd+1 as the atoms α from r such that π is a match for α
in some λw′·(Q,h′)(I

Q) with w′ · (Q, h′) ∈ w+
d+1. Let rd consists of the remaining atoms, which are hence mapped on

elements that cannot admit wd+1 as a prefix. Denote by πd+1 and πd the corresponding restrictions of π.
We first note that W /∈ w+

d+1, as it would contradict wd being closer to W than wd+1. Therefore πd+1 maps rd+1 in
I♢
W ′ and we can apply Induction Hypothesis 1 with wd+1, rd+1 and πd+1, which provides (rd+1, π

′
d+1) ∈ MP where

π′
d+1 := (λwd·(P,h))

−1 ◦ (πd+1)|∆d+1 with ∆d+1 := (πd+1)
−1(λwd·(P,h)(∆

IP
)).

Letting wd = w0 · (Pd, hd), we next note that Induction Hypothesis 2 applied on wd, rd and πd provides (rd, π′
d) ∈ Pd

where π′
d := (λw0·(Pd,hd))

−1 ◦ (πd)|∆d with ∆d := (πd)
−1(λw0·(Pd,hd)(∆

IPd )). The link between wd+1 and wd then
ensures that (rd, (π′

d)|∆I∗∪{e}) ∈ P where e denotes the frontier term of P.
Consider v ∈ var(rd+1) ∩ var(rd). Since rd+1 contains only atoms that are mapped on λw′·(Q,h′)(Q) by π for some
w′ · (Q, h′) ∈ w+

d+1, the variable v is thus mapped either to an element of ∆∗, to wd or to elements w′ · (Q, h′) admitting
wd+1 as a prefix. But since rd contains only terms that can not map on elements admitting wd+1 as a prefix, only ∆∗ or
wd remain possible. Noticing λwd+1

(e) = λwd
(e) = wd if ever π(v) = wd allows to conclude as in the Case d = 0.

* wd = wd+1 · (Pd, hd). We exhibit another suitable partition of r. Denote w+
d the elements w′ · (Q, h′) ∈ P such that wd

is a prefix of w′ · (Q, h′) and w′ · (Q, h′) ⩽ W . Define rd as the atoms α from r such that π is a match for α in some
λw′·(Q,h′)(I

Q) with w′ · (Q, h′) ∈ w+
d . Let rd+1 consists of the remaining atoms, which are hence mapped on elements

that cannot admit wd as a prefix. Denote by πd and πd+1 the corresponding restrictions of π.
We first note that W ∈ w+

d , as wd is closer to W than wd+1. Therefore πd+1 maps rd+1 in I♢
W ′ and we can apply

Induction Hypothesis 1 with wd+1, rd+1 and πd+1, which provides (rd+1, π
′
d+1) ∈ MP where π′

d+1 := (λwd·(P,h))
−1 ◦

(πd+1)|∆d+1 with ∆d+1 := (πd+1)
−1(λwd·(P,h)(∆

IP
)).

We next note that Induction Hypothesis 2 applied onwd, rd and πd provides (rd, π′
d) ∈ Pd where π′

d := (λw0·(Pd,hd))
−1◦



(πd)|∆d with ∆d := (πd)
−1(λw0·(Pd,hd)(∆

IPd )). The link between wd+1 and wd then ensures that (rd, (π′
d)|∆I∗∪{e}) ∈

P where e denotes the frontier term of Pd.
Consider v ∈ var(rd+1) ∩ var(rd). Since rd contains only atoms that are mapped on λw′·(Q,h′)(Q) by π for some
w′ · (Q, h′) ∈ w+

d , the variable v is thus mapped either to an element of ∆∗, to wd+1 or to elements w′ · (Q, h′) admitting
wd as a prefix. But since rd contains only terms that can not map on elements admitting wd as a prefix, only ∆∗ or wd+1

remain possible. Noticing λwd+1
(e) = λwd

(e) = wd+1 if ever π(v) = wd+1 allows to conclude as in the previous cases.

Proposition 1. I♢ is a model of K whose c-matches are included in those encoded in M∗.

Proof. Modelhood follows directly from Lemma 6, which is based on Lemmas 4 and 5 presented in the paper. The amount of
c-matches is handle by Lemma 7 just above.

From a Model to an Accepting Initial Pattern We here prove the various claims building an accepting initial pattern from
I. The base case consisting of verifying that P∗ is non-trivially rejecting is trivial, and IdI∗→I is indeed an homomorphism.

We now move to the induction case: assume P1 has been obtained by the described procedure and has all the desired
properties (especially those two mentioned just above). Let R.B an existential head that applies on e1 in P1.

We first verify that τ(P2) is an homomorphism:

• Let u ∈ AIP2 . If u ∈ AI∗
, then in particular u ∈ ∆∗ hence τ(P2)(u) = u ∈ AI∗ ⊆ AI . Otherwise, u = ek for k = 1 or

k = 2 with e′k ∈ AI . In that case, notice τ(P2)(u) = e′k which concludes.

• Let (u, v) ∈ PIP2 . If (u, v) ∈ PI∗
, then in particular u, v ∈ ∆∗, hence (τ(P2)(u), τ(P2)(v)) = (u, v) ∈ PI∗ ⊆ PI .

Otherwise, if (u, v) = (e1, e2) with T |= R ⊑ P, then notice that (τ(P2)(u), τ(P2)(v)) = (e′1, e
′
2). Since e′2 is the successor

of e′1 for R.B in I, and that I models T , it yields (e′1, e
′
2) ∈ PI which concludes. Otherwise we have (u, v) = (e2, e1) with

T |= R− ⊑ P, then notice that (τ(P2)(u), τ(P2)(v)) = (e′1, e
′
1). Since e′2 is the successor of e′1 for R.B in I, and that I

models T , it yields (e′2, e
′
1) ∈ PI which concludes.

We now verify that P2 as defined in the core paper is indeed a well-defined pattern.

• The frontier e1 and the generated term e2 of P2 are indeed elements from ∆∗ ∪ {⊚,⊛}.

• The interpretation IP2 is clearly T -satisfiable as it embeds homomorphically by τ(P2) in the model I being a model of T . It
is T -saturated since: concepts and roles on I∗ are fully-preserved and they come from the model I. The additional concepts
on e1 and e2 are also all preserved from those on e′1 and e′2. The additional roles between e1 and e2 are all defined as induced
by R(e1, e2) which ensures this edge is also saturated. Finally, it indeed preserves I∗ (we can’t have e1 and e2 in ∆∗ at the
same time as it would contradict R.B being applicable on e1 = e′1 since e2 = e′2 is the R.B successor in I!)

• Restrictions of induced specification are coherent hence MP2 is indeed coherent. We verify it preserves M∗: (MP2)∆∗ :=
((MI)|∆∗∪(τ(P2))−1({e′1,e′2}))|∆∗ = (MI)|∆∗ = M∗.

• Let R1.B1 and R2.B2 be two heads such that T |= R1 ⊓ R2 ⊑ ⊥. By definition of next2, if it maps R1.B1 and R2.B2 to the
same element, it means that the successors of e′1 for these two heads in I are equal, which would contradict I being a model.

The fact that P2 is not trivially rejecting is trivial as its specification is a restriction of the induced specification of I, which
doesn’t contain pairs (q, π) that map π outside ∆∗ (that is literally the definition of ∆∗!).

We finally verify P2 ∈ LR.B
P1,e1

.

1. We indeed have frP2 = {e1} and genP2 = {e2} singletons.

2. P1 can either be the initial pattern of a built one. In both cases the concepts satisfied on e1 in P1 are inherited from those on
e′1. Since it is also the case for P2, this condition holds.

3. P1 can either be the initial pattern of a built one. In both cases the specification is the induced specification of I restricted to
the domain of IP1 . We directly have the desired equality as both e1 (seen in P1 and P2) comes from the same e′1.

4. This condition matches the definition of IP2 .

5. A violation of this condition would imply that e′1 is the successor of e′2 for an head incompatible with h would contradict I
being a model.

6. Recall we fixed the choice of successor once and for all!



A.3 Proofs for Section 3.3 (Obtaining Bounded-Size Optimal Models)
Theorem 2. The interpretation J := I ′/∼|q|+1 is a model of K that has at most as many c-matches for q as I♢. Its size is
polynomial w.r.t. data complexity, double-exponential w.r.t. combined complexity, and single-exponential if the size of the CCQ
q is fixed.

We here focus on proving J is indeed a model and contains at most as many c-matches as I ′. Notice the latter point is
equivalent to having at most as many c-matches as I♢, as I ′ is simply obtained by a renaming of elements from I♢. Let us
first formulate two remarks concerning the constructed interpretation J .

Remark 3. The set of concepts from sig(T ) satisfied by c ∈ ∆I′
is exactly χn,c(w

c
n,c). Therefore, if c ∼n c′, then c and c′

satisfy the same concept names.

Remark 4. If c ∼n c
′, then c ∼m c′ for any m ≤ n.

We now define homomorphisms ρc, mentioned in the proof sketch, inductively on NJ ,∆∗

k (c) with k increasing from 0 to |q|.
Starting from the element c ∈ NJ ,∆∗

0 (c), we can naturally carry it back as ρc(c) = c ∈ N I′,∆∗

0 (c). Assume now that we have
defined ρc(d) for some d ∈ NJ ,∆∗

n (c) and that we are moving further to an element e ∈ NJ ,∆∗

n+1 (c) along an edge (d, e) in J .
In the case of e /∈ ∆∗, the following lemma produces a candidate ρc(e), namely e′, which is to ρc(d), namely d′, what e is to d.

Lemma 8. Given two elements d, e ∈ ∆J \ ∆∗, if there exists a role P from N±
R such that (d, e) ∈ PJ , then there exists a

unique element R.B ∈ Ω such that one of the two following conditions is satisfied:

edge+. |e| = |d|+ 1 mod 2|q|+ 3, we
|q|+1,e = wd

|q|+1−1,d · R.B and T |= R ⊑ P.

Furthermore, for all d′ ∼k d, the element e′ := d′ · R.B belongs to ∆I′
and satisfies e′ ∼k−1 e.

edge−. |d| = |e|+ 1 mod 2|q|+ 3, wd
|q|+1,d = we

|q|+1−1,e · R.B and T |= R− ⊑ P.
Furthermore, for all d′ ∼k d, we have e′ such that d′ = e′ · R.B and the prefix e′ satisfies e′ ∼k−1 e.

Proof. Unicity. Notice the two conditions are mutually exclusive: |e| = |d|+1 mod 2|q|+3 and |d| = |e|+1 mod 2|q|+3
would imply 0 = 2 mod 2|q| + 3, which is impossible as 2|q| + 3 > 2. Furthermore, in each case R.B is defined as the last
letter of the word we

|q|+1,e (resp wd
|q|+1,d), which is unique and does not depends on the choice of e (resp d) nor on P.

Existence and additional property. From the definition of PJ , there exist (d0, e0) ∈ PI′
such that d0 = d and e0 = e. Recall

d, e /∈ ∆∗, hence d0, e0 /∈ ∆∗. In that case the definition of f ′ ensures the only antecedent of d0 (resp e0) by f ′ is itself.
Therefore the definition of PI′

, that is σ(PI♦
), yields two cases:

• We have e0 = d0 · R.B with T |= R ⊑ P. It follows that |e0| = |d0|+ 1 mod 2|q|+ 3 and we0
|q|+1,e0

= wd0

|q|+1−1,d0
· R.B,

immediately yielding the same properties for d and e as (d0, e0) = (d, e).
Let now 1 ≤ k ≤ |q| + 1 be an integer and d′ ∼k d. Transitivity gives d′ ∼k d0, and we have in particular χk,d′ = χk,d0

and wd′

k,d′ = wd0

k,d0
. Recall that e0 = d0 · R.B, hence we have χk,d0

(wd0

k,d0
· R.B) ̸= ∅, hence χk,d′(wd′

k,d′ · R.B) ̸= ∅, that is
d′ · R.B is well-defined.
Notice it is now sufficient to prove d′ · R.B ∼k−1 e0: that is because e = e0, hence transitivity will conclude the proof.
It should be clear that wd′·R.B

k−1,d′·R.B = we0
k−1,e0

and |d′ · R.B| = |e0| mod 2|q| + 3. Hence we are only left proving that
χk,e0 = χk,d′·R.B.
First, e0 = d0 · R.B ensures that χk,d0 fully-determines χk−1,e0 . Moreover, χk,d′ fully-determines χk−1,d′·R.B. But since
χk,d0 = χk,d′ and we0

k,d0
= wd′·R.B

k,d′ , we obtain: χk,e0 = χk,d′·R.B, concluding the proof.

• We have d0 = e0 ·R.B with T |= R− ⊑ P. It follows that |d0| = |e0|+1 mod 2|q|+3 and wd0

|q|+1,d0
= we0

|q|+1−1,e0
·R.B,

immediately yielding the same properties for d and e as (d0, e0) = (d, e).
Let now 1 ≤ k ≤ |q| + 1 + 1 be an integer and d′ ∼k d. Transitivity gives d′ ∼k d0, and we have in particular wd′

1,d′ =

wd0

1,d0
= R.B (very important to have k ≥ 1 here!). That is d′ ends by R.B, and therefore we can indeed have prefix e′ such

that d′ = e′ · R.B.
The rest of the proof follows the previous Case 1, this time focusing on the proof of e′ ∼k−1 e0, based on d′ ∼k d0.

Notice the “strength” of the equivalence relation ∼k between e and ρc(e) decreases as we move further in the neighbourhood
of c. However, since we start from ρc(c) := c ∼|q|+1 c and explore a |q|-neighbourhood, the index remains at least 1. This is
essential as ∼1 encodes relations to elements of ∆∗ as the next lemma shows. It allows in particular to treat the case of e ∈ ∆∗.

Lemma 9. If (d, e) ∈ RJ for some e ∈ ∆∗, and if d′ ∼1 d, then (d′, e) ∈ RI′
.



Proof. Recall that since e ∈ ∆∗ we have e = {e}. The definition of RJ and further of RI′
provide d0, e0 ∈ ∆◦ such that :

f ′(d0) = d, f ′(e0) = e and satisfying (f ′(d0), f
′(e0)) ∈ RI′

from one of the following three cases:

• f ′(d0), f ′(e0) ∈ RI∗
. In particular f ′(d0) ∈ ∆∗, hence f ′(d0) = d = d′. Therefore (d′, e) = (f ′(d0), f

′(e0)) ∈ RI′
.

• e0 = d0 · P.B with T |= P ⊑ R. If f ′(d0) ∈ ∆∗, then we again have f ′(d0) = d = d′ immediately yielding (d′, e) ∈ RI′
.

Otherwise we have χ1,f ′(d0)(w
f ′(d0)
1,f ′(d0)

· P.B) = f ′(e0) = e. But since f ′(d0) ∼1 d ∼1 d
′, we have χ1,d′ = χ1,f ′(d0)

and wd′

1,d′ = w
f ′(d0)
1,f ′(d0)

. Therefore e = χ1,f ′(d0)(w
f ′(d0)
1,f ′(d0)

· P.B) = χ1,d′(wd′

1,d′P.B) = f ′(r1,d′wd′

1,d′P.B). Recalling that

d′ = f ′(r1,d′wd′

1,d′), we hence obtain (d′, e) = (f ′(r1,d′wd′

1,d′), f ′(r1,d′wd′

1,d′P.B)) ∈ PI′ ⊆ RI′
.

• d0 = e0 ·P.B with T |= P ⊑ R−. If f ′(d0) ∈ ∆∗, then we again have f ′(d0) = d = d′ immediately yielding (d′, e) ∈ RI′
.

Otherwise the 1-root of f ′(d0) = d0 is e0 and wd
1,d = P.B. We thus have: χ1,f ′(d0)(ε) = f ′(e0) = e (where ε denotes the

empty word). But since f ′(d0) ∼1 d ∼1 d
′, we have χ1,d′ = χ1,f ′(d0) and wd′

1,d′ = wd
1,d. Combining the preceding facts, we

obtain (d′, e) = (f ′(r1,d′wd′

1,d′), χ1,d′(ε)) = (f ′(r1,d′ · P.B), f ′(r1,d′)) ∈ (P−)I
′ ⊆ RI′

.

It remains to free ourselves from the particular choice of d, which is likely not to be the only element of NJ ,∆∗
n (c) connected

to e. Taking a closer look at Lemma 8, we observe that ρc(e), that is e′, is obtained either by adding a letter to ρc(d), that is d′,
or by removing the last letter of ρc(d), and that these letters coincide with those in the suffixes of elements d and e. Therefore,
when moving from c to e and ignoring self-cancelling steps, each added letter must appear in the suffix of e and, similarly, each
removed letter must appear in the suffix of c.

The challenge is therefore to quantify the number of additions and removals to build ρc(e) directly from c and e. The next
definition captures the relative difference of letters between c and e, encoded in |c| and |e| mod 2|q|+ 3.

Definition 11. Let c ∈ ∆J and n ≤ |q|. The relative depth of e ∈ NJ ,∆∗
n (c) from c is the integer δc(e) ∈ [−n, n] such that

|e| = |c|+ δc(e) mod 2|q|+ 3.

Remark 5. By induction on n ≤ |q|, it is straightforward to see that δc(e) is well defined. Unicity is ensured by δc(e) ≤ n ≤ |q|.
A consequence of Lemma 8 is that for the smallest n ≤ |q| such that e ∈ NJ ,∆∗

n (c) we have δc(e) = n mod 2.

We can now identify how many additions and removals cancelled each other. Indeed, if it takes n steps to reach e from c,
with relative difference of δ := δc(e), then n − |δ| is the length of the self-cancelling path, hence: n−|δ|

2 cancelled additions
and n−|δ|

2 cancelled removals. Therefore, the actual amount of additions is n−|δ|
2 + δ if δ ≥ 0, or n−|δ|

2 if δ ≤ 0, that is in
both cases n+δ

2 . Similarly we obtain n−δ
2 for the actual amount of removals. The next theorem formalizes all these intuitions:

ρn,c(e) (in non-trivial cases) is obtained by removing the n−δ
2 last letters of c and keeping the n+δ

2 last letters from the suffix
of e. It is then a technicality to verify these syntactical operations on words make sense in the domain of I ′.

Theorem 18. For all c ∈ ∆I′
and all n ≤ |q|, the following mapping:

ρn,c(e) : NJ ,∆∗

n (c) → N I′,∆∗

n (c) e 7→


ρn−1,c(e) if e ∈ NJ ,∆∗

n−1 (c)
e if e ∈ ∆∗

rn−δc(e)

2 ,c
· we

n+δc(e)

2 ,e
otherwise

is a homomorphism satisfying ρn,c(e) ∼|q|+1−n e and ρ−1
n,c(∆

∗) ⊆ ∆∗.

Proof. Let c ∈ ∆I′
. We proceed by induction on n ≤ |q| and prove along a technical statement. Property ρn,c(e) ∼|q|+1−n e

will already ensure wρn,c(e)

|q|+1−n,ρn,c(e)
= we

|q|+1−n,e; we reinforce this latter fact as follows. If e ∈ NJ ,∆∗
n (c) \ NJ ,∆∗

n−1 (c), then:

w
ρn,c(e)

|q|+1−n−δc(e)

2 ,ρn,c(e)
= we

|q|+1−n−δc(e)

2 ,e
(∗)

It is indeed a stronger statement since −n ≤ δc(e) ≤ n leads to 0 ≤ n−δc(e)
2 ≤ n, hence |q| + 1 − n ≤ |q| + 1 − n−δc(e)

2 .
Property ∗ therefore provides a more precise information about the suffix of ρn,ce.

Base case: n = 0. Let e ∈ NJ ,∆∗

0 (c), hence e = c. If c ∈ ∆∗, then ρ0,ce = e = c. Otherwise we have δc(e) = 0, hence
ρ0,ce = r0,c · wc

0,c = c. In both cases ρ0,ce = c, and it is straightforward that all the desired properties hold. In particular,

agreeing that NJ ,∆∗

−1 (c) can reasonably be set to ∅, our technical statement holds.



Induction case. Assume the statement holds for 0 ≤ n − 1 < |q|. Let e ∈ NJ ,∆∗
n (c). If e ∈ NJ ,∆∗

n−1 (c), then the induction
hypothesis applies directly on e and provides (stronger versions of) the desired properties. Otherwise, we have by definition of
neighbourhoods an element d ∈ NJ ,∆∗

n−1 (c), not belonging to ∆∗ nor to NJ ,∆∗

n−2 (c), and a role P ∈ N±
R such that (d, e) ∈ PJ .

We apply the induction hypothesis on d, which gives ρn−1,c(d) = rn−1−δc(d)

2 ,d
· wd

n−1+δc(d)

2 ,d
since d /∈ ∆∗. We further

distinguish between e ∈ ∆∗ and e /∈ ∆∗, the latter subcase yielding two subcases by applying Lemma 8 and distinguishing
between Cases edge+and edge−. We have therefore three cases to treat.
e ∈ ∆∗. We have ρn,c(e) = e and the only non-trivial property to prove is that e ∈ N I′,∆∗

n (c). Recall the induction
hypothesis ensures in particular ρn−1,c(d) ∼1 d. Lemma 9 applies and ensures (ρn−1,c(d), e) ∈ PI′

, which provides the
desired property.

edge+. Case edge+ensures |e| = |d| + 1 mod 2|q| + 3, hence δc(e) = δc(d) + 1, and we
|q|+1,e = wd

|q|+1−1,d · R.B.
Therefore, our element ρn,c(e) of interest simplifies as:

ρn,c(e) = rn−δc(e)

2 ,c
· we

n+δc(e)

2 ,e

= rn−(δc(d)+1)

2 ,c
· we

n+(δc(d)+1)

2 ,e

= r (n−1)−δc(d)

2 ,c
· we

(n−1)+δc(d)

2 +1,e

= r (n−1)−δc(d)

2 ,c
· wd

(n−1)+δc(d)

2 ,d
· R.B

= ρn−1,c(d) · R.B,

which is well-defined and satisfies ρn,c(e) ∼|q|+1−n e from Lemma 8. Recalling that the induction hypothesis gives

ρn−1,c(d) ∈ N I′,∆∗

n−1 (c), it follows that ρn,c(e) ∈ N I′,∆∗

n (c). Furthermore, notice that e and d satisfy all conditions of
our additional statement. Since in Case edge+we have T |= R ⊑ P, reusing ρn,c(e) = ρn−1,c(d) · R.B immediately yields
(ρn−1,c(d), ρn,c(e)) ∈ PI′

.

Checking that Property ∗ holds is now a technicality, and recall that since d ∈ NJ ,∆∗

n−1 (c) \ NJ ,∆∗

n−2 (c), we can apply it to d
by induction hypothesis. We hence have:

w
ρn,c(e)

|q|+1−n−δc(e)

2 ,ρn,c(e)
= w

ρn−1,c(d)

|q|+1−n−δc(e)

2 −1,ρn−1,c(d)
· R.B

= w
ρn−1,c(d)

|q|+1− (n−1)+1−(δc(d)+1)

2 −1,ρn−1,c(d)
· R.B

= w
ρn−1,c(d)

|q|+1− (n−1)−δc(d)

2 −1,ρn−1,c(d)
· R.B

= wd

|q|+1− (n−1)−δc(d)

2 −1,d
· R.B

= we

|q|+1−n−δc(e)

2 ,e
.

edge−. Case edge−ensures |e| = |d| − 1 mod 2|q| + 3, hence δc(e) = δc(d) − 1, and wd
|q|+1,d = we

|q|+1−1,e · R.B. By
induction hypothesis, element ρn−1,c(d) = r (n−1)−δc(d)

2 ,d
·wd

(n−1)+δc(d)

2 ,d
is well-defined. Notice Property ∗ on d (which, again

can be applied as d ∈ NJ ,∆∗

n−1 (c) \ NJ ,∆∗

n−2 (c)) gives more precise information on the suffix of ρn−1,c(d) than the definition of

ρn−1,c(d), because n ≤ |q|+ 1 leads to (n−1)+δc(d)
2 + 1 ≤ |q|+ 1− (n−1)−δc(d)

2 . Therefore, wd
(n−1)+δc(d)

2 +1,d
is itself a suffix

of wd

|q|+1− (n−1)−δc(d)

2 ,d
, which equals wρn−1,c(d)

|q|+1− (n−1)−δc(d)

2 ,ρn−1,c(d)
. Hence we obtain:

ρn−1,c(d) = r (n−1)−δc(d)

2 +1,d
· wd

(n−1)+δc(d)

2 +1,d

= rn−δc(e)

2 ,d
· wd

n+δc(e)

2 +1,d

= rn−δc(e)

2 ,d
· we

n+δc(e)

2 ,e
· R.B

= ρn,c(e) · R.B

Lemma 8 now ensures ρn,c(e) ∼|q|+1−n e (and could already ensure we can find this suffix of ρn,c(d)! However, we had to
check that the formula still works here, in particular that the suffix of ρn−1,c(d) matches long enough the suffix of d) .

Recalling that the induction hypothesis gives ρn−1,c(d) ∈ N I′,∆∗

n−1 (c), it follows that ρn,c(e) ∈ N I′,∆∗

n (c). Furthermore,
notice that e and d satisfy all conditions of our additional statement. Since in Case edge−we have T |= R− ⊑ P, reusing
ρn−1,c(d) = ρn,c(e) · R.B immediately yields (ρn−1,c(d), ρn,c(e)) ∈ PI′

.



Again, we check Property ∗ holds:

w
ρn,c(e)

|q|+1−n−δc(e)

2 ,ρn,c(e)
· R.B = w

ρn−1,c(d)

|q|+1−n−δc(e)

2 +1,ρn−1,c(d)

= w
ρn−1,c(d)

|q|+1− (n−1)+1−(δc(d)−1)

2 +1,ρn−1,c(d)

= w
ρn−1,c(d)

|q|+1− (n−1)−δc(d)

2 ,ρn−1,c(d)

= wd

|q|+1− (n−1)−δc(d)

2 ,d

= we

|q|+1−n−δc(e)

2 ,e
· R.B

We now verify that ρn,c is a homomorphism.

• Let u ∈ AJ ∩ NJ ,∆∗
n (c). By definition of AJ , we have e ∈ AI′

. Since n ≤ |q| we have ρn,c(u) ∼1 e, hence applying
Remark 3 we obtain ρn,c(u) ∈ AI′

.

• Let (u, v) ∈ RJ ∩ (NJ ,∆∗
n (c) × NJ ,∆∗

n (c)). If u ∈ ∆∗ or v ∈ ∆∗, then Lemma 9 applies on ρn,c(u) or on ρn,c(v)
(recall ρn,c(u) ∼1 u and ρn,c(v) ∼1 v) and gives (ρn,c(u), ρn,c(v)) ∈ RJ . Otherwise u /∈ ∆∗ and v /∈ ∆∗. Let n1, n2 be
the minimum integers such that u ∈ NJ ,∆∗

n1
(c) and v ∈ NJ ,∆∗

n2
(c). Since (u, v) ∈ RJ , we have n1 − n2 ∈ {−1, 0, 1}.

Definitions of δc(u) and δc(v) lead to |u| − |v| = δc(u)− δc(v) mod 2|q|+3. Lemma 8 gives |u| = |v| ± 1 mod 2|q|+3.
Recall δc(u), δd(v) ∈ [−|q|, |q|], hence −2|q|−1 ≤ δc(u)−δc(u)∓1 ≤ 2|q|+1. Since δc(u)−δd(v)∓1 = 0 mod 2|q|+3
and 2|q| + 1 < 2|q| + 3, we must have δc(u) − δc(v) = ±1. Joint to Remark 5, it excludes the case n1 − n2 = 0. We are
hence left with n1 = n2 ± 1. Applying our additional property with k := max(n1, n2) gives (ρn,c(u), ρn,c(v)) ∈ RI′

.

Finally, ρ−1
n,c(∆

∗) ⊆ ∆∗ is a straightforward consequence of ρn,c(u) ∼1 u (and again, recall elements from ∆∗ are alone in
their equivalent class!).

Let us clarify how Theorem 18 concludes our proof.

Proof of Theorem 2.

Modelhood. We first prove that J is indeed a model by considering each possible shape of assertions and axioms:

A(a). Since I ′ is a model, we have a ∈ AI′
. Therefore, the definition of AJ gives a = a ∈ AJ .

P(a, b). Since I ′ is a model, we have (a, b) ∈ PI′
. Therefore, the definition of PJ gives (a, b) = (a, b) ∈ PJ .

A ⊑ ⊥. Since I ′ is a model, we have AI′
= ∅. Therefore, the definition of AJ gives AJ = ∅ = ∅.

⊤ ⊑ A. Let u ∈ ⊤J = ∆J . By definition of ∆J , there exists u0 ∈ ∆I′
such that u0 = u. Since u0 ∈ ⊤I′

and I ′ is a model, it
ensures u0 ∈ AI′

. Therefore the definition of AJ gives u = u0 ∈ AJ .

A1 ⊓A2 ⊑ A. Let u ∈ (A1 ⊓ A2)
J . By definition of AJ

1 and AJ
2 , there exists u1 ∈ AI′

1 and u2 ∈ AI′

2 with u1 = u2 = u. Remark 3
ensures u1 and u2 satisfy the same concepts, that is in particular u1 ∈ (A1 ⊓ A2)

I′
. Since I ′ is a model, it ensures

u1 ∈ AI′
, yielding by definition of AJ that u = u1 ∈ AJ .

A1 ⊑ ∃R.A2. Let u ∈ AJ
1 . By definition of A1

J there exists u0 ∈ A1
I′

with u0 = u. Since I ′ is a model, it ensures there exists
v0 ∈ A2

I′
with (u0, v0) ∈ RI′

. By definition of A2
J and RJ , the element v := v0 satisfies both v ∈ A2

J and
(u, v) ∈ RJ , that is u ∈ (∃R.A2)

J .
∃R.A1 ⊑ A2. Let u ∈ (∃R.A1)

J , that is there exists v ∈ AJ
1 with (u, v) ∈ RJ . By definition of AJ

1 and RJ , there exist (u0, v0) ∈
RI′

and v1 ∈ AI′

1 such that u0 = u and v0 = v1 = v. Remark 3 ensures v0 and v1 satisfy the same concepts, that is in
particular u0 ∈ (∃R.A1)

I′
. Since I ′ is a model, it ensures u0 ∈ AI′

2 , yielding by definition of AJ
2 that u = u0 ∈ AJ

2 .

P ⊑ R. Let (u, v) ∈ PJ . By definition of PJ , there exists (u0, v0) ∈ PI′
such that u0 = u and v0 = v. Since I ′ is a model, it

ensures (u0, v0) ∈ RI′
, hence (u0, v0) = (u, v) ∈ RJ by definition of RJ .

R1 ⊓ R2 ⊑ ⊥. By contradiction, assume one can find (u, v) ∈ (R1 ⊓ R2)
J . By definition of RJ

1 and RJ
2 , there exists (u1, v1) ∈ RI′

1

and (u2, v2) ∈ RI′

2 such that u1 = u2 = u and v1 = v2 = v.
If u1, v1 ∈ ∆∗, then, each element from ∆∗ being alone in its equivalence class, we have u1 = u2 and v1 = v2. In
particular it gives (u1, v1) ∈ (R1 ⊓ R2)

I′
, contradicting I ′ being a model.



Otherwise say u1 /∈ ∆∗ (the case of v1 /∈ ∆∗ is symmetrical), hence v1 ∈ NJ ,∆∗

1 (u1). Theorem 18 gives a homomor-
phism from NJ ,∆∗

1 (u1) to N I′,∆∗

1 (u1). But since (u1, v1) ∈ (R1 ⊓ R2)
J , we obtain a contradiction with I ′ being a

model.

Amount of c-matches. We now prove J contains at most as many matches as I ′ by building an injection from matches in
J to matches in I ′. Assume we have a match π : q → J . Consider the set of variables vπ := {v | v ∈ y ∪ z, π(v) /∈ ∆∗}.
Let C denote the set of connected components of vπ in q|vπ

(that is the query obtained by keeping only those atoms containing
variables from vπ). For each connected componentC ∈ C, chose a reference variable vC ∈ C. Since π is a homomorphism and
that |C| ≤ |q| , every variable v ∈ C satisfies π(v) ∈ NJ ,∆∗

|q| (π(vC)). Let dC ∈ ∆I′
denote your favourite representative for

the class of π(vC) (that is dC = π(vC)). From Theorem 18, we have a homomorphism ρC : NJ ,∆∗

|q| (π(vC)) → N I′,∆∗

|q| (dC).
Using these ρC , one per C ∈ C, we define:

π′ : x ∪ y ∪ z → ∆I′

v 7→
{
ρC(π(v)) if v ∈ C,C ∈ C
e if π(v) = e ∈ ∆∗

Since each ρC is a homomorphism (again Theorem 18), we can check the overall π′ is also a homomorphism:

• Consider A(v) ∈ q. If v ∈ C for some C ∈ C, then ρC being a homomorphism gives π′(v) ∈ AI′
. Otherwise π(v) = e ∈

∆∗, but since π is a homomorphism we have π(v) ∈ AJ . Since e = {e} and by definition of AJ , it ensures e ∈ AI′
, that is

π′(v) ∈ AI′
.

• Consider R(u, v) ∈ q.
– If both π(u), π(v) /∈ ∆∗, then we can find C ∈ C such that u, v ∈ C, and then we use ρC being a homomorphism.

– If both π(u), π(v) ∈ ∆∗, then the definition of RJ provides (u0, v0) ∈ RI′
with u0 = π(u) ∈ ∆∗ and v0 = π(v) ∈ ∆∗.

Hence u0 = {u0} and v0 = {v0}, which gives (π′(u), π′(v)) ∈ RI′
.

– If π(u) /∈ ∆∗ and π(v) ∈ ∆∗, then we have π′(u) = ρC(π(u)) for some C ∈ C. Theorem 18 ensures π′(u) ∼1 π(u),
and since π is a homomorphism, we also have (π(u), π(v)) ∈ RJ . Therefore we can apply Lemma 9 and we obtain
(π′(u), π′(v)) ∈ RI′

.

In particular, π′ is a match, hence π′(z) ⊆ ∆∗. Using property ρ−1
C (∆∗) ⊆ ∆∗ for each C ∈ C, provided by Theorem 18

along with definition of π′, we obtain that π(z) ⊆ ∆∗. Since ρ|∆∗ = Id, we have that the application π|z 7→ π′
|z is injective.

Therefore J contains at most as much matches as I ′ does.

Size of the model. Finally, an equivalence class d is characterized by: |d| mod 2|q| + 3, that is one equivalence class
among 2|q| + 3 possible classes; wd

|q|+1,d, that is a word over an alphabet with at most |T | symbols and a length at most
|q| + 1; and χ|q|+1,d, that is a function from words over an alphabet with at most |T | symbols and length at most 2|q| + 1

to a set with size at most |∆∗|+2|sig(T )| + 1. Therefore, the amount of possibly different equivalence classes, that is |∆J |, is
at most (2|q|+ 3)× |T ||q|+2 × (|∆∗|+2|sig(T )| + 1)|T |2|q|+3

. Recall Lemma 1 allows to assume |∆∗| ≤ |Ind| + (|Ind(A)| +
3 |T | 2|T |)|q||q|, we have the claimed bounds for the size of J , which concludes the proof of Theorem 2.

A.4 Proofs for Section 3.4 (Matching Lower Bounds)
Theorem 4. CCQ answering in EL is 2EXP-hard w.r.t. combined complexity.

Proof. To complete the proof sketch, we need to prove the following claim: N +1 is a certain answer to q′ over K′ iff K entails
q.

First assume that N + 1 is certain answer to q′ over K′, and consider a model I of K. Add aux and all the associated facts
from A′ \ A to obtain a model I ′ of K′. Observe that I ′ must contain at least N matches: the disjuncts qk and the queries q+P
and q−P all have a match sending all variables to aux, and each qA has n matches due to A, plus one more sending ∃zA to aux.
Since N + 1 is a certain answer, there must exists some additional match for q′ in I ′. As I is a model of K, it interprets each
A ∈ Σ as {a | A(a) ∈ A}, so there are no further matches for qA. Next note that since aux is disconnected from the rest of I ′,
there is no extra match for each q±P . The only possibility then is that must be an extra match for one of the qk, aside from the
one mapping all variables aux. Since qk is connected, this extra match is fully contained in ∆I′ \ {aux}. Hence, I contains a
match for qk. We may thus conclude that K entails q.



For the other direction, suppose that K entails q, and consider a model I ′ of K′. There are at least N trivial matches for q′ in
I ′. If there is an extra match for one of the qA or one of the q±P , then we are done. Otherwise, removing aux from I ′ yields a
model I of K. Since a∅ is the certain answer of q over K, there must be a match for one of the qk in I. It yields a new match
for qk in I ′ and concludes.

Theorem 6. CCQ answering in DL-Litepos is coNEXP-hard w.r.t. combined complexity.

Proof. The proof is by reduction from the exponential grid tiling problem EXPTIL. We recall that an instance of this problem
consists of a set C of colors, two relations H,V ⊆ C × C that give the horizontal and vertical tiling conditions, and a number
n. The task is to decide whether there exists a valid (H,V)-tiling of an 2n × 2n grid, i.e., a mapping τ : {0, . . . , 2n − 1} ×
{0, . . . , 2n − 1} 7→ C such that (τ(i, j), τ(i + 1, j)) ∈ H for every 0 ≤ i < 2n − 1 and (τ(i, j), τ(i, j + 1)) ∈ V for every
0 ≤ j < 2n − 1. In what follows, we consider an instance (n, C,H,V) of the EXPTIL problem.

To be able to test for the existence of a tiling of a 2n × 2n grid, we must start by ensuring we can find such a grid in
each model. Furthermore, we will need to detect horizontal and vertical adjacency in this grid, it is thus appropriate to use
horizontal/vertical coordinates. To ensure a polynomial reduction, we need to use a binary encoding of these coordinates. We
start from an initial element a and use TBox axioms to generate all possible coordinates of the horizontal coordinates:

A(a) A ⊑ ∃Rh,n−1,b ∃R−
h,i,b ⊑ ∃Rh,i−1,b′

(
i = 1, . . . n
b, b′ ∈ {0, 1}

)
We proceed similarly with the vertical coordinates, until we generate all possible pairs of coordinates:

∃R−
h,0,b ⊑ ∃Rv,n−1,b′ ∃R−

v,i,b ⊑ ∃Rv,i−1,b′

(
i = 1, . . . n
b, b′ ∈ {0, 1}

)
The preceding axioms will generate a binary tree of height 2n in the canonical model, whose leaves represent all possible grid
positions. We use the following axiom to assign a color to each of the points representing a grid position:

∃R−
v,0,b ⊑ ∃HasCol (b ∈ {0, 1})

To help us compare positions, we will include the following TBox axioms:

∃R−
d,i,b ⊑ ∃HasBitd,j

(
0 ≤ i < j ≤ n− 1

b ∈ {0, 1}
d ∈ {h, v}

)
and:

∃R−
v,i,b ⊑ ∃HasBith,j

(
0 ≤ i, j ≤ n− 1

b ∈ {0, 1}

)
To keep track of elements used as color or bits, we also add:

∃HasCol− ⊑ Color ∃HasBit−d,i ⊑ Bit

(
0 ≤ i ≤ n− 1
d ∈ {h, v}

)
This completes our description of the TBox. We will finish our description of the ABox later in the proof, but it will be useful
to know that it will contain an ABox individual c for every color c ∈ C and two ABox individuals (one, zero) to represent bits.

Let us now define the query q. In what follows, we build q step by step, providing several subqueries. For the sake of
readability, we omit subscript/superscripts that would allow to decide which variable occurs in which subquery. The reason is
simple: in what follows, no variable is shared by different subqueries.

To keep track of the colors used in a candidate tiling, we use the following subquery:

qColor := ∃zColor(z)
z

Color

The query qColor
We also need to detect if other bits than the intended ones (one, zero) are being used to satisfy the right hand sides

∃HasBitd,i. For this purpose, we introduce the following subquery:

qBit := ∃zBit(z)
z

Bit

The query qBit

To detect if the ith bit of the coordinate in direction d is one when it should be zero:



qd,i,one := ∃z1∃z2 Rd,i,0(z1, z2) ∧HasBitd,i(z2, one)

(
0 ≤ i ≤ n− 1
d ∈ {h, v}

)
z1 z2

•
one

HasBitd,iRd,i,0

The query qd,i,one
And the other way around:

qd,i,zero := ∃z1∃z2 Rd,i,1(z1, z2) ∧HasBitd,i(z2, zero)

(
0 ≤ i ≤ n− 1
d ∈ {h, v}

)
z1 z2

•
zero

HasBitd,iRd,i,1

The query qd,i,zero
To detect if the jth bit of the coordinate in direction d isn’t carried from the ith level to the next:

qd,i,b,j := ∃z1 ∃z2 ∃z′1 ∃z′2 Rd,i,b(z1, z2) ∧ HasBitd,j(z1, z
′
1)

∧HasBitd,j(z2, z
′
2) ∧ Bit ̸=(z′1, z

′
2)

(
0 ≤ i < j ≤ n− 1

b ∈ {0, 1}
d ∈ {h, v}

)
z1 z2

z′1 z′2

H
asB

it
d
,j

H
asB

it
d
,j

Rd,i,b

Bit̸=

The query qd,i,b,j
To detect if the jth bit of the horizontal coordinate isn’t carried through the ith vertical level:

qi,b,j := ∃z1 ∃z2 ∃z′1 ∃z′2 Rv,i,b(z1, z2) ∧ HasBith,j(z1, z
′
1)

∧HasBith,j(z2, z
′
2) ∧ Bit ̸=(z′1, z

′
2)

(
0 ≤ i, j ≤ n− 1

b ∈ {0, 1}

)
z1 z2

z′1 z′2

H
asB

it
h
,j

H
asB

it
h
,j

Rv,i,b

Bit̸=

The query qi,b,j
To detect if part of the model is collapsing on the auxiliary individual:

qaux,R := ∃z R(z, aux) (R = Rd,i,b,HasBitd,i,HasCol) z

•
aux

R

The query qaux,R
We next discuss the parts of the query that are used to check the tiling conditions. To detect adjacency, we remark that two

grid positions (h1, v1), (h2, v2) ∈ {0, . . . , 2n − 1} × {0, . . . , 2n − 1} are vertically adjacent iff:

• h1 = h2, so the binary encodings of h1 and h2 are the same;
• v2 = v1 + 1, so the binary encodings of v2 and v1 are the same until, at some point, v2 ends with 1 · 0k while v1 ends with
0 · 1k.

To detect a violation of the vertical tiling condition (i.e. two vertically adjacent tiles with colors c and c′ such that (c, c′) /∈ V),
we need n queries, one for each possible position where the bit from the vertical coordinates differ. For each 1 ≤ k ≤ n, we
create a subquery qV,(c,c′),k defined as follows.

qV,(c,c′),k =∃zl ∃zr ∃zh,0 . . . ∃zh,n−1 ∃zv,k+1 . . . ∃zv,n−1

n−1∧
i=0

(HasBith,i(zl, zh,i) ∧HasBith,i(zr, zh,i)) ∧
n−1∧

i=k+1

(HasBitv,i(zl, zv,i) ∧HasBitv,i(zr, zv,i))

∧ HasBitv,k(zl, zero) ∧HasBitv,k(zr, one) ∧
k−1∧
i=0

(HasBitv,i(zl, one) ∧HasBitv,i(zr, zero))

∧ HasCol(zl, c) ∧HasCol(zr, c
′)



We can similarly define a set of subqueries qH,(c,c′),k that detect violations of the horizontal tiling conditions (see e.g. Figure 4).
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Figure 4: The query qH,(c,c′),2

Finally, we let q be the conjunction of the all of the preceding subqueries.
We can now define the ABox, which introduces individuals for the intended colors and bits and a further individual d that

serves to ensure that all parts of the query can be matched:

A = {Root(a),Bit(zero),Bit(one),Bit̸=(zero, one),Bit ̸=(one, zero)}
∪ {Color(c) | c ∈ C}
∪ {Root(aux),Bit(aux),Color(aux),Bit ̸=(aux, aux),HasCol(aux, aux)}
∪ {Rd,i,b(aux, aux) | d ∈ {h, v}, i ∈ {0, . . . n− 1}, b ∈ {0, 1}}
∪ {HasBitd,i(aux, aux) | d ∈ {h, v}, i ∈ {0, . . . n− 1}}

Let p = |C|, and let K be the KB with the preceding TBox and ABox. To complete the proof, it suffices to establish the
following claim:

Claim [3p+ 4,+∞] is a certain answer for q over K ⇐⇒ (n, C,H,V) /∈ EXPTIL.

First observe that there are always at least 3(p+ 1) c-matches given by: p+ 1 mappings for qColor (on each color-individual c
and on aux), times 3 mappings for qBit (on zero, one and aux), times 1 mapping for each other subquery (collapse on aux).

(⇒) Assume [3p+4,+∞] is a certain answer, and take some candidate tiling τ : {0, . . . 2n−1}×{0, . . . 2n−1} → {c | c ∈
C}. Let Iτ be the model of K that is obtained from CK as follows:

• ∆Iτ contains all elements from ∆CK except those anonymous elements whose last symbol is HasCol or HasBitd,i (i.e.
witnesses for axioms involving ∃HasCol or ∃HasBitd,i);

• the roles HasCol and HasBitd,i are interpreted as follows:

HasBitIτ

d,i := {(aux, aux)} ∪ {(awRd,i,0w
′, zero) | awRd,i,0w

′ ∈ ∆Iτ } ∪ {(awRd,i,1w
′, one) | awRd,i,1w

′ ∈ ∆Iτ }

HasColIτ := {(aux, aux)} ∪ {(aRh,n−1,hn−1 . . .Rh,0,h0Rv,n−1,vn−1 . . .Rv,0,v0 , τ(hn−1 . . . h0, vn−1 . . . v0))
| hn−1, . . . h0, vn−1, . . . v0 ∈ {0, 1}}



where by a slight abuse of notation, we use τ(hn−1 . . . h0, vn−1 . . . v0) to mean τ(h, v), with h and v the numbers whose
binary encodings are hn−1 . . . h0 and vn−1 . . . v0 respectively;

• the remaining roles are interpreted exactly as in CK.

Recall our assumption that there is an additional c-match π for q in Iτ . It is easily verified that the additional match can only
result from one of the queries qh,(c,c

′),k or qv,(c,c
′),k. From the definition of Iτ , this implies that there are two horizontally (or

vertically) adjacent tiles, which positions are encoded on π(zl) and π(zr) by the endpoints of their respective roles HasBitd,i,
whose respective colors c and c′ violate either H or V . Thus τ is not an (H,V)-tiling. As this construction holds for any
possible tiling τ , we infer that (n, C,H,V) /∈ EXPTIL.

(⇐) Assume (n, C,H,V) /∈ EXPTIL, and take some model I of K. There is a homomorphism f : CK → I. If there exists
aw ∈ ∆CK such that f(aw) = aux, then there exists a new c-match for the subquery qaux,R, where R is the last letter of the
shortest prefix w′ of w such that f(aw′) = aux. Otherwise, we define τ : {0, . . . , 2n − 1} × {0, . . . 2n − 1} → ∆I as follows:
τ(hn−1 . . . h0, vn−1 . . . v0) := f(aRh,n−1,hn−1 . . .Rh,0,h0Rv,n−1,vn−1 . . .Rv,0,v0HasCol) (again slightly abusing notation by
working with binary encodings of numbers). There are five cases to consider:

• If there exists (hn−1 . . . h0, vn−1 . . . v0) such that τ(hn−1 . . . h0, vn−1 . . . v0) /∈ {c | c ∈ C}, then this provides a new
c-match of q in I in which the subquery qColor is mapped as z 7→ τ(hn−1 . . . h0, vn−1 . . . v0).

• Otherwise, suppose there exists an element that is in the range of Bit that is not zero nor one, then this also provides a new
c-match of q, in which the subquery qBit is mapped on this element.

• Otherwise, suppose there exists an inconsistent choice of bit, that is awRd,i,0 and f(awRd,i,0HasBitd,i) = one (respectively:
awRd,i,1 and f(awRd,i,0HasBitd,i) = zero), then it provides a new c-match for the subquery qd,i,one (resp: qd,i,zero).

• Otherwise, suppose there exists an non-propagated coordinate, that is awRd,i,b such that f(awHasBitd′,k) ̸=
f(awRd,i,bHasBitd′,k), then it provides a new c-match either for the subquery qd,i,b,j or for the subquery qi,b,j .

• Else, since (n, C,H,V) /∈ EXPTIL, there exist two adjacent positions with coordinates p := (hn−1 . . . h0, vn−1 . . . v0)
and p′ := (h′n−1 . . . h

′
0, v

′
n−1 . . . v

′
0) such that (τ(p), τ(p′)) ∈ (C × C) \ D, for D either H or V . Letting k

be the bit from which the encoding of the non-D coordinate differs, we obtain a new c-match for q, in which the
subquery qD,(τ(p),τ(p′)),k is satisfied by mapping zl to f(aRh,n−1,hn−1

. . .Rh,0,h0
Rv,n−1,vn−1

. . .Rv,0,v0) and zr to
aRh,n−1,h′

n−1
. . .Rh,0,h′

0
Rv,n−1,v′

n−1
. . .Rv,0,v′

0
) (or the converse).

In every case, there is an additional c-match for q. We thus obtain that [p+ 1,+∞] is a certain answer to q over K.

B Proofs for Section 4 (Cardinality Queries)
B.1 Proofs for Section 4.1 (Results for EL and its Extensions)
Theorem 9. Concept cardinality query answering in ELI⊥ is coNEXP-hard w.r.t. combined complexity.

Proof. An instance of Succinct-3COL consists of a Boolean circuit C with 2n input gates. The graph GC encoded by C has
2n vertices, identified by binary encodings on n bits. Two vertices u and v, with respective binary encodings u1 . . . un and
v1 . . . vn, are adjacent in GC iff C returns True when given as input u1 . . . un on its first n gates and v1 . . . vn on the second half.
The problem of deciding if GC is 3-colorable has been proven to be NEXP-complete in (Papadimitriou and Yannakakis 1986).

Let C be an instance of Succinct-3COL, and denote 2n its amount of input gates. We start by generating an exponential tree,
henceforth referred to as the reference tree, to assign a color to each vertex, that is a binary identifier (k ranges from 1 to n):

U0(a)
Uk−1 ⊑ ∃R.A0

k

Uk−1 ⊑ ∃R.A1
k

A0
k ⊑ Uk

A1
k ⊑ Uk

∃R−.A0
k ⊑ A0

k

∃R−.A1
k ⊑ A1

k

A0
k ⊓A1

k ⊑ ⊥

At the end of a branch, we ask for a color to be chosen among three provided options. The color can actually be chosen
elsewhere, but at the cost of a new c-match for our query qGoal.

Un ⊑ ∃HasCol.Color Color ⊑ Goal

Color(c1)

Color(c2)

Color(c3)

We now generate all possible pairs of vertex identifiers, starting from the first identifier (k ranges from 1 to n):

V0(b)
Vk−1 ⊑ ∃R.B0

k

Vk−1 ⊑ ∃R.B1
k

B0
k ⊑ Vk

B1
k ⊑ Vk

∃R−.B0
k ⊑ B0

k

∃R−.B1
k ⊑ B1

k

B0
k ⊓ B1

k ⊑ ⊥



and followed by the second identifier (k ranges from 1 to n):

Vn ⊑ W0

Wk−1 ⊑ ∃R.C0
k

Wk−1 ⊑ ∃R.C1
k

C0
k ⊑ Wk

C1
k ⊑ Wk

∃R−.C0
k ⊑ C0

k

∃R−.C1
k ⊑ C1

k

C0
k ⊓ C1

k ⊑ ⊥

At the end of a branch, we ask for each node to be connected to the two corresponding nodes from the reference tree.

Wn ⊑ ∃FstCol.Goal

Wn ⊑ ∃SndCol.Goal

∃FstCol−.B0
k ⊑ A0

k

∃FstCol−.B1
k ⊑ A1

k

∃SndCol−.C0
k ⊑ A0

k

∃SndCol−.C1
k ⊑ A1

k

Un ⊑ Goal Un ⊓ Color ⊑ ⊥

Notice axioms Un ⊑ Goal and Un ⊓ Color ⊑ ⊥ act as an incentive to reuse elements from the reference tree, otherwise it
would come at the cost of a new c-match for our query qGoal. We also note that, at this point, there are always at least 2n + 3
matches in every model given by the three possible colors c1, c2, c3 and the 2n instance of Un, which must all be disjoint.
Finally, we import the chosen colors from the reference tree with the following assertions and axioms:

Col1(c1)

Col2(c2)

Col3(c3)

∃FstCol.(∃HasCol.Col1) ⊑ Colfst1

∃FstCol.(∃HasCol.Col2) ⊑ Colfst2

∃FstCol.(∃HasCol.Col2) ⊑ Colfst3

∃SndCol.(∃HasCol.Col1) ⊑ Colsnd1

∃SndCol.(∃HasCol.Col2) ⊑ Colsnd2

∃SndCol.(∃HasCol.Col3) ⊑ Colsnd3

It remains to evaluate the circuit to test adjacency for each pair of vertices identifiers. This is handled by the TBox in the
following fashion. For the first n input gates gfstk introduce the axioms:

B0
k ⊑ IsFalsegfst

k
B1

k ⊑ IsTruegfst
k

(k = 1, . . . , n)

and for the remaining n input gates gsndk introduce the axioms:

C0
k ⊑ IsFalsegsnd

k
C1

k ⊑ IsTruegsnd
k

(k = 1, . . . , n).

For each negation gate g with parent gate g0, we introduce the two axioms:

IsFalseg0 ⊑ IsTrueg IsTrueg0 ⊑ IsFalseg.

For each conjunctive gate g with parent gates g1 and g2, introduce the three axioms:

IsTrueg1 ⊓ IsTrueg2 ⊑ IsTrueg
IsFalseg1 ⊑ IsFalseg

IsFalseg2 ⊑ IsFalseg.

For each disjunctive gate g with parent gates g1 and g2, introduce the three axioms:

IsTrueg1 ⊑ IsTrueg

IsTrueg2 ⊑ IsTrueg
IsFalseg1 ⊓ IsFalseg2 ⊑ IsFalseg.

Finally, to detect monochromatic edges, consider the three axioms where gout denotes the output gate of C:

IsTruegout ⊓ Colfst1 ⊓ Colsnd1 ⊑ Goal

IsTruegout ⊓ Colfst2 ⊓ Colsnd2 ⊑ Goal

IsTruegout ⊓ Colfst3 ⊓ Colsnd3 ⊑ Goal

To ensure this case indeed creates a new match for qGoal we make sure that it cannot be an already existing match with the two
negative concept inclusions:

Wn ⊓ Color ⊑ ⊥ Un ⊓Wn ⊑ ⊥
Claim: C /∈ Succinct-3COL iff 2n + 4 is a certain answer for qGoal over K.
For readability, we omit the concepts associated with the evaluation of the circuit when considering elements of CK.

(=⇒). Assume C /∈ Succinct-3COL and consider a model I of K. There exists an homomorphism from the canonical model
of K to this I, say we choose one such f : CK → I.

If any of the f(a . . .R.{Un,Goal,Aa1
1 , . . .A

an
n }HasCol.{Color,Goal}) /∈ {c1, c2, c3}, then it provides a new c-match for

qGoal and we are done.
Otherwise, denote by τ the coloring induced by the reference tree in I, defined by setting τ(a0 . . . an−1) :=

f(a . . .R.{Un,Goal,Aa1
1 , . . .A

an
n }HasCol.{Color,Goal}). Since C /∈ Succinct-3COL and τ only uses the 3 colors c1, c2

and c3, there must exists a monochromatic edge {u, v}. Denote by b0, . . . , bn−1 the identifier of u, by c0, . . . , cn−1 the iden-
tifier of v, and by k the number of the shared color ck. Since u and v are adjacent, the concept IsTruegout is satisfied on the
element e := f(b . . .R.{Wn,B

b1
1 , . . .B

bn
n ,Cc1

1 , . . .C
cn
n } of I.



If the element f(b . . .R.{Wn,B
b1
1 , . . .B

bn
n ,Cc1

1 , . . .C
cn
n }FstCol.{Un,Goal,Ab1

1 , . . . ,A
bn
n }) (notice the first vertex identi-

fier is converted into an identifier in the reference tree) is not equal to the corresponding element from the reference tree, that is
f(a . . .R.{Un,Goal,Ab1

1 , . . .A
bn
n }), then it yields a new c-match and we are done.

Otherwise, axiom ∃FstCol.(∃HasCol.Colk) ⊑ Colfstk ensures Cfst
k holds on e. Similarly, we obtain that either

f(b . . .R.{Wn,B
b1
1 , . . .B

bn
n ,Cc1

1 , . . .C
cn
n }SndCol.{Un,Goal,Ac1

1 , . . . ,A
cn
n }) yields a new c-match and we are done or that

Csnd
k holds on e. In the latter case, axiom IsTruegout

⊓ Colfstk ⊓ Colsndk ⊑ Goal triggers a new match on e.
In all cases, we exhibit an additional c-match, which proves 2n + 4 is a certain answer for qGoal over K.

(⇐=). Assume C ∈ Succinct-3COL and pick a 3-coloring τ of the underlying graph of C, using as colors c1, c2 and c3. From
the canonical model of K, identify each element a . . .R.{Un,Goal,Aa1

1 , . . .A
an
n }HasCol.{Color,Goal} with the individual

τ(a0 . . . an−1).
Also identify each element b . . .R.{Wn,B

b1
1 , . . .B

bn
n ,Cc1

1 , . . .C
cn
n }FstCol.{Un,Goal,Ab1

1 , . . . ,A
bn
n } with the element

a . . .R.{Un,Goal,Ab1
1 , . . .A

bn
n }.

Similarly, identify each element b . . .R.{Wn,B
b1
1 , . . .B

bn
n ,Cc1

1 , . . .C
cn
n }SndCol.{Un,Goal,Ac1

1 , . . . ,A
cn
n } with the ele-

ment a . . .R.{Un,Goal,Ac1
1 , . . .A

cn
n }.

Saturate the obtained interpretation to obtain a model Iτ of K. Because τ is a 3-coloring, there is no monochromatic edge,
hence it can be verified that Iτ has exactly the 2n + 3 original c-matches. This provides a model of K with less than 2n + 4
c-matches for qGoal, ensuring 2n + 4 is not a certain answer for qGoal over K.

Theorem 10. Let L be a sublogic of ELHI⊥ for which every satisfiable KB admits a polynomial-sized model. Then role
cardinality query answering over L KBs is in EXP.

Proof. Let L be a sublogic of ELHI⊥ for which every satisfiable KB admits a polynomial-sized model. Then proceeding
similarly to Lemma 1, we can exhibit a polynomial p such that for every satisfiable KB K = (T ,A) and cardinality query q,
there exists a model of K having at most p(|K|) matches to q.

With this in mind, let us fix a satisfiable KB K = (T ,A) and a role cardinality query qGoal = ∃z1, z2Goal(z1, z2), and let
nK = p(|K|). Consider a set of individual names D ⊆ NI of size 2nK + |Ind(A)| and containing Ind(A). For each subset
S ⊆ D × D, we check whether the following KB with closed predicates is satisfiable (note that Goal is the only a closed
predicate):

KS := (T , {Goal},A ∪ {Goal(a, b) | (a, b) ∈ S})
If such a KB is satisfiable with Goal a closed predicate, it provides a model of K with precisely |S| matches. Conversely, if
there exists a model I of K with n ≤ nK matches, there exists a subset S ⊆ D ×D such that KS is satisfiable: pick S as the
pairs (φ(a), φ(b)) ∈ GoalI , where φ is an injection from the subset of ∆I appearing in matches of qGoal to D which is the
identity on Ind(A).

By Theorem 7 of (Ngo, Ortiz, and Šimkus 2016), this check can be performed in exponential time in KS , which is of
polynomial size w.r.t. K. Moreover, we consider exponentially many KS,n, hence enumerating them and checking all of them
takes single-exponential time, which concludes the proof.

Corollary 1. Role cardinality query answering in ELH⊥ is in EXP w.r.t. combined complexity.

Proof. Let K be a satisfiable ELH⊥ KB, which we may suppose w.l.o.g. to be in normal form, and consider the following inter-
pretation IK (a variation on the one defined in (Lutz, Toman, and Wolter 2009) for ELH⊥

dr without negative role inclusions):

∆IK =Ind(A) ∪ {xR.B | A ⊑ ∃R.B ∈ T and T ̸|= B ⊑ ⊥}
AIK ={a | K |= A(a)} ∪ {xR.B | T |= B ⊑ A}
PIK ={(a, b) | K |= P(a, b)} ∪ {(a, xR.B) | K |= ∃R.B(a), T |= R ⊑ P}∪

{(xR1.B1 , xR2.B2) | T |= B1 ⊑ ∃R2.B2, T |= R2 ⊑ P}

Note that |∆IK | ≤ |K|, so we only need to show that IK is a model of K. It is not hard to see that IK satisfies ABox assertions of
A and all concept axioms and positive role inclusions from T . Suppose that T contains a negative role inclusion T1 ⊓ T2 ⊑ ⊥
and there is a pair (u, v) ∈ T1

IK ∩ T2
IK . We cannot have u, v ∈ Ind(A), since this would imply that K is unsatisfiable. If

(u, v) = (a, xR.B), then K |= ∃R.B(a), T |= R ⊑ T1, and T |= R ⊑ T2, which again means K is unsatisfiable. Finally
suppose that we have (u, v) = (xR1.B1 , xR2.B2). Then T |= B1 ⊑ ∃R2.B2, T |= T |= R2 ⊑ T1, and T |= R2 ⊑ T2. But that
would mean that T |= B1 ⊑ ⊥, contradicting the definition of ∆IK . We thus conclude that IK is indeed a model of K.

Theorem 11. Concept cardinality query answering in EL is EXP-hard w.r.t. combined complexity.



Proof. The proof proceeds by reduction from the problem of deciding if an EL KB with closed predicates is satisfiable, known
to be EXP-hard from (Ngo, Ortiz, and Šimkus 2016). As noticed by the authors in the conclusion of (Ngo, Ortiz, and Šimkus
2016), we point out that their reduction (Propositions 4 and 5) produces a KB (T ,Σ,A) such that the set of closed predicates
Σ only contains concept names. Therefore, we assume w.l.o.g. that our starting KB K := (T ,Σ,A) also satisfies this property.
We also assume that T is in normal form where every concept inclusion has one of the following restricted shapes:

⊤ ⊑ A A ⊓ B ⊑ C A ⊑ ∃R.B ∃R.A ⊑ B with A,B,C ∈ NC,R ∈ NR.

We will need to consider two fresh new concept names Goal and Aux⊤, a fresh new role name RB for each closed concept
name B ∈ Σ, and a fresh individual aux. The concept Goal will be our query predicate and aims to capture excessive uses of
the closed predicates.

To capture such uses on non-individual elements, we consider the axiom B ⊑ Goal for each B ∈ Σ. Therefore, we also
consider the assertion Goal(a) for each a such that there exists B(a) ∈ A with B ∈ Σ. To prevent such an assertion Goal(a) to
“hide” the use of a by a closed concept B such that B(a) /∈ A, we introduce the axiom ∃RB.B ⊑ Goal for each B ∈ Σ and the
assertion RB(aux, a) for each a ∈ Ind(A) and each B ∈ Σ such that B(a) /∈ A.

Adding such a new individual aux may cause axioms with shape ⊤ ⊑ A from T to trigger on aux and mess around. To
prevent this, we replace each axiom ⊤ ⊑ A from T by Aux⊤ ⊑ A, we also add the axiom A ⊑ Aux⊤ for each A ∈ sig(T )
and the assertion Aux⊤(a) for each a ∈ Ind(A).

To summarize, we built T ′ and A′ as:

T ′ := (T \ {⊤ ⊑ A | ⊤ ⊑ A ∈ T })
∪ {Aux⊤ ⊑ A | ⊤ ⊑ A ∈ T }
∪ {A ⊑ Aux⊤ | A ∈ sig(T )}
∪ {B ⊑ Goal | B ∈ Σ}
∪ {∃RB.B ⊑ Goal | B ∈ Σ}

and
A′ := A ∪ {Aux(a) | a ∈ Ind(A)}

∪ {RB(aux, a) | B(a) /∈ A,B ∈ Σ}
∪ {Goal(a) | B(a) ∈ A,B ∈ Σ}

Set n := |{Goal(a) | B(a) ∈ A,B ∈ Σ}| the amount of ABox matches for qGoal in (T ′,A′). We now claim:
(T ,Σ,A) is satisfiable iff n+ 1 is not a certain answer for qGoal over (T ′,A′).

(⇒): Assume (T ,Σ,A) is satisfiable and let I be one of its model. We build an interpretation I ′ of (T ′,A′) with domain
∆I′

:= ∆I ∪ {aux} as follows:

AI′
:= AI (A ∈ sig(T ))

GoalI
′

:= {Goal(a) | B(a) ∈ A,B ∈ Σ}
Aux⊤

I′
:= ∆I

PI′
:= PI (P ∈ sig(T ))

RB
I′

:= {RB(aux, a) | B(a) /∈ A,B ∈ Σ}

Clearly, I ′ has exactly n matches for qGoal. We verify it is a model of (T ′,A′), concluding this part of the proof as I ′ is a
counter-model for n+1. All axioms from T are trivially satisfied as interpretations of concept and roles names from sig(T ) are
preserved (recall those with shape ⊤ ⊑ A have been removed!). Assertions in A′ are also trivially satisfied, either by definition
We check the other axioms in case:

Aux⊤ ⊑ A (⊤ ⊑ A ∈ T ). Using I being a model of T , we obtain: Aux⊤
I′

= ∆I = ⊤I ⊆ AI = AI′
.

A ⊑ Aux⊤ (A ∈ sig(T )). Trivial: AI′
= AI ⊆ ∆I = Aux⊤

I′
.

B ⊑ Goal (B ∈ Σ). Let e ∈ BI′
. We have B ∈ Σ ⊆ sig(T ), hence by definition e ∈ BI . Since B ∈ Σ and I is a model of K, it

follows that B(e) ∈ A. Hence, by definition: e ∈ GoalI
′
.

∃RB.B ⊑ Goal (B ∈ Σ). Let e ∈ (∃RB.B)
I′

. We hence have an individual a ∈ BI′
such that B(a) /∈ A (from the definition of RB

I′
).

From the definition of BI′
, we obtain a ∈ BI , which implies, as I is a model of K, that B(a) ∈ A. Contradiction, hence

(∃RB.B)
I′

= ∅ and the axiom is trivially satisfied.

(⇐): Assume n + 1 is not a certain answer, that is we have a counter-model I (in which matches are exactly the n ABox
matches). Consider the interpretation I ′ obtained by restricting I to the domain ∆I′

:= (Aux⊤)
I .

Axioms from A are clearly satisfied in I ′ as A ⊆ A′. We verify that axioms from T also hold:

⊤ ⊑ A. In particular Aux⊤ ⊑ A ∈ T ′. From I being a model of T ′, we have Aux⊤
I ⊆ AI . Therefore AI′

= Aux⊤
I ∩AI =

AI , which yields: ⊤I′
= Aux⊤

I ⊆ AI = AI′
.

A ⊓ B ⊑ C. In particular A ⊓ B ⊑ C ∈ T ′. Using I ′ being a model of T ′, we obtain: (A∩B)I′
= AI∩BI∩∆I′ ⊆ CI∩∆I′

= CI′
.



∃R.A ⊑ B. In particular ∃R.A ⊑ B ∈ T ′. First notice that (∃R.A)I
′ ⊆ (∃R.A)I since RI′ ⊆ RI and AI′ ⊆ AI . Using I ′ being

a model of T ′, we now obtain: (∃R.A)I
′ ⊆ (∃R.A)I ∩∆I′ ⊆ BI ∩∆I′

= BI′
.

A ⊑ ∃R.B. In particular both A ⊑ ∃R.B and B ⊑ Aux⊤ are in T ′. Let e ∈ AI′
. In particular, e ∈ AI . Since I is a model of T ′,

we have some (e, e′) ∈ RI with e′ ∈ BI . Still from I being a model of T ′, we also have e′ ∈ Aux⊤
I , and therefore

b ∈ ∆I′
. Hence (e, e′) ∈ RI ∩∆I′

and e′ ∈ BI ∩∆I′
, yielding e ∈ (∃R.B)I′

.

We now verify that no closed concept has been violated, which will conclude the proof. Let e ∈ BI′
for some closed concept

B ∈ Σ. In particular we have both B ⊑ Goal and ∃RB.B ⊑ Goal in T ′. By definition of BI′
and from I being a model of T ′,

we obtain e ∈ BI ⊆ GoalI .
From I being a counter-model for n+1, we know that GoalI = {Goal(a) | B(a) ∈ A,B ∈ Σ}. In particular aux /∈ GoalI .

But since I is a model of T ′, it ensures that aux /∈ (∃RB.B)
I . Recall we have RB(aux, b) ∈ A′ for all individuals b such that

B(b) /∈ A, and therefore b /∈ BI for such individuals. Necessarily, it gives B(e) ∈ A.

Theorem 12. Concept cardinality query answering in EL is coNP-hard w.r.t. data complexity.

Proof. We reduce the complement of the graph 3-colorability problem to answering the EL OMQ (q, T ), with q = ∃z B(z)
and T containing A ⊑ ∃R.B and ∃R.Ck ⊓ ∃E.(∃R.Ck) ⊑ B for k ∈ {1, 2, 3}.

Let G = (V, E) be an undirected graph, and consider now the ABox given by:

A := {A(v) | v ∈ V} ∪ {E(v1, v2) | {v1, v2} ∈ E} ∪ {C1(c1),C2(c2),C3(c3),B(c1),B(c2),B(c3)}

Set K = (T ,A). Observe that there are 3 ABox matches: c1, c2, c3. We claim:

[4,+∞] is a certain answer of q w.r.t. K ⇔ G /∈ 3COL

(⇐). Assume G /∈ 3COL. Let I be a model of K and f : CK → I a homomorphism. We are interested in the image
of elements v · R.B, with v ∈ V , whose existence in ∆CK is ensured by axiom A ⊑ ∃R.B. If there exists v ∈ V such
that f(v · R.B) /∈ {c1, c2, c3}, then f(v · R.B) provides a new match. Otherwise, define the colouring induced by I as
ρI(v) = f(v · R.B) ∈ {c1, c2, c3}. Since G /∈ 3COL, there exists an edge {v1, v2} ∈ E with both vertices having the same
colour ck for some k ∈ {1, 2, 3}. For the corresponding individuals v1 and v2, the axiom ∃R.Ck ⊓ ∃E.(∃R.Ck) ⊑ B triggers
and provides two new matches: v1 and v2. In all cases [4,+∞] is a certain answer of q w.r.t. K.
(⇒). Assume G ∈ 3COL. Consider a 3-colouring ρ : V → {c1, c2, c3}. Consider the interpretation Iρ obtained from

K in which we add facts R(v, ρ(v)) for each v ∈ V , complying with the axiom A ⊑ ∃R.B. By definition of ρ, there is no
monochromatic edge, which ensures the three other axioms don’t trigger on individuals v. This interpretation Iρ is hence a
model. It only has 3 matches, hence [4,+∞] is not a certain of q w.r.t. K.

B.2 Proofs for Section 4.2 (Results for DL-Lite)
Theorem 13. Concept cardinality query answering in DL-Litepos is NL-hard w.r.t. combined complexity.

Proof. Let G = (V, E) be an oriented graph and s, t two vertices from V . For each vertex v ∈ V , we introduce a concept name
V. Consider the KB given by A := {S(a)} and T := {V1 ⊑ V2 | (v1, v2) ∈ E}. We are interested in the concept cardinality
query qT := ∃z T(z).

It is now straightforward that 1 is a certain answer to qT over (T ,A) iff t is reachable from s in G.

Theorem 15. Role cardinality query answering in DL-Litepos is in NL w.r.t. combined complexity.

Proof. Consider the role cardinality query ∃z1, z2P(z1, z2), and define the sets D+
K = {a | aP ∈ ∆CK} and D−

K = {a | aP− ∈
∆CK} of positive and negative demanding individuals. We assume w.l.o.g. that |D+

K| ≤ |D−
K |. Let p : D+

K → D−
K be an

injection.
We partition the generated roles (i.e., the roles such that there is wT ∈ ∆CK ) in four categories:

1. T |= ∃T− ⊑ ∃P and T |= ∃T− ⊑ ∃P−

2. T |= ∃T− ⊑ ∃P and T ̸|= ∃T− ⊑ ∃P−

3. T ̸|= ∃T− ⊑ ∃P and T |= ∃T− ⊑ ∃P−

4. T ̸|= ∃T− ⊑ ∃P and T ̸|= ∃T− ⊑ ∃P−

The roles in the first three cases are called demanding, and we need to consider which P-edges can be used for them.
We use the term non-paired critical individual to designate an individual belonging to D+

K ∪ D−
K but not to the domain of p.

We then define what constitutes a solution to a demanding role:



• A solution to a case-1 demanding role is either a non-paired critical individual, or an individual a such that A, T |= ∃xP(a, x)
and A, T |= ∃xP(x, a).

• A solution to a case-2 demanding role is either a non-paired critical individual, or an individual a such that A, T |= ∃xP(a, x).
• A solution to a case-3 demanding role is either a non-paired critical individual, or an individual a such that A, T |= ∃xP(x, a).
If a demanding role T has a solution, we let sol(T) be (an arbitrarily chosen) solution.

If all demanding roles have a solution, then the optimal number of matches is nA + max(|D+
K|, |D

−
K |), as witnessed by the

model f(CK), which is the image of CK under the following partial function f :

• f(a) = a;
• f(aP) = p(a);
• f(aP−) = p−1(a) if defined, a otherwise;
• f(wT) = sol(T) if T is neither P nor P− and is demanding;
• f(wT) = wT if wT contains no occurrence of P nor of P− and T is not demanding.

Note that f is not defined on elements from CK with shape awTPw′ or awTP−w′, where w is a possibly-empty word that
contains neither P nor P− and w′ is a possibly-empty word. In the case of awTPw′ (the case of awTP−w′ is similar), notice
that awT is sent to an element sol(T), such that K |= ∃x P(sol(T), x) by definition of a solution. Therefore the images of
elements awTPw′ don’t need to be specified to ensure modelhood, as the corresponding facts are already consequences of the
P-edge (a, b) (if there exists b such that (sol(T), b) ∈ A) or of the P-edge (a, f(aP)) (if no such b exists).

It can therefore be verified that f(CK) is a model having exactly nA +max(|D+
K|, |D

−
K |) matches.

If there is at least one demanding role that does not have a solution, then the optimal number of matches is mA +
max(|D+

K|, |D
−
K |) + 1, as witnessed by the following model (which we describe by an ABox):

A ∪ {A(a) | A, T |= A}
∪ {P(a, p(a)) | a ∈ D+

K}
∪ {R(a, ⋆) | R ̸= P ∧ aR ∈ ∆CK}
∪ {R(⋆, ⋆) | R ∈ NR} ∪ {A(⋆) | A ∈ NC}

The above interpretation is indeed a model, because all elements are paired and disjointness is not expressible in DL-Litepos.
Moreover, its number of matches ismA+max(|D+

K|, |D
−
K |)+1. This is optimal as there are at leastmA+ |D+

K| matches in any
model and that there exists T a demanding role having no solution. Indeed, if T is in cases 2 or 3, there cannot be any P-edge
in the ABox nor paired elements (as it would provide a solution for T), and 1 is thus the optimal as any model contains at least
1 match given by the image of the pair (wT, wTP) from the canonical model (T in case 2) or of the pair (wT, wTP−) (in case
3). Otherwise T belongs to case 1, still without a solution, which means that no individual has both an ingoing and outgoing
P. Therefore, in any model, at least one of the image of the pairs (wT, wTP) and (wT, wTP−) (both exist in the canonical
model, for the same w!) provides an additional match.

Note that each condition can be checked in non-deterministic logarithmic space. The number of optimal matches is thus also
computable within the same bound, as the comparison with the input integer. This shows that role cardinality answering lies in
NL.

Theorem 17. Role cardinality query answering in DL-LiteHcore is in coNP w.r.t. combined complexity.

Proof. Let qP be a role cardinality query. As DL-LiteHcore knowledge bases admits model of polynomial size in combined
complexity, and that the query is atomic, there are at most polynomially many guaranteed matches. To check if [m,+∞] is a
certain answer we do the following:

• if m is too big with respect to the polynomial bound, we reject
• otherwise, we guess an instance A′ containing A and additionnal matches (up to m) for qP. One then check whether
(A′, T , {P}) is a satisfiable knowledge base with closed predicate. According to the proof of Theorem 3 of (Ngo, Ortiz,
and Šimkus 2016), if it is the case, it has a model of polynomial size. We guess it, and this provides a counterexample to
[m,+∞] being a certain answer.
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Figure 5: Concept cardinality answering: worst-case data complexity. Proofs of the upper · lower bounds are indicated.
(2020) refers to (Bienvenu, Manière, and Thomazo 2020) and (2021) to (Bienvenu, Manière, and Thomazo 2021).

DL-Litepos
TC0-c

(2021) · (2021)

EL
coNP-c

Thm 3 · Thm 12

ELI
coNP-c

Thm 3 · (2021)

ELI⊥
coNP-c

Thm 3 · (2021)
EL⊥

coNP-c
Thm 3 · Thm 12

DL-LiteHpos
coNP-c

(2020) · (2021)

DL-Litecore
TC0-c

(2021) · (2021)

DL-LiteHcore
coNP-c

(2020) · (2021)

ELH
coNP-c

Thm 3 · Thm 12

ELH⊥
coNP-c

Thm 3 · Thm 12

ELHI
coNP-c

Thm 3 · (2021)

ELHI⊥
coNP-c

Thm 3 · (2021)

Figure 6: Role cardinality answering: worst-case data complexity. Proofs of the upper · lower bounds are indicated.
(2020) refers to (Bienvenu, Manière, and Thomazo 2020) and (2021) to (Bienvenu, Manière, and Thomazo 2021).
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Figure 7: CCQ cardinality answering: worst-case data complexity. Proofs of the upper · lower bounds are indicated.
(2015) refers to (Kostylev and Reutter 2015) and (2020) to (Bienvenu, Manière, and Thomazo 2020).
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Figure 8: Concept cardinality answering: worst-case combined complexity. Proofs of the upper · lower bounds are indicated.
(2021) refers to (Bienvenu, Manière, and Thomazo 2021).
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Figure 9: Role cardinality answering: worst-case combined complexity. Proofs of the upper · lower bounds are indicated.
(2021) refers to (Bienvenu, Manière, and Thomazo 2021).
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Figure 10: CCQ answering: worst-case data complexity. Proofs of the upper · lower bounds are indicated.
(2020) refers to (Bienvenu, Manière, and Thomazo 2020).
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